2012年秋九年级数学培A辅导试题(二)_3
- 格式:pdf
- 大小:353.33 KB
- 文档页数:9
(本卷共五个大题,26个小题,满分150分,时间120分钟)一、选择题(本大题共10个小题,每小题4分,共40分)每个小题都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个答案是正确的,请将正确答案的代号填在答题卷上相应的空格中.1.)7(4等于()A . 3 B . 11 C.-3 D.-112. 计算)2(23x x的结果是()A.2x B.2x C.2xD.12x3.函数21xy 的自变量取值范围是()A.2xB .2xC.2x D.2x 4.如图,已知直线AB CD ∥,115C°,25A°,则E ()A.70°B.80° C.90° D.100°5.下列调查方式中,适宜采用抽样调查的是A 、了解重庆市所有九年级学生每天参加体育锻炼的平均时间B 、审查一篇科学论文的正确性C 、对你所在班级同学的身高的调查D 、对“瓦良格”号航母的零部件性能的检查6.如图,AB 是⊙O 的弦,半径OA =2,∠AOB =120°,则弦AB 的长是()A .32 B.22 C.5 D .537. 如下右图是由四个相同的小立方体组成的立体图形的主视图和左视图,那么原立体图形不可能是()8.观察下列图形:第4题图主视图左视图ABCD第6题图它们是按一定规律排列的,依照此规律,第20个图形共有★个()A .63B .57C .68D .609.已知动点 P 以 2 厘米/秒的速度沿图(a )的边框 BCDEFA 的路径移动,相应的△ABP 的面积 S 关于时间 t 的函数图象如图(b )所示。
若 AB=6 厘米,则下列答案正确的是:()A 、图(a )中的 BC 长是4cm..B 、图(b )中的 a 是12C 、图(a )中的图形面积是60 cm 2D、图(b )中的 b 是1910.小明从如图所示的二次函数2y axbx c 的图象中,观察得出了下面五条信息:①0abc;②0c ;③0cba;④032ba ;⑤04bc.你认为其中正确信息的个数有()A .2个 B.3个 C.4个D.5个二、填空题(本大题6个小题,每小题4分,共24分)在每小题中,请把正确答案直接填在答题卷上相应的横线上.11.2011年4月6日,两江国际计算中心暨中国国际电子商务中心重庆数据产业园在水土高新技术产业园开建,总建筑面积2070000平方米,该数用科学记数法表示为平方米.12.在体育中招考试的跳绳项目考试中,我校两个小组共8位同学的成绩分别如下:(单位:个/分钟)154、187、173、205、197、177、185、188,则这组数据的中位数是.13.△ABC 与△DEF 相似且面积的比为9 :16,则△ABC 与△DEF 的周长比为_________ .14.半径为4,圆心角为150°的扇形面积是___________(结果保留π).。
2022--2023学年北师大版九年级数学下册《2.3确定二次函数的表达式》同步达标测试题(附答案)一.选择题(共8小题,满分32分)1.将二次函数y=x2﹣4x+8转化为y=a(x﹣m)2+k的形式,其结果为()A.y=(x﹣2)2+4B.y=(x+4)2+4C.y=(x﹣4)2+8D.y=(x﹣2)2﹣4 2.一抛物线的形状、开口方向与抛物线相同,顶点为(﹣2,1),则此抛物线的解析式为()A.B.C.D.3.已知二次函数的图象经过(0,0),(3,0),(1,﹣4)三点,则该函数的解析式为()A.y=x2﹣3x B.y=2x2﹣3x C.y=2x2﹣6x D.y=x2﹣6x4.已知抛物线y=x2+bx+c的顶点坐标为(1,3),则抛物线对应的函数解析式为()A.y=x2﹣2x+4B.y=x2﹣2x﹣3C.y=﹣x2+2x+1D.y=x2﹣2x+1 5.已知抛物线的顶点坐标是(2,﹣1),且与y轴交于点(0,3),这个抛物线的表达式是()A.y=x²﹣4x+3B.y=x²+4x+3C.y=x²+4x﹣1D.y=x²﹣4x﹣1 6.如图,若抛物线y=ax2﹣2x+a2﹣1经过原点,则抛物线的解析式为()A.y=﹣x2﹣2x B.y=x2﹣2xC.y=﹣x2﹣2x+1D.y=﹣x2﹣2x或y=x2﹣2x7.设函数y=a(x﹣h)2+k(a,h,k是实数,a≠0),当x=1时,y=2;当x=5时,y=6,以下判断正确的是()A.若h=2,则a<0B.若h=4,则a>0C.若h=6,则a<0D.若h=8,则a>08.已知某抛物线与二次函数y=5x2的图象的开口大小相同,开口方向相反,且顶点坐标为(﹣1,2021),则该抛物线对应的函数表达式为()A.y=﹣5(x﹣1)2+2021B.y=5(x﹣1)2+2021C.y=﹣5(x+1)2+2021D.y=5(x+1)2+2021二.填空题(共8小题,满分32分)9.小聪在画一个二次函数的图象时,列出了下面几组y与x的对应值:x…012345…y…50﹣3﹣4﹣30…该二次函数的解析式是.10.顶点为(﹣6,0),开口向下,形状与函数y=x2的图象相同的抛物线的表达式是.11.二次函数y=x2+bx+c的图象经过点(1,0)和(3,0),则其函数解析式为.12.已知某二次函数y=x2+bx+c过点A(1,0),B(﹣3,0),则此二次函数的关系式是,若在此抛物线上存在一点P,使△ABP面积为8,则点P的坐标是.13.已知抛物线的顶点在原点,对称轴为y轴,且经过点(﹣1,﹣2),则抛物线的表达式为.14.二次函数与y轴的交点到原点的距离为8,它的顶点坐标为(﹣1,2),那么它的解析式为.15.若抛物线y=ax2+bx+c(a≠0)与抛物线y=2x2﹣4x﹣1的顶点重合,且与y轴的交点的坐标为(0,1),则抛物线y=ax2+bx+c(a≠0)的表达式是.16.已知:二次函数y=ax2+bx+c中的x、y满足下表:x﹣2﹣11347y﹣5040m﹣36(1)m的值为;(2)此函数的解析式为;(3)若0<x<4时,则y的取值范围为.三.解答题(共6小题,满分56分)17.已知抛物线y=x2+bx+c的图象经过A(﹣1,12)、B(0,5).(1)求抛物线解析式;(2)试判断该二次函数的图象是否经过点(2,3).18.已知抛物线y=ax2+bx﹣3(a,b是常数,a≠0)经过A(﹣1,﹣2),B(1,﹣6).(1)求抛物线y=ax2+bx﹣3的函数解析式;(2)抛物线有两点M(2,y1)、N(m,y2),当y1<y2时,求m的取值范围.19.如图,在平面直角坐标系中,已知抛物线y=ax2+bx+4(a≠0)经过点A(﹣2,0)和点B(4,0).(1)求这条抛物线所对应的函数解析式;(2)点P为该抛物线上一点(不与点C重合),直线CP将△ABC的面积分成2:1两部分,求点P的坐标.20.抛物线的顶点坐标为(2,﹣1),抛物线又经过点(1,0).(1)求抛物线的解析式;(2)在图中画出这条抛物线;(3)根据图象回答,当y>3时,自变量x的取值范围.21.如图,抛物线y=ax2+2ax+c经过点A(2,0),B(﹣2,4).(1)求抛物线的解析式;(2)若函数y=ax2+2ax+c在m≤x≤m+2时有最大值为4,求m的值;(3)点M在直线AB上方的抛物线上运动,当△ABM的面积最大时,求点M的坐标.22.如图,已知抛物线过点O(0,0),A(5,﹣5),且它的对称轴为直线x=2.(1)求此抛物线的表达式;(2)若点B是抛物线对称轴上的一点,且点B在第四象限.①当△OAB的面积为10时,求B的坐标;②点P是抛物线上的动点,当P A﹣PB的值最大时,求P的坐标以及P A﹣PB的最大值.参考答案一.选择题(共8小题,满分32分)1.解:y=x2﹣4x+8=x2﹣4x+4+4=(x﹣2)2+4,故选:A.2.解:∵抛物线的形状、开口方向与抛物线相同,∴a=,∵顶点为(﹣2,1),∴抛物线解析式为y=(x+2)2+1.故选:C.3.解:设这个二次函数的解析式是y=ax(x﹣3)(a≠0),把(1,﹣4)代入得﹣4=﹣2a,解得a=2;所以该函数的解析式为:y=2x(x﹣3)=2x2﹣6x.故选:C.4.解:∵抛物线y=x2+bx+c的顶点坐标为(1,3),∴抛物线解析式为y=(x﹣1)2+3,即y=x2﹣2x+4.故选:A.5.解:∵抛物线的顶点坐标为(2,﹣1)∴设抛物线的解析式为y=a(x﹣2)2﹣1(a≠0),把(0,3)代入得:4a﹣1=3,解得,a=1.所以,这条抛物线的解析式为:y=(x﹣2)2﹣1=x2﹣4x+3.故选:A.6.解:把(0,0)代入y=ax2﹣2x+a2﹣1得,0=a2﹣1,∴a=±1,∵抛物线开口向下,∴抛物线的解析式为y=﹣x2﹣2x,故选:A.7.解:当x=1时,y=2;当x=5时,y=6;代入函数式得:,∴a(5﹣h)2﹣a(1﹣h)2=4,整理得:a(6﹣2h)=1,若h=2,则a=,故A错误;若h=4,则a=﹣,故B错误;若h=6,则a=﹣,故C正确;若h=8,则a=﹣,故D错误;故选:C.8.解:∵抛物线的顶点坐标为(﹣1,2021),∴抛物线的解析式为y=a(x+1)2+2021,∵抛物线y=a(x+1)2+2021二次函数y=5x2的图象的开口大小相同,开口方向相反,∴a=﹣5,∴抛物线的解析式为y=﹣5(x+1)2+2021.故选:C.二.填空题(共8小题,满分32分)9.解:由表格数据结合二次函数图象对称性可得图象顶点为(3,﹣4),设二次函数的表达式为y=a(x﹣3)2﹣4(a≠0),将(1,0)代入得4a﹣4=0,解得a=1,∴该二次函数的表达式为y=(x﹣3)2﹣4(或y=x2﹣6x+5).10.解:设所求的抛物线的关系式为y=a(x﹣h)2+k,∵顶点为(﹣6,0),∴h=﹣6,k=0,又∵开口向下,形状与函数y=x2的图象相同,∴a=﹣,∴抛物线的关系式为:y=﹣(x+6)2,11.解:∵二次函数y=x2+bx+c的图象经过点(1,0)和(3,0),∴二次函数为y=(x﹣1)(x﹣3)=x2﹣4x+3,故答案为:y=x2﹣4x+3.12.解:将点A(1,0),B(﹣3,0)代入y=x2+bx+c中,可得,解得,∴y=x2+2x﹣3,设P(m,m2+2m﹣3),∵AB=4,∴S△ABP=×AB×y P=×4×|m2+2m﹣3|=8,∴|m2+2m﹣3|=4,∴m2+2m﹣3=4或m2+2m﹣3=﹣4,解得m=﹣1±2或m=﹣1,∴P(﹣1+2,4)或P(﹣1﹣2,4)或P(﹣1,﹣4),故答案为:y=x2+2x﹣3;(﹣1+2,4)或(﹣1﹣2,4)或(﹣1,﹣4).13.解:根据题意设抛物线解析式为y=ax2,将x=﹣1,y=﹣2代入得:﹣2=a,则抛物线解析式为y=﹣2x2.故答案为:y=﹣2x2.14.解:∵二次函数的图象顶点坐标为(﹣1,2),∴设这个二次函数的解析式y=a(x+1)2+2(a≠0),∵二次函数的图象与y轴的交点到原点的距离是8,∴交点坐标为(0,8)或(0,﹣8),把(0,8)代入y=a(x+1)2+2,得8=a+2,解得a=6,则这个二次函数的解析式y=6(x+1)2+2;把(0,﹣8)代入y=a(x+1)2+2,得﹣8=a+2,解得a=﹣10,则这个二次函数的解析式y=﹣10(x+1)2+2;故答案为:y=6(x+1)2+2或y=﹣10(x+1)2+2.15.解:∵y=2x2﹣4x﹣1=2(x﹣1)2﹣3,∴抛物线y=2x2﹣4x﹣1的顶点坐标为(1,﹣3),∵抛物线y=ax2+bx+c与抛物线y=2x2﹣4x﹣1的顶点重合,∴抛物线y=ax2+bx+c的顶点坐标为(1,﹣3),∴设此抛物线为y=a(x﹣1)2﹣3,∵与y轴的交点的坐标为(0,1),∴1=a﹣3,解得a=4,∴此抛物线为y=4(x﹣1)2﹣3=4x2﹣8x+1,故答案为:y=4x2﹣8x+1.16.解:(1)由图中表格可知,二次函数y=ax2+bx+c的图象关于直线x=1对称,且(4,m)与(﹣2,﹣5)关于直线x=1对称,∴m=﹣5;故答案为:﹣5;(2)由二次函数y=ax2+bx+c的图象过(﹣1,0),(3,0),设函数的解析式为y=a(x+1)(x﹣3),将(1,4)代入得:4=a×2×(﹣2),解得a=﹣1,∴y=﹣(x+1)(x﹣3)=﹣x2+2x+3,故答案为:y=﹣x2+2x+3;(3)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴当x=1时,y取最大值4,∵1﹣0<4﹣1,∴x=4时,y取最小值﹣(4﹣1)2+4=﹣5,∴0<x<4时,y的取值范围为是﹣5<y≤4;故答案为:﹣5<y≤4.三.解答题(共6小题,满分56分)17.解:(1)∵抛物线y=x2+bx+c的图象经过A(﹣1,12),B(0,5).∴,解得,∴二次函数解析式为y=x2﹣6x+5;(2)当x=2时,y=x2﹣6x+5=4﹣12+5=﹣3≠3,∴该二次函数的图象不经过点(2,3).18.解:(1)把A(﹣1,﹣2),B(1,﹣6)代入y=ax2+bx﹣3得,解得,∴抛物线的关系式为y=﹣x2﹣2x﹣3;(2)∵y=﹣x2﹣2x﹣3,∴抛物线开口向下,对称轴直线x=﹣=﹣1,∴由图取抛物线上点Q,使Q与N关于对称轴x=﹣1对称,∴点M(2,y1)关于对称轴x=﹣1的对称点为(﹣4,y1),又∵N(m,y2)在抛物线图象上的点,且y1<y2,∴﹣4<m<2.19.解:(1)设抛物线的表达式为y=a(x﹣x1)(x﹣x2),则y=a(x+2)(x﹣4)=ax2﹣2ax﹣8a,即﹣8a=4,解得a=﹣,故抛物线的表达式为y=﹣x2+x+4;(2)由点A、B的坐标知,OB=2OA,故CO将△ABC的面积分成2:1两部分,此时,点P不在抛物线上;如图1,当BH=AB=2时,CH将△ABC的面积分成2:1两部分,即点H的坐标为(2,0),则CH和抛物线的交点即为点P,由点C、H的坐标得,直线CH的表达式为y=﹣2x+4,联立,解得或,故点P的坐标为(6,﹣8).20.解:(1)设抛物线的解析式为y=a(x﹣2)2﹣1,将点(1,0)代入,得a﹣1=0.解得a=1,∴抛物线的解析式为y=(x﹣2)2﹣1,(2)∵y=(x﹣2)2﹣1=x2﹣4x+3,∴抛物线与y轴的交点为(0,3),其关于对称轴的对称点为(4,3),令y=0,则x2﹣4x+3=0,解得x=1或3,∴抛物线与x轴的交点为(1,0),(3,0),画出函数图象如下:(3)由函数图象知,当y>3时,自变量x的取值范围是x<0或x>4.21.解:(1)∵抛物线y=ax2+2ax+c经过点A(2,0),B(﹣2,4),∴,解得,∴抛物线的解析式为y=﹣x2﹣x+4;(2)∵y=﹣x2﹣x+4,∴抛物线开口向下,对称轴x=﹣=﹣1,∵m≤x≤m+2时,y有最大值4,∴当y=4时,有﹣x2﹣x+4=4,∴x=0或x=﹣2,①在x=﹣1左侧,y随x的增大而增大,∴x=m+2=﹣2时,y有最大值4,②在对称轴x=﹣1右侧,y随x最大而减小,∴x=m=0时,y有最大值4;综上所述:m=﹣4或m=0;(3)过点M作MG∥y轴交直线AB于点G,设直线AB的解析式为y=kx+b,∴,解得,∴y=﹣x+2,设M(m,﹣m2﹣m+4),则G(m,﹣m+2),∴MG=﹣m2+2,∴S△ABM=×4×(﹣m2+2)=﹣m2+4,∴当m=0时,△ABM的面积最大,此时M(0,4).22.解:(1)∵抛物线过点O(0,0),A(5,﹣5),且它的对称轴为x=2,∴抛物线与x轴的另一个交点坐标为(4,0),设抛物线解析式为y=ax(x﹣4),把A(5,﹣5)代入,得5a=﹣5,解得:a=﹣1,∴y=﹣x(x﹣4)=﹣x2+4x,故此抛物线的解析式为y=﹣x2+4x;(2)①∵点B是抛物线对称轴上的一点,且点B在第四象限,∴设B(2,m)(m<0),设直线OA的解析式为y=kx,解得:k=﹣1,∴直线OA的解析式为y=﹣x,设直线OA与抛物线对称轴交于点H,则H(2,﹣2),∴BH=﹣2﹣m,∵S△OAB=10,∴×(﹣2﹣m)×5=10,解得:m=﹣6,∴点B的坐标为(2,﹣6);②设直线AB的解析式为y=cx+d,把A(5,﹣5),B(2,﹣6)代入得:,,解得:,∴直线AB的解析式为y=x﹣,如图2,当P A﹣PB的值最大时,A、B、P在同一条直线上,∵P是抛物线上的动点,∴,解得:或,∴P(﹣,﹣).∵AB==,∴P A﹣PB的最大值为.。
九年级数学二次函数测试题含答案(精选5套)九年级数学二次函数测试题含答案(精选5套)第一套:1. 将函数 $y = 2x^2 - 3x - 2$ 化简为标准形式,并求出它的顶点坐标。
答案:将函数化简为标准形式得到 $y = 2(x-\frac{3}{4})^2 -\frac{33}{8}$,顶点坐标为 $(\frac{3}{4}, -\frac{33}{8})$。
2. 求函数 $y = -x^2 + 4x + 1$ 的零点。
答案:将函数化简为标准形式得到 $y = -(x-2)^2 + 5$,令 $y = 0$,解得 $x = 2 \pm \sqrt{5}$,即零点为 $x_1 = 2 + \sqrt{5}$ 和 $x_2 = 2 -\sqrt{5}$。
3. 给定函数 $y = x^2 - 6x + 5$,求其对称轴的方程式。
答案:对称轴的方程式为 $x = \frac{-b}{2a}$,代入 $a = 1$ 和 $b = -6$ 得到 $x = \frac{6}{2} = 3$。
4. 若函数 $y = ax^2 + bx - 9$ 与 $y = -x^2 + 7x$ 有相同的图像,求$a$ 和 $b$ 的值。
答案:由于两个函数有相同的图像,所以它们的系数相等。
比较两个函数的对应系数得到 $a = -1$ 和 $b = 7$。
5. 已知函数 $y = x^2 - 4x + 5$ 的图像上存在一点 $(h, k)$,使得 $x= h - 3$ 时,$y = 2k + 12$,求点 $(h, k)$ 的坐标。
答案:将 $x = h - 3$ 代入函数得到 $y = (h-3)^2 - 4(h-3) + 5$。
代入$y = 2k + 12$ 得到 $(h-3)^2 - 4(h-3) + 5 = 2k + 12$。
整理得到 $(h-3)^2 -4(h-3) - 2k - 7 = 0$。
由于该方程为二次方程,必然存在实数解。
专业课原理概述部分一、选择题(每题1分,共5分)1.若函数f(x)=x^24x+3,则f(1)的值为()A.0B.1C.2D.32.在直角坐标系中,点P(2,-3)关于y轴的对称点坐标是()A.(-2,3)B.(-2,-3)C.(2,3)D.(3,-2)3.下列哪个数是素数?()A.27B.29C.35D.394.若一组数据的方差为4,则这组数据的标准差是()A.2B.4C.8D.165.在三角形ABC中,若∠A=60°,∠B=70°,则∠C的度数是()A.50°B.60°C.70°D.80°二、判断题(每题1分,共5分)6.任何两个奇数之和都是偶数。
()7.在一次函数y=kx+b中,若k>0,则函数图像是上升的。
()8.平行四边形的对边相等。
()9.圆的周长和直径成正比。
()10.若一个数的平方是负数,则这个数一定是负数。
()三、填空题(每题1分,共5分)11.若a+b=5且ab=3,则a=______,b=______。
12.函数y=2x+1的图像是一条_________。
13.若一个等腰三角形的底边长为8,腰长为10,则这个三角形的面积是_________。
14.在一个比例尺为1:1000的地图上,两城市之间的距离是5厘米,实际距离是_________公里。
15.若一组数据为2,4,6,8,10,则这组数据的平均数是_________。
四、简答题(每题2分,共10分)16.简述平行线的性质。
17.什么是算术平方根?如何计算一个数的算术平方根?18.简述概率的基本公式。
19.什么是相似三角形?相似三角形有哪些性质?20.如何求解一元二次方程?五、应用题(每题2分,共10分)21.某商店进行打折促销,原价为300元的商品打8折,现价是多少?22.一个长方形的长是10厘米,宽是5厘米,求这个长方形的对角线长度。
23.若一个等差数列的首项是2,公差是3,求第10项的值。
江东初中2012年秋九年级第三学月质量监测数 学 试 题(满分:100分 时间:90分钟)一、选择题。
(每题3分,共30分)1、如果102-x 有意义,则x 的取值范围是( )A 、x ≥0B 、x ≤0C 、x ≥5D 、x ≤52、下列根式中,能与8合并的是( )A 、48B 、18C 、28D 、243、若ax 2-5x+3=0是一元二次方程,则不等式3a+6>0的解集是( ) A 、a>-2 B 、a<-2 C 、a>-2且a≠0 D 、a>124、关于y 的一元二次方程ky 2-4y -3=3y +4有实根,k 的取值范围( )A 、k > -74B 、k ≥-74且k≠074D 、C 、k ≤-74且k ≠0k >-5、下图中,既可经过平移又可经过旋转,由图形①得到图形②的是( ).6、下列四个命题:(1)相等的圆心角所对的弧相等;(2)平分弦的直径垂直于弦;(3)任意一个圆有且只有一个内接三角形;(4)三角形的外心到各顶点距离相等。
其中真命题有( )A 、1个B 、2个C 、3个D 、4个7、在半径为R 的圆中,内接正方形与内接正六边形的边长之比为( ) A 、2:1 B 、2:3 C 、1:2 D 、2:38、如图,四边形ABCD 的边AB 、BC 、CD 、DA 和⊙O 分别相切于点L 、M 、N 、P ,若四边形ABCD 的周长为20,则CD AB +等于( )班级 考号 姓名…○………密………○………封……○………线……○………内……○………不……○………要……○………答……○………题……○……A 、5B 、8C 、10D 、129、如图,圆内接四边形ABCD 是由四个全等的等腰梯形组成,AD 是⊙O 的直径,则∠BEC 的度数为( ) A .15° B .30° C .45° D .60°第8题 10、在一个口袋中有4个完全相同的小球,把它们分别标号为 1,2,3,4,随机地摸出一个小球然后放回,再随机地摸出一个小球。
2012年全国九年级义务教育初中中考数学联合竞赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试一、选择题:(本题满分42分,每小题7分) 1.已知1a =,b =2c =,那么,,a b c 的大小关系是 ( )A. a b c <<B. a c b <<C. b a c <<D.b c a << 【答】C. 因为11a =+,1b =,所以110a b<<,故b a <.又2)1)c a -=-=1),而221)30-=->,1>,故c a >.因此b a c <<.2.方程222334x xy y ++=的整数解(,)x y 的组数为 ( ) A.3. B.4. C.5. D.6. 【答】B.方程即22()234x y y ++=,显然x y +必须是偶数,所以可设2x y t +=,则原方程变为22217t y +=,它的整数解为2,3,t y =±⎧⎨=±⎩从而可求得原方程的整数解为(,)x y =(7,3)-,(1,3),(7,3)-,(1,3)--,共4组.3.已知正方形ABCD 的边长为1,E 为BC 边的延长线上一点,CE =1,连接AE,与CD 交于点F,连接BF 并延长与线段DE 交于点G,则BG 的长为 ( )【答】D.过点C 作CP//BG,交DE 于点P.因为BC =CE =1,所以CP 是△BEG 的中位线,所以P 为EG 的中点.又因为AD =CE =1,AD//CE,所以△ADF ≌△ECF,所以CF =DF,又CP//FG,所以FG 是△DCP 的中位线,所以G 为DP 的中点.因此DG =GP =PE =13DE.连接BD,易知∠BDC =∠EDC =45°,所以∠BDE =90°. 又BD,所以BG3==. 4.已知实数,a b 满足221a b +=,则44a ab b ++的最小值为 ( )EC AA.18-.B.0.C.1.D.98. 【答】B.442222222219()2122()48a ab b a b a b ab a b ab ab ++=+-+=-+=--+.因为222||1ab a b ≤+=,所以1122ab -≤≤,从而311444ab -≤-≤,故2190()416ab ≤-≤,因此219902()488ab ≤--+≤,即44908a ab b ≤++≤.因此44a ab b ++的最小值为0,当22a b =-=或22a b ==-时取得. 5.若方程22320x px p +--=的两个不相等的实数根12,x x 满足232311224()x x x x +=-+,则实数p 的所有可能的值之和为 ( )A.0.B.34-.C.1-.D.54-. 【答】 B.由一元二次方程的根与系数的关系可得122x x p +=-,1232x x p ⋅=--,所以2222121212()2464x x x x x x p p +=+-⋅=++,332212121212()[()3]2(496)x x x x x x x x p p p +=++-⋅=-++.又由232311224()x x x x +=-+得223312124()x x x x +=-+,所以2246442(496)p p p p p ++=+++,所以(43)(1)0p p p ++=,所以12330,,14p p p ==-=-.代入检验可知:1230,4p p ==-均满足题意,31p =-不满足题意. 因此,实数p 的所有可能的值之和为12330()44p p +=+-=-.6.由1,2,3,4这四个数字组成四位数abcd (数字可重复使用),要求满足a c b d +=+.这样的四位数共有 ( )A.36个.B.40个.C.44个.D.48个.【答】C.根据使用的不同数字的个数分类考虑:(1)只用1个数字,组成的四位数可以是1111,2222,3333,4444,共有4个.(2)使用2个不同的数字,使用的数字有6种可能(1、2,1、3,1、4,2、3,2、4,3、4).如果使用的数字是1、2,组成的四位数可以是1122,1221,2112,2211,共有4个;同样地,如果使用的数字是另外5种情况,组成的四位数也各有4个.因此,这样的四位数共有6×4=24个.(3)使用3个不同的数字,只能是1、2、2、3或2、3、3、4,组成的四位数可以是1232,2123,2321,3212,2343,3234,3432,4323,共有8个.(4)使用4个不同的数字1,2,3,4,组成的四位数可以是1243,1342,2134,2431,3124,3421,4213,4312,共有8个.因此,满足要求的四位数共有4+24+8+8=44个. 二、填空题:(本题满分28分,每小题7分) 1.已知互不相等的实数,,a b c 满足111a b c t b c a+=+=+=,则t =_________. 【答】 1±.由1a t b +=得1b t a =-,代入1b t c +=得11t t a c +=-,整理得2(1)()0ct ac t a c -++-= ①又由1c t a+=可得1ac at +=,代入①式得22()0ct at a c -+-=,即2()(1)0c a t --=,又c a ≠,所以210t -=,所以1t =±.验证可知:11,1a b c a a -==-时1t =;11,1a b c a a+=-=-+时1t =-.因此,1t =±. 2.使得521m⨯+是完全平方数的整数m 的个数为 . 【答】 1.设2521m n ⨯+=(其中n 为正整数),则2521(1)(1)mn n n ⨯=-=+-,显然n 为奇数,设21n k =-(其中k 是正整数),则524(1)mk k ⨯=-,即252(1)m k k -⨯=-.显然1k >,此时k 和1k -互质,所以252,11,m k k -⎧=⨯⎨-=⎩或25,12,m k k -=⎧⎨-=⎩或22,15,m k k -⎧=⎨-=⎩解得5,4k m ==. 因此,满足要求的整数m 只有1个.3.在△ABC 中,已知AB =AC,∠A =40°,P 为AB 上一点,∠ACP =20°,则BCAP= . 【答】设D 为BC 的中点,在△ABC 外作∠CAE =20°,则∠BAE =60°. 作CE ⊥AE,PF ⊥AE,则易证△ACE ≌△ACD,所以CE =CD =12BC. 又PF =PA sin ∠BAE =PA sin 60°=2AP,PF =CE,所以2AP =12BC, 因此BCAP4.已知实数,,a b c 满足1abc =-,4a b c ++=,22243131319a b c a a b b c c ++=------,则222a b c ++= .【答】332. 因为22313(3)(1)(1)(1)a a a a abc a bc a a bc b c a b c --=-+=+-=--+=--,所以2131(1)(1)a a abc =----.EB同理可得2131(1)(1)b b b a c =----,2131(1)(1)c c c a b =----. 结合22243131319a b c a a b b c c ++=------可得1114(1)(1)(1)(1)(1)(1)9b c a c a b ++=------,所以4(1)(1)(1)(1)(1)(1)9a b c a b c ---=-+-+-. 结合1abc =-,4a b c ++=,可得14ab bc ac ++=-. 因此,222233()2()2a b c a b c ab bc ac ++=++-++=.实际上,满足条件的,,a b c 可以分别为11,,422-.第二试 (A)一、(本题满分20分)已知直角三角形的边长均为整数,周长为30,求它的外接圆的面积. 解 设直角三角形的三边长分别为,,a b c (a b c ≤<),则30a b c ++=.显然,三角形的外接圆的直径即为斜边长c ,下面先求c 的值.由a b c ≤<及30a b c ++=得303a b c c =++<,所以10c >. 由a b c +>及30a b c ++=得302a b c c =++>,所以15c <.又因为c 为整数,所以1114c ≤≤. ……………………5分 根据勾股定理可得222a b c +=,把30c a b =--代入,化简得30()4500ab a b -++=,所以22(30)(30)450235a b --==⨯⨯, ……………………10分因为,a b 均为整数且a b ≤,所以只可能是22305,3023,a b ⎧-=⎪⎨-=⨯⎪⎩解得5,12.a b =⎧⎨=⎩……………………15分 所以,直角三角形的斜边长13c =,三角形的外接圆的面积为1694π. ……………………20分 二.(本题满分25分)如图,PA 为⊙O 的切线,PBC 为⊙O 的割线,A D ⊥OP 于点D .证明:2AD BD CD =⋅.2012年全国九年级义务教育初中中考数学联合竞赛试题参考答案及评分标准 第1页(共4页)证明:连接OA,OB,OC.∵OA ⊥AP,A D ⊥OP,∴由射影定理可得2PA PD PO =⋅,2AD PD OD =⋅. ……………………5分 又由切割线定理可得2PA P B PC =⋅,∴PB PC PD PO ⋅=⋅,∴D 、B 、C 、O 四点共圆,……………………10分∴∠PDB =∠PCO =∠OBC =∠ODC,∠PBD =∠COD,∴△PB D ∽△COD, ……………………20分∴PD BD CD OD=,∴2AD PD OD BD CD =⋅=⋅. ……………………25分 三.(本题满分25分)已知抛物线216y x bx c =-++的顶点为P,与x 轴的正半轴交于A 1(,0)x 、B 2(,0)x (12x x <)两点,与y 轴交于点C,PA 是△ABC 的外接圆的切线.设M 3(0,)2-,若AM//BC,求抛物线的解析式.解 易求得点P 23(3,)2b bc +,点C (0,)c .设△ABC 的外接圆的圆心为D,则点P 和点D 都在线段AB 的垂直平分线上,设点D 的坐标为(3,)b m . 显然,12,x x 是一元二次方程2106x bx c -++=的两根,所以13x b =,23x b =又AB 的中点E 的坐标为(3,0)b ,所以AE……………………5分因为PA 为⊙D 的切线,所以PA ⊥AD,又A E ⊥PD,所以由射影定理可得2AE PE DE =⋅,即223()||2b c m =+⋅,又易知0m <,所以可得6m =-. ……………………10分又由DA =DC 得22DA DC =,即2222(30)()m b m c +=-+-,把6m =-代入后可解得6c =-(另一解0c =舍去). ……………………15分又因为AM//BC,所以OA OMOB OC =,3||2|6|-=-. ……………………20分 把6c =-代入解得52b =(另一解52b =-舍去). 因此,抛物线的解析式为215662y x x =-+-. ……………………25分2012年全国九年级义务教育初中中考数学联合竞赛试题参考答案及评分标准 第1页(共5页)。
2023年四川省成都市锦江区九年级一诊数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,是一个由长方体截去一部分后得到的几何体,其主视图是()A .B .C .D .2.下列函数中,y 是x 的反比例函数的是()A .4y x=B .1y x =+C .3x y =D .2y x =3.若关于x 的一元二次方程x 2﹣2x +m =0有一个解为x =﹣1,则另一个解为()A .1B .﹣3C .3D .44.如图所示的两个四边形相似,则下列结论不正确的是()A .a =B .2m n =C .2x =D .60α∠=︒5.如图,已知在平面直角坐标系中,四边形ABCD 是菱形,其中点B 的坐标是()62,,点D 的坐标是()02,,点A 在x 轴上,则点C 的坐标是()A .()32,B .()33,C .()34,D .()24,6.一个不透明的箱子里共装有m 个球,其中红球5个,这些球除颜色不同外其余都相同.每次搅拌均匀后,任意摸出一个球记下颜色后再放回,大量重复试验发现,摸到红球的频率稳定在0.2附近,则可以估算出m 的值为()A .1B .5C .20D .257.如图,在方格纸上,以点O 为位似中心,把线段AB 缩小到原来的12,则点A 的对应点为()A .点D 或点GB .点E 或点FC .点D 或点F D .点E 或点G8.如图,在矩形ABCD 中,6AB =,8BC =,对角线AC ,BD 相交于点O ,点E ,F 分别是AO ,AD 的中点,连接EF ,则AEF △的周长为()A .6B .7C .8D .9二、填空题9.若2ba=则b a b +=_____.10.关于x 的一元二次方程2(1)1x a -=+有两个不相等的实数根,则a 的取值范围是__________.11.已知点11(,)A x y ,22(,)B x y 都在反比例函数3y x=的图象上,且120x x <<,则1y 和2y 的大小关系为__________.12.小颖将能够活动的菱形学具活动成为图1所示形状,并测得5AC =,=60B ∠︒.接着,她又将这个学其活动成为图2所示正方形,此时A C ''的长为__________.13.如图,在ABC 中,AB =C 为圆心,以适当的长为半径作弧,交CB 于点D ,交CA 于点E ,连接DE ;②以点B 为圆心,以CD 长为半径作弧,交BA 于点F ;③以点F 为圆心,以DE 的长为半径作弧,在ABC 内与前一条弧相交于点G ;④连接BG 并延长交AC 于点H ,若H 恰好为AC 的中点,则AC 的长为__________.三、解答题14.(1()11233-⎛⎫--- ⎪⎝⎭;(2)解方程:()21310x x -++=.15.中国共产党第二十次全国代表大会于10月16日至22日在北京举行,这是一次具有里程碑意义的大会,必将对中国和世界产生深远影响.某校积极组织学生学习二十大相关会议精神,并组织了二十大知识问答赛,将比赛结果分为A ,B ,C ,D 四个等级,根据如下不完整的统计图解答下列问题:(1)求该校参加知识问答赛的学生人数;(2)求扇形统计图中C 级所对应的圆心角的度数;(3)现准备从结果为A 级的4人(两男两女)中随机抽取两名同学参加二十大宣讲,请用列表或画树状图的方法,求恰好抽到一名男生和一名女生参加宣讲活动的概率.16.【学科融合】如图1,在反射现象中,反射光线,入射光线和法线都在同一个平面内:反射光线和入射光线分别位于法线两例;入射角i 等于反射角r .这就是光的反射定律.【问题解决】如图2,小红同学正在使用手电筒进行物理光学实验,地面上从左往右依次是墙,木板和平面镜,手电筒的灯泡在点G 处,手电筒的光从平面镜上点B 处反射后,恰好经过木板的边缘点F ,落在墙上的点E 处,点E 到地面的高度 3.5m DE =,点F 到地面的高度 1.5m CF =,灯泡到木板的水平距离 5.4m AC =,木板到墙的水平距离为4m CD =.图中A ,B ,C ,D 在同一条直线上.(1)求BC 的长;(2)求灯泡到地面的高度AG .17.如图1,ABCD Y 的各内角的平分线分别相交于点E ,F ,G ,H .(1)求证:四边形EFGH 为矩形;(2)如图2,当ABCD Y 为矩形时,①求证:四边形EFGH 为正方形;②若10AD =,四边形EFGH 的面积为8,求AB 的长.18.如图1,已知反比例函数(0)ky k x=≠的图象与一次函数1y x =-的图象相交于A (2,a ),B两点.(1)求反比例函数的表达式及A ,B 两点的坐标;(2)M 是x 轴上一点,N 是y 轴上一点,若以A ,B ,M ,N 为顶点的四边形是以AB 为边的平行四边形,求点M 的坐标;(3)如图2,反比例函数ky x=的图象上有P ,Q 两点,点P 的横坐标为(2)m m >,点Q 的横坐标与点P 的横坐标互为相反数,连接AP ,AQ ,BP ,BQ .若ABQ 的面积是ABP 的面积的3倍,求m 的值.四、填空题19.已知一元二次方程2320230x x --=的两个根为12x x ,,则1212x x x x +的值为__________.20.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,过点O 作OE BD ⊥,交AD 于点E ,若20ACB ∠=︒,则AOE ∠的大小为__________.21.如图,在平面直角坐标系xOy 中,AOB 的顶点A 在函数4(0)y x x=>的图象上,顶点B 在x 轴正半轴上,边AO ,AB 分别交的数1(0)y x x=>,4(0)y x x=>的图象于点M ,N .连接MN ,若MN x ∥轴,则AOB 的面积为__________.22.如图,在矩形ABCD 中,6AB =,12BC =,点P 是DC 上一点,且5DP =,点E ,F 分别是AD BC ,上的动点,连接EF AP ,,始终满足EF AP ⊥.连接AF PF PE ,,,记四边形AEPF 的面积为1S ,记ABF △的面积为2S ,记FCP 的面积为3S ,记EDP △的面积为4S ,则1423S S S S =++__________.23.如图,在平面直角坐标系xOy 中,正方形ABCD 的顶点A ,C 的坐标分别为(1,1)A -,(1,1)C -.已知线段MN 的端点M ,N 的坐标分别为(3,3)M ,73(,)22N ,平移线段MN ,使得平移后的线段的两个端点均落在正方形ABCD 的边上,此时正方形ABCD 被该线段分为两部分,其中三角形部分的面积为__________;已知线段PQ 的端点坐标分别为11(,)P x y ,22(,)Q x y ,且12x x ≠,12y y ≠,2PQ =.平移线段PQ ,使得平移后的线段P Q ''的两个端点均落在正方形ABCD 的边上,且线段P Q ''将正方形的ABCD 面积分为6:19两部分,取P Q ''的中点H ,连接OH ,则OH 的长为__________.五、解答题24.电影《长津湖》是一部讲述抗美援朝题材影片,该片以朝鲜长津湖战役为背景,讲述一个志愿军连队在极寒严酷环境下坚守阵地奋勇杀敌、为战役胜利作出重要贡献的故事,2021年8月首映,深受人们的喜爱.2022年清明节来临之际某电影院开展“清明祭英烈共铸中华魂”系列活动,对团体购买该电影票实行优惠,决定在原定零售票价基础上每张降价16元,这样按原定票价需花费2000元购买的门票张数,现在只花费了1200元.(1)求每张零售电影票的原定价;(2)为了弘扬爱国主义精神,该影院决定对网上购票的个人也采取优惠,原定零售票价经过连续两次降价后票价为每张32.4元,求原定零售票价平均每次的下降率.25.已知在平面直角坐标系xOy 中,点(1,)a ,1(2,2a -在反比例函数k y x =的图像上.(1)求k 的值;(2)将反比例函数ky x=的图像中x 轴下方部分沿x 轴翻折,其余部分保持不变,得到新的函数图像如图1所示,新函数记为函数F .①如图2,直线y x b =+与函数F 的图像交于A ,B 两点,点A 横坐标为1x ,点B 横坐标为2x ,且120x x <<,124x x =.点P 在y 轴上,连接AP ,BP .当AP BP +最小时,求点P 的坐标;②已知一次函数2(0)y nx n n =-+≠)的图像与函数F 的图像有三个不同的交点,直接写出n 的取值范围.26.【问题背景】如图1,在矩形ABCD 中,点M ,N 分别在边BC ,AD 上,且1BM MC m=,连接BN ,点P 在BN 上,连接PM 并延长至点Q ,使1PM MQ m=,连接CQ .【尝试初探】求证:CQ BN ∥;【深入探究】若AN BM AB ==,2m =,点P 为BN 中点,连接NC ,NQ ,求证:NC NQ =;【拓展延伸】如图2,在正方形ABCD 中,点P 为对角线BD 上一点,连接PC 并延长至点Q ,使1(1)PC n QC n =>,连接DQ ,若22222(1)n BP DQ n AB +=+,求BPBD的值(用含n 的代数式表示)参考答案:1.C【分析】从正面看,确定主视图即可.【详解】解:几何体的主视图为:故选C .【点睛】本题考查三视图.熟练掌握三视图的确定方法,是解题的关键.注意,存在看不见的用虚线表示.2.A【分析】根据反比例函数的定义,即可判断.【详解】解:A 、4y x=,y 是x 的反比例函数,故A 符合题意;B 、1y x =+,y 不是x 的反比例函数,故B 不符合题意;C 、3xy =,y 不是x 的反比例函数,故C 不符合题意;D 、2y x =,y 不是x 的反比例函数,故D 不符合题意;故选:A .【点睛】本题考查了反比例函数的定义,熟练掌握正比例函数的定义是解题的关键,一般地,形如()0ky k x=≠且k 是常数的函数叫做反比例函数.3.C【分析】设方程的另一个解为x 1,根据两根之和等于﹣ba,即可得出关于x 1的一元一次方程,解之即可得出结论.【详解】设方程的另一个解为x 1,根据题意得:﹣1+x 1=2,解得:x 1=3,故选C .【点睛】本题考查了根与系数的关系以及一元二次方程的解,牢记两根之和等于﹣ba、两根之积等于ca是解题的关键.4.B【分析】由相似三角形的性质:对应角相等,对应边成比例,即可求解.【详解】因为两个图形相似:244m x a n ===解得:a =A 选项正确,不符合题意;2n m =B 选项错误,符合题意;2x =C 选项正确,不符合题意;360904516560α∠=︒-︒-︒-︒=︒,D 选项正确,不符合题意;故选:B .【点睛】本题考查了相似多边形的性质;根据性质求出对应边和对应角是解题的关键.5.C【分析】首先连接AC 、BD 相交于点E ,由在菱形ABCD 中,点A 在x 轴上,点B 的坐标为()62,,点D 的坐标为()02,,可求得点E 的坐标,继而求得答案.【详解】解:连接AC ,BD 相交于点E ,四边形ABCD 是菱形,AE CE ∴=,BE DE =,AC BD ⊥,点A 在x 轴上,点B 的坐标为()62,,点D 的坐标为()02,,6BD =∴,BD y ⊥轴,2AE ∴=,13242DE BD AC AE ∴====,,∴点C 的坐标为:()34,.故选:C .【点睛】本题考查了菱形的性质以及坐标与图形的性质,解题的关键是注意菱形的对角线互相平分且垂直.6.D【分析】用红球的数量除以红球的频率即可.【详解】解:50.225÷=(个),所以可以估算出m的值为25,故选:D.【点睛】本题主要考查利用频率估计概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.7.A【分析】作射线AO,根据位似中心的概念、线段的位似比解答即可.【详解】解:作射线AO,,射线AO经过点D和点G,且1 2OD OA=,12OG OA=,∴点A的对应点为点D或点G,故选:A.【点睛】本题考查位似变换,正确记忆位似图形的特征是解题关键.8.D【分析】利用勾股定理算出AC 的长度,根据矩形的性质即可得出OA OD =的长度,再根据中位线的性质求出周长即可.【详解】在矩形ABCD 中,6AB =,8BC =,10AC =,对角线AC ,BD 相交于点O ,152OA OD AC ===,点E ,F 分别是AO ,AD 的中点,EF ∴是AOD △的中位线,1522EF OD ∴==,1522AE OA ∴==,142AF AD ==,AEF ∴ 的周长为:554922AE AF EF ++=++=,故选:D .【点睛】本题考查矩形的性质和中位线的应用,关键在于根据矩形的性质转变边长,中位线的性质求出边长.9.23【分析】将2b a=变形为2b a =,然后代入b a b +计算即可.【详解】解:∵2b a =∴2b a=将2b a =代入b a b+得2223a a a =+故答案为:23【点睛】本题考查了已知式子值,求代数式值,分式化简求值,熟练分式化简求值是解题关键.【分析】先将一元二次方程2(1)1x a -=+可转化为一般形式220x x a --=,再根据一元二次方程解的根的判别式的意义得到()4410a ∆=-⨯⨯->,然后求出a 的取值范围.【详解】一元二次方程2(1)1x a -=+可转化为220x x a --=,∵关于x 的一元二次方程2(1)1x a -=+有两个不相等的实数根∴()4410a ∆=-⨯⨯->∴440a +>∴1a >-【点睛】本题考查一元二次方程解的根的判别式的意义,解题的关键是掌握当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程无实数根.11.12y y >##21y y <【分析】根据反比例函数的图象和性质进行判断即可,由于点()11,A x y ,()22,B x y 都在反比例函数3y x=的图象上,若120x x <<,在第三象限,y 随x 的增大而减小,进而得出答案.【详解】解:由于点()11,A x y ,()22,B x y 都在反比例函数3y x =的图象上,且120x x <<,由在第三象限内,y 随x 的增大而减小可得,12y y >.故答案为:12y y >或21y y <.【点睛】本题考查反比例函数的图象和性质,理解并掌握当0k >时,在每个象限内y 随x 的增大而减小的性质是正确解答的关键.12.【分析】根据菱形的性质和=60B ∠︒,求出AB BC =的长度,然后再运用勾股定理求解即可.【详解】由题意可知ABCD 是菱形,AB BC ∴==60B ∠︒ ,ABC ∴ 是等边三角形,5AC =A B C D ''''是正方形,5A B B C ''''∴==A C ='='故答案为:【点睛】本题考查了菱形、正方形的、等边三角形的性质以及勾股定理;灵活运用性质正确计算是解题的关键.13.【分析】连接FG ,如图所示,先证明()SSS BFG CDE △≌△得到ABH ACB =∠∠,进一步证明ABH ACB ∽得到AH AB AB AC=,再由H 是AC 的中点,得到2AC AH =,由此即可得到答案.【详解】解:连接FG ,如图所示,由题意得BF BG CD CE FG DE ====,,∴()SSS BFG CDE △≌△,∴ABH ACB =∠∠,又∵A A ∠=∠,∴ABH ACB ∽,∴AH AB AB AC =,∵H 是AC 的中点,∴2AC AH =,∴222AH AB =,∴AH =,∴2AC AH ==故答案为:【点睛】本题主要考查了全等三角形的性质与判定,相似三角形的性质与判定,证明()SSS BFG CDE △≌△得到ABH ACB =∠∠,进一步证明ABH ACB ∽是解题的关键.14.(14;(2)11x =-,22x =-【分析】(1)根据实数的混合计算法则,零指数幂和负整数指数幂的计算法则求解即可;(2)先把方程化为一般式,然后利用因式分解法解方程即可.【详解】解:(1)原式2321=-+-4=;(2)∵()21310x x -++=,∴21330x x -++=,∴2320x x ++=,∴()()120x x ++=,∴10x +=或20x +=,解得11x =-,22x =-.【点睛】本题主要考查了实数的混合计算,解一元二次方程,零指数幂和负整数指数幂,正确计算是解题的关键.15.(1)40,(2)108︒,(3)23.【分析】(1)根据A 在频数统计图数据除以扇形统计图中的数据即可;(2)根据(1)和频数统计图求出C 级人数,然后用360︒乘以C 的总人数所占的比例即可;(3)画树状图,求出所有可能和符合条件数,根据概率公式求解即可.【详解】(1)解:总人数为:410%40÷=(人);(2)C 级人数为:40416812---=(人),C 级所对应的圆心角的度数为:1236010840︒⨯=︒;(3)画树状图如下:从两男两女中随机抽取两名同学共有12种可能,恰好抽到一名男生和一名女生有8种可能,恰好抽到一名男生和一名女生的概率为:82123P ==.【点睛】本题考查了统计和随机抽样的概率;根据题意求出总人数、正确画出树状图并按照公式求解是解题的关键.16.(1)3m(2)1.2m .【分析】(1)先证明BFC BED ∽ ,再利用相似三角形的性质得出BC FC BD DE =,代入数据即可求BC 的长;(2)先证明BGA BFC ∽ ,再利用相似三角形的性质得出AG FC AB BC=,代入数据即可求AG 的长.【详解】(1)解:(1)由题意可得:FC DE ∥,则BFC BED ∽ ,∴BC FC BD DE =,∴ 1.54 3.5BC BC =+,解得:3BC =,答:BC 的长为3m ;(2)解:∵ 5.4m AC =,∴()5.43 2.4m AB =-=,∵光在镜面反射中的入射角等于反射角,∴FBC GBA ∠=∠,又∵FCB GAB ∠=∠,∴BGA BFC ∽ ,∴AG FC AB BC =,∴ 1.52.43AG =,解得: 1.2m AG =,答:灯泡到地面的高度AG 为1.2m .【点睛】此题主要考查了相似三角形的应用,正确得出相似三角形是解题关键.17.(1)证明见解析(2)①证明见解析;②6【分析】(1)根据平行四边形的邻角互补,以及角平分线平分角,得到四边形EFGH 的四个内角均为90︒,即可得证;(2)①由(1)可知,四边形EFGH 为矩形,根据矩形的性质以及角平分线平分角,得到,,,ABE AFD CDG BHC 均为等腰直角三角形,进而推出EH HG =,得到四边形EFGH 为正方形;②根据正方形的面积为8,得到正方形的边长为的性质,求出AF 的长,进而求出AE 的长,再利用勾股定理和等腰三角形的性质,求出AB 的长.【详解】(1)解:∵四边形ABCD 为平行四边形,∴180,180,ABC DAB ABC BCD ∠+∠=︒∠+∠=︒180,180BCD CDA CDA DAB ∠+∠=︒∠+∠=︒,∵ABCD Y 的各内角的平分线分别相交于点E ,F ,G ,H ,∴()1902EAB EBA DAB ABC ∠+∠=∠+∠=︒,即:90AEB ∠=︒,同理可得:90AFD BHC CGD ∠=∠=∠=︒,∵90AEB ∠=︒,∴90HEF ∠=︒,∴四边形EFGH 为矩形;(2)解:①同(1)法可得:四边形EFGH 为矩形;∵ABCD Y 为矩形,∴45EAB EBA ∠=∠=︒,∴ABE 为等腰直角三角形,∴AE EB ==,同理可得:,22AF DF AD BH CH BC ====,∵AD BC =,∴BH AF =,∴BH BE AF AE -=-,即:EH EF =,又∵四边形EFGH 为矩形,∴四边形EFGH 为正方形;②由①得:2AF AD ==∵四边形EFGH 的面积为8,∴28EF =,∴EF =∴AE AF EF =-=∵2AE AB ==,∴6AB =.【点睛】本题考查平行四边形的性质,矩形的判定和性质,正方形的性质,等腰三角形的判定和性质,勾股定理.熟练掌握平行四边形的邻角互补,是解题的关键.18.(1)2y x=,A (2,1),()1,2B --(2)()3,0或()3,0-(3)1m =【分析】(1)将A (2,a ),代入一次函数解析式,求出a 值,再求出反比例函数的解析式,联立两个解析式,求出B 点坐标;(2)根据平行四边形的性质,对边平行且相等,利用平移思想进行求解即可;(3)分别用含m 的式子表示出ABQ ,ABP 的面积,再利用ABQ 的面积是ABP 的面积的3倍,列式计算即可.【详解】(1)解:反比例函数(0)k y k x=≠的图象与一次函数1y x =-的图象相交于A (2,a ),B 两点,将A (2,a ),代入1y x =-,得:211a =-=,∴A (2,1),∴212k =⨯=,∴2y x =,联立,得:12y x y x =-⎧⎪⎨=⎪⎩,整理,得:220x x --=,解得:121,2x x =-=,当=1x -时,112y =--=-,∴()1,2B --;(2)解:设(),0M x ,()0,N y ,∵A (2,1),()1,2B --,∴点B 是由点A 先向左平移3个单位,再向下平移3个单位得到的;∵以A ,B ,M ,N 为顶点的四边形是以AB 为边的平行四边形,①将点(),0M x 先向左平移3个单位,再向下平移3个单位,得到()0,N y ,则:30x -=,即:3x =,033y =-=-,∴()3,0M ;②将点()0,N y 先向左平移3个单位,再向下平移3个单位,得到(),0M x ,则:033x =-=-,30y -=,即:3y =,∴()3,0M -;综上:当M 点坐标为()3,0或()3,0-时,以A ,B ,M ,N 为顶点的四边形是以AB 为边的平行四边形;(3)如图,过点B 作BE x ⊥轴交AQ 于点E ,过点A 作AF x ⊥轴交BP 于点F ,由题意,可知:22(,),(,)P m Q m m m--,设直线AQ 的解析式为()0y kx b k =+≠,将()2,1A ,2(,)Q m m--代入()0y kx b k =+≠,则:12,2k b mk b m =+⎧⎪⎨-=-+⎪⎩解得:12k m m b m ⎧=⎪⎪⎨-⎪=⎪⎩则直线AQ 的解析式为12m y x m m -=+当1x =时,123(1)m m y m m m --=⨯-+=,则3(1,m E m --;∵()1,2B --∴333(2)m m BE m m--=--=,∴11()()22ABQ EBA EBQ B Q A B S S S BE x x BE x x =+=⨯-+⨯- 1()2A Q BE x x =⨯-133(2)2m m m-=⨯⨯+23362m m m+-=;设直线BP 的解析式为()0y ax z a =+≠将()1,2B --,2(,)P m m代入()0y ax z a =+≠得:2,2a z ma z m -=-+⎧⎪⎨=+⎪⎩解得:222a m m z m ⎧=⎪⎪⎨-⎪=⎪⎩则直线BP 的解析式为222m y x m m -=+当2x =时,222622,m m y m m m --=⨯+=则:622,m F m -⎛⎫ ⎪⎝⎭,∵()2,1A ,∴62361m m AF m m--=-=,11()()22ABP AFB APP A B P A S S S AF x x AF x x ∆∆∆=+=⨯-+⨯-1()2P B AF x x =⨯-136(1)2m m m-=⨯⨯+23362m m m--=;∵3ABQ ABP S S = ,∴22336336322m m m m m m+---=⨯,解得:11m =21m =,又∵m>2,∴1m =【点睛】本题考查反比例函数与一次函数的综合应用,反比例函数与几何的综合应用.正确的求出函数解析式,利用数形结合,分类讨论的思想进行求解,是解题的关键.19.32023-【分析】根据一元二次方程根与系数的关系求出1212x x x x +,的值即可得到答案.【详解】解:∵一元二次方程2320230x x --=的两个根为12x x ,,∴121232023x x x x =-+=,,121232023x x x x +=-,故答案为:32023-.【点睛】本题主要考查根与系数的关系,解题的关键是熟记两根之和与两根之积与系数之间的关系.20.50︒##50度【分析】根据矩形的性质,得到OBC OCB ∠=∠,利用三角形外角求出AOB ∠,利用垂直可求出结果.【详解】∵四边形ABCD 是矩形,OA OB OC OD ∴===,20ACB ∠=︒ ,20OBC OCB ∴∠=∠=︒,40AOB OBC OCB ∴∠=∠+∠=︒,OE BD ⊥ ,90BOE \Ð=°,904050AOE BOE AOB ∴∠=∠-∠=︒-︒=︒,故答案为:50︒.【点睛】本题考查了矩形的性质;灵活运用矩形的性质求解是解题的关键.21.6【分析】设M 点的坐标为1,b b ⎛⎫ ⎪⎝⎭,N 点的坐标为4,b b ⎛⎫ ⎪⎝⎭,表示出3MN b =,根据相似,求出6OB b=,2AF b =,进而求出AOB 的面积.【详解】∵MN x ∥轴,∴AMN AOB ∽,点M ,N 的纵坐标相同,设M 点的坐标为1,b b ⎛⎫ ⎪⎝⎭,N 点的坐标为4,b b ⎛⎫ ⎪⎝⎭,∴3MN b=,如图,过点M 作ME x ⊥轴,点A 作AF x ⊥轴,∴MOE AOF ∽,根据反比例函数与三角形的面积关系可得:2AOF S = ,0.5MOE S = ,∴0.5124MOE AOF S S == ,∵相似三角形中面积比等于相似比的平方,∴12OM OA =,∴12AM OA =,∵AMN AOB ∽,∴12AM MN OA OB ==,即312b OB =,∴6OB b=,∵M 点的坐标为4,b b ⎛⎫ ⎪⎝⎭,∴ME b =,∴2AF b =,∴1162622AOB S OB AF b b =鬃=创=,故答案为:6.【点睛】本题考查反比例函数与三角形面积的关系,解题的关键是根据题意作出相应的辅助线,并通过设坐标法进行求解.22.169119【分析】根据题意假设当当点E 和点D 重合时,首先证明出ADP DCF V V ∽,根据相似三角形的性质得到52FC =,然后根据三角形面积公式表示出1S ,2S ,3S 的大小求解即可.【详解】∵点E ,F 分别是AD BC ,上的动点,∴假设当点E 和点D 重合时,如图所示,∴40S =,∵在矩形ABCD 中,6AB =,12BC =,∴12,6AD BC CD AB ====,∵5DP =,∴1CP CD DP =-=,∵90AOD ADC ∠=∠=︒,∴DAP ADO CDF ADO ∠+∠=+∠,∴DAP CDF ∠=,又∵ADP DCF ∠=,∴ADP DCF V V ∽,∴AD DP CD FC=,即1256FC =,解得52FC =∴5191222BF BC FC =-=-=,∴3115512224S FC CP =⨯⨯=⨯⨯=,∴211195762222S AB BF =⨯⨯=⨯⨯=,∵6AB =,12BC =,∴矩形ABCD 的面积61272AB AD =⨯=⨯=,∴123575169=7272244S S S --=--=∴31421691694575119024S S S S ==++++.故答案为:169119【点睛】此题考查了矩形的性质,相似三角形的性质和判定等知识,解题的关键是熟练掌握以上知识点.23.38【分析】明确三角形部分与EMN 形状大小完全相同,即可求解;明确P Q ''的长度定了,不管怎么放,三角形部分,形状大小完全一样,OH 长度一样,即可求解.【详解】MN 平移之后,如图所示,三角形部分与EMN 形状大小完全相同,∴三角形部分的面积1733332228⎛⎫⎛⎫=⨯-⨯-= ⎪ ⎪⎝⎭⎝⎭,2PQ =,平移后两端点落在正方形边上,∵12x x ≠,12y y ≠,∴P Q ''不垂直四条边,P Q ''把正方形分成两部分为三角形部分和另一部分多边形,两部分的面积为6:19,可得62461925S S ==+正方形三角形,P Q ''的长度定了,P Q D S '' 的面积确定了,不管怎么放,三角形部分,形状大小完全一样,则OH 长度一样,令P Q ''在如图位置,且P D DQ '≥',221242254P D DQ P D DQ ⎧⋅'='''⎪⎨⎪+=⎩解得 1.61.2P D DQ ''=⎧⎨=⎩,∴P '的坐标为(0.6,1)-,Q '的坐标为(1,0.2)-,∴中点H 的坐标为0.6110.2(,)22-+-,即H 的坐标为(0.2,0.4),∴5OH ===故答案为:38【点睛】本题考查四边形的综合题和移动线段问题,解题的关键是理解题意,画出图形,学会利用特殊点解决问题.24.(1)每张零售电影票的原定价为40元.(2)原定零售票价平均每次的下降率为10%.【分析】(1)设每张零售电影票的原定价为x 元,根据“在原定零售票价基础上每张降价16元,这样按原定票价需花费2000元购买的门票张数,现在只花费了1200元”列方程,即可求解;(2)设原定零售票价平均每次的下降率为m ,根据“原定零售票价经过连续两次降价后票价为每张32.4元”列方程求解即可.【详解】(1)解:设每张零售电影票的原定价为x 元,则题意可得,2000120016x x =-,解得,40x =,经检验,40x =是原方程的根且符合题意,答:每张零售电影票的原定价为40元.(2)解:设原定零售票价平均每次的下降率为m ,由题意得,()240132.4m -=,解得10.1m =,2 1.9m =(不合题意,舍去),即原定零售票价平均每次的下降率为10%.答:原定零售票价平均每次的下降率为10%.【点睛】此题考查了分式方程和一元二次方程的实际应用,读懂题意,正确列出方程是解题的关键.25.(1)1k =;(2)①170,20P ⎛⎫ ⎪⎝⎭,②0n <或04n <<-.【分析】(1)用待定系数法,将点带入求解即可;(2)结合题意求出新函数解析式,设B 的横坐标为()0m m ->,表示出A ,B 的坐标,然后找到找()1,1B -关于y 轴的对称点()1,1C ,连接AC ,则AC 与y 轴的交点为P 为所求;一次函数和反比例函数联立方程,方程有两个不相等的实数根即可.【详解】(1)解:点(1,)a ,1(2,2a -在反比例函数k y x =的图像上,∴1122k a k a ⎧=⎪⎪⎨⎪-=⎪⎩,解得:11a k =⎧⎨=⎩,反比例函数解析式为:1y x=;(2)①依题意的新函数解析式为:1y x =,即:()()1010x x y x x⎧>⎪⎪=⎨-⎪<⎪⎩,120x x << ,124x x =,设B 的横坐标为()0m m ->,则A 的横坐标为()40m m ->,结合函数解析式:1,B m m ⎛⎫∴- ⎪⎝⎭,14,4A m m ⎛⎫- ⎪⎝⎭,∴1144m b m m b m ⎧=-+⎪⎪⎨⎪=-+⎪⎩,解得:1m =或1m =-,0m > ,1m ∴=,2b ∴=,14,4A ⎛⎫∴- ⎪⎝⎭,()1,1B -,找()1,1B -关于y 轴的对称点()1,1C ,连接AC ,则AC 与y 轴的交点为P ,设AC 所在直线解析式为11y k x b =+,则11111144k b k b =+⎧⎪⎨=-+⎪⎩,解得:113201720k b ⎧=⎪⎪⎨⎪=⎪⎩,3172020y x =+,与y 轴的交点为170,20P ⎛⎫ ⎪⎝⎭;②一次函数2(0)y nx n n =-+≠)的图像与函数F 的图像有三个不同的交点,20n ∴-+>2n ∴<当02n <<,2y nx n =-+与1y x=恒有一个交点,故2y nx n =-+与1y x -=有两个交点,此时12nx n x -=-+,即()2210nx n x +-++=,()22410n n -+-⨯>,2840n n -+>,当2840n n -+=,4n =或4n =-,∵284y n n =-+的图像开口向上,2840n n ∴-+>的解为:4n <-或4n >;02n <<04n ∴<<-当0n <,2y nx n =-+与1y x -=恒有一个交点,故2y nx n =-+与1y x =有两个交点,此时12nx n x=-+,即()2210nx n x +-+-=,()22410n n -++⨯>,240n +>,恒成立,所以0n <,综上所述:0n <或04n <<-.【点睛】本题考查了反比例函数、一次函数的综合运用以及一元二次方程解的情况;理解函数图像的交点就是方程的解是解题的关键.26.(1)见解析;(2)见解析;(3)12BP n BD n-=.【分析】(1)根据相似三角形的判定定理进行判定即可;(2)连接,,,NC BQ NM BQ ,证ABMN 是正方形,得PM 垂直平分BN ,BQ NQ =在证明CQBN 是平行四边形,利用平行四边形的性质判定即可;在矩形ABCD 中;(3)过Q 作QM BD 交BC 的延长线于M ,DG 于N ,连接DM ,结合题意用勾股定理逆定理证DQM 是直角三角形,然后借助45︒和相似三角形解决.【详解】(1)由题意可知在CQM 与BPM △中,CMQ BMP ∠=∠ ,1BM PM MC m MQ==,CQM BPM ∴~ ,CQM BPM ∴∠=∠,CQ BN ∴ ;(2)如图:连接,,,NC BQ NM BQ ,在矩形ABCD 中,90A ∠=︒AN BM ∥,AN BM AB == ,ABMN 是正方形,P 为BN 中点,PM ∴垂直平分BN ,2BN BP =,BQ NQ ∴=,由CQM BPM ~ 和2m =可知,12BP PM CQ CQ ∴==,2CQ BP ∴=,CQ BN ∴=,CQ BN ,CQBN ∴是平行四边形,BQ CN ∴=,NC NQ ∴=;(3)过Q 作QM BD 交BC 的延长线于M ,DG 于N ,连接DM ,在正方形ABCD 中,QM BD ,CBP CMQ ∴~ ,45DBC CMQ ∠=∠=︒,1BP BC PC QM CM CQ n∴===,1BP QM n ∴=,CM nBC nAB ==,222DM CD CM =+ ,()()222221DM AB nAB n AB ∴=+=+,()()2222222QM DQ nBP DQ n BP DQ ∴+=+=+,22222(1)n BP DQ n AB +=+ ,222QM DQ DM ∴+=,DQM ∴ 是直角三角形,90DQM ∴∠=︒,QM BD ,90DQM BDQ ∴∠=∠=︒,45BDC NDQ ∴∠=∠=︒,45DNC ∴∠=︒,NC BC∴=,()1MN nBC BC n BC ∴=-=-,在Rt MQN中,45CMQ∠=︒,QM nBP=,)12nQN QM BC-∴===,)111·2nBP QM BCn n-==,)11·122nBCBP nnBD n--=,【点睛】本题考查了相似三角形的判定和性质、正方形的判定和性质、矩形的性质、勾股定理的逆定理;三角形相似的证明和性质的应用是解题的关键.。
2024年人教版九年级上册数学第三单元课后练习题(含答案和概念)试题部分一、选择题:1. 在直角坐标系中,点A(2, 3)关于原点对称的点是()A. (2, 3)B. (2, 3)C. (2, 3)D. (3, 2)2. 下列函数中,哪一个是一次函数?()A. y = 2x^2 + 1B. y = 3x + 4xC. y = x^2D. y = 5x3. 已知等腰三角形的底边长为10,腰长为8,则该等腰三角形的周长为()A. 26B. 36C. 16D. 244. 下列各数中,是无理数的是()A. √9B. √16C. √3D. 0.3333…5. 下列各式中,是二次根式的是()A. √(x+1)B. √(x^2 4)C. √(x^3 3x)D. √(x^2 + 1)6. 已知a、b为实数,且a+b=5,ab=3,则a^2 + b^2的值为()A. 16B. 24C. 26D. 287. 下列关于x的不等式中,有解的是()A. x^2 < 0B. x^2 = 0C. x^2 > 0D. x^2 ≤ 08. 在平面直角坐标系中,点P(a, b)关于x轴对称的点是()A. (a, b)B. (a, b)C. (a, b)D. (a, b)9. 下列关于x的一次函数中,斜率为正的是()A. y = 3x + 2B. y = 4 2xC. y = x 5D. y = x + 310. 若平行线l1:2x + 3y + 1 = 0,l2:2x + 3y 5 = 0,则这两条平行线之间的距离是()A. 2B. 3C. 4D. 6二、判断题:1. 两个无理数的和一定是无理数。
()2. 任何两个实数的乘积都是实数。
()3. 一次函数的图像是一条直线。
()4. 二次根式的被开方数必须是正数。
()5. 若a > b,则a^2 > b^2。
()6. 平行线的斜率相等。
()7. 两条直线垂直,则它们的斜率乘积为1。
张桥中学初三数学阶段试题 2012.12.7(时间:120分钟 满分:150分)请注意:考生须将本卷所有答案答到答题纸上,答在试卷上无效! 一、选择题(每题3分,共24分)1.函数y有意义的自变量x 的取值范围是 A .x ≤12B .x ≠12C .x ≥12D .x <122. 已知四边形ABCD 是平行四边形,下列结论中不正确的是A. 当AB =BC 时,它是菱形B.当AC ⊥BD 时,它是菱形C. 当∠ABC =90°时,它是矩形D.当AC =BD 时,它是正方形 3.一名篮球运动员投篮命中的概率是0.8,下列陈述中,正确的是A .他在每10次投篮中必有8次投中B .他在10次一组的投篮中,平均会有8次投中C .他投篮 10次,不可能投中9次D .他投篮100次,必投中80次4. 如图,AB 是⊙O 的直径,C ,D 为圆上两点∠AOC =130°,则∠D 等于 A .25°B .30°C .35°D .50°5. 已知两圆半径1r 、2r 分别是方程01072=+-x x 的两根,两圆的圆心距为7,则两圆的位置关系是 A .相交 B . 相切C . 外切D . 外离6. 已知二次函数y =2(x -3)2+1,可知正确的是A .其图象的开口向下B .其图象的对称轴为直线x =-3C .其最小值为1D .当x <3时,y 随x 的增大而增大7. 下列命题:①直径是弦;②经过三个点一定可以作圆;③三角形的内心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧;⑤菱形的四个顶点在同一个圆上;⑥正多边形都是中心对称图形;⑦若圆心到直线的距离恰好等于圆的半径,则该直线是圆的切线;⑧在圆中90°的角所对弦是直径。
其中正确结论的个数有 A .3个 B .4个 C .5个 D .6个 8.如图,在Rt △ABC 中,∠C=90°,∠A=30°,BC=1,点D 在AC 上,将△ADB 沿直线BD 翻折后,将点A 落在点E 处,如 果AD ⊥ED ,那么线段DE 的长为 A .1B.2C . —1 D.2二、填空题(每题3分,共30分)9.已知一组数据2, 1,-1,0, 3,则这组数据的极差是 。
番禺区2012年九年级数学综合训练试题(一)参考答案与评分说明一、 选择题(本大题共10小题,每小题3分,满分30分)第二部分 非选择题(共120分)二、填空题(本大题共6小题,每小题3分,满分18分) 11.3-;12.2-;13.60︒;14.25︒,(0~45︒︒均可);15.3a -;16. 41 三、解答题(本大题共9小题,满分102分)17.解:原式=2221x x x x +++- ……………………6分 =3 ……………………7分当x ==3(1⨯+ ……………………8分=1-+……………………9分18.证明:如图,在□ABCD 中,BC=DA ,C A ∠=∠.……………………4分∵BF=DH ,∴BC -BF=D A -DH, 即FC=HA . ……………………6分又∵AE=CG ,……………………7分∴AEH △≌CGF △. ……………………9分19.解:(1)∵ 点A (1,)n -在一次函数2y x =-的图象上,∴ 2(1)2n =-⨯-=.… 2分 ∴ 点A 的坐标为12-(,).……………………4分 ∵ 点A 在反比例函数ky x=的图象上,∴ 2k =-.………………5分∴ 反比例函数的解析式为2y x=-.……… 6分(2)点P 的坐标为(2,0)(0,4)-或.………………10分20.解: (1)P (抽到牌面数字4)=13.………………3分 (2)游戏规则对双方不公平.………………4分 理由如下:【方法一】作数形图如图所示, ………………7分数学试卷及试题 2由上述树状图知:所有可能出现的结果共有9种.P (抽到牌面数字相同)=3193=,………………8分 P (抽到牌面数字不相同)=6293=.………………9分∵1233<,∴此游戏不公平,小李赢的可能性大.………………10分 【方法二】列表如下, ………………7分【以下同上】21.解:(1) 抽测的学生有50人, …2分 抽测成绩的众数是5(次).…4分(2)如图所示; …………7分(3)1614635025250++⨯=(人). …………10分答:估计该校350名九年级男生中,约有250人左右体能达标.…………12分22.解:如图,设,,CD x AD y ==/次数学试卷及试题3则由题意有50BD y =-.…………1分 在Rt △ACD 中,tan37AD yCD x︒==,…………4分则tan37y x =⋅︒,在Rt△BCD 中,50tan48BD yCD x-︒==,…………7分 则50tan48y x =-⋅︒,∴tan3750tan48x x ⋅︒=-⋅︒.…………8分∴505026.82tan37tan480.7536 1.1106x =≈=︒+︒+.…………10分答:小明家所在居民楼与大厦的距离CD 大约是27米.…………………12分 23.(1)证明:连结AE .…………1分∵ AB 是⊙O 的直径,∴ 90AEB ∠=︒ , ∴ 1290∠+∠=︒.…………2分∵ AB=AC ,∴ 112CAB ∠=∠.又∵ 12CBF CAB ∠=∠,∴ 1CBF ∠=∠.∴ 290CBF ∠+∠=︒.即∠ABF = 90°.…………3分 ∵ AB 是⊙O 的直径,…………4分 ∴ 直线BF 是⊙O 的切线.…………5分 (2)解:过点C 作CG ⊥AB 于点G .…………6分 ∵sin CBF ∠【过点C 作CG ⊥BF 亦可类似求解】1CBF ∠=∠,∴sin 1∠=.…………7分 ∵ 90AEB ∠=︒,AB=5,∴ BE=sin 1AB ⋅∠.又∵ AB=AC ,90AEB ∠=︒, ∴2BC BE ==.在Rt △ABE 中,由勾股定理得 AE=8分∴sin 2∠=,cos 2∠=.在Rt △CBG 中,可求得 4GC =,2GB =.∴ AG=3.∵ GC ∥BF ,∴ △AGC ∽△ABF .…………10分∴ GC AG BF AB =.∴ 203GC AB BF AG ⋅==.…………12分24.解:(1)GF DF ∴=.…………1分连接EF ,则90EGF D ∠=∠=°,EG AE ED EF EF ===,.题12数学试卷及试题4Rt Rt EGF EDF ∴△≌△.…………2分 GF DF ∴=.…………3分(2)由(1)知,GF DF =.设AB a =,DF b =,则有BC =,CF DC DF a b =-=-,…………4分由对称性有BG AB a ==,BF BG GF a b ∴=+=+.…………5分在Rt BCF △中,222BC CF BF +=,即222)()()a b a b +-=+,…………6分2a b ∴=,…………7分∴2DC aDF b==.…………8分(3)由(1)知,GF DF =.设DF x BC y ==,,则有.GF x AD y ==,DC n DF =·,DC AB BG nx ∴===.…………9分(1)1CF n x BF BG GF n x ∴=-=+=+,().…………10分在Rt BCF △中,222BC CF BF +=,即222[1][(1)]y n x n x +-=+().…………12分y ∴= …………13分AD y AB nx n ∴==⎝…………14分25. 解:(1)()()()0300A m B m D -,,,,.…………3分(2)设直线ED 的解析式为y kx b =+,将()()300D -,、代入得:图14FA DBC数学试卷及试题530k b b -+=⎧⎪⎨=⎪⎩,…………4分解得,3k m b ==,. ∴直线ED的解析式为y =+. …………5分将)()3y x m x m =+-化为顶点式:)2y x m =-+. ∴顶点M的坐标为m ⎛⎫⎪ ⎪⎝⎭. …………7分代入3y mx =得:2m m =. 01m m >∴=,.所以,当1m =时,M 点在直线DE 上. (8)连接CD C ,为AB 中点,C 点坐标为()0C m ,.312OD OC CD D ==∴=,,点在圆上,又222312OE DE OD OE ==+=,,22222164EC CD CD DE EC ==∴+=,,.90FDC ∴∠=°,∴直线ED 与C ⊙相切.…………10分 (3)当03m <<时,()1322AED S AE OD m ==-△· 即:222S m m =-+.…………11分 当3m >时,()1322AED S AE OD m m ==-△·, 即:222S m m =-.…………12分 其图象示意图如图中实线部分.…………【每个区间1分】14分图15。
1OB
A1x
y
2012年秋九年级数学培A辅导试题(二)班别:______.座号:____.姓名:_______________.成绩:______________一、选择题(每小题3分,共21分)
二.填空题:(每小题4分,共40分)8.-2的相反数是.
9.分解因式:24x
.
10.2010年“五一”放假期间,泉州市某景点共接待游客约96000人,用科学记数法表示为.11.为了解一批节能灯的使用寿命,宜采用的方式进行调查.(填:“全面调查”或“抽样调查”)12.如图,若D,E分别是AB,AC中点,现测得DE的长为20米,则池塘的宽BC是____米.13.在直角坐标系中,⊙A、⊙B的位置如图所示.将⊙A向下平移个单位后,两圆内切.
(第14题)AB
C(第12题)(第13题)14.如图,一架梯子斜靠在墙上,若梯子到墙的距离AC=3米,3cos
4BAC
,则梯子AB的长度为米.
15.已知圆锥的母线长是5cm,侧面积是15πcm2,则这个圆锥底面圆的半径是cm.16.如图,在直角坐标系中,点A是x轴正半轴上的一个定点,点B是双曲线2yx(x>0)上的一个动点,当点B的横坐标逐渐增大时,△OAB的面积将会逐渐.
(第16题)17.甲、乙两名运动员进行长跑训练,两人距终点的路程y(米)与跑步时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答问题:(1)他们在进行米的长跑训练;(2)在15<x<20的时段内,求两人速度之差是_______米/分.
三、解答题(本大题有9小题,共89分)
18.(9分)计算:101
|3|20102
2
19.(9分)先化简,再求值:2(1)(2)aaa
,其中2a
20.(9分)如图,在□ABCD中,FE、分别是边AD和BC上的点,且AE=CF.求证:CDFABE≌.
(第20题)21.(9分)一次测试九年级50名学生1分钟跳绳次数的频数分布表和部分频数分布直方图如图.
ABCDEF
(第17题)(米)(分)乙甲500040003000200010002015105Oxy
A
OBAx
y请结合图表完成下列问题:(第21题)
(1)请把频数分布直方图补充完整;(2)设九年级学生一分钟跳绳次数为x,当x≥140时为优秀,若该年级有400名学生,估计这个年级跳绳优秀的学生大约有多少人?
22.(9分)将分别标有数字1,3,5,8的四张质地、大小完全一样的卡片背面朝上放在桌面上,随机抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字.(1)请你利用树状图或列表法,说明能组成哪些两位数?(2)求抽取到的两位数恰好是18的概率.
23.(9分)如图,在直角坐标平面内,函数myx(0x,m是常数)的图象经过(14)A,,()Bab,,其中1a.
过点A作AC⊥x轴于C,过点B作BD⊥y轴于D且与AC相交于点H,连结AD,DC,CB.(1)求m的值;(2)若△ABD的面积为4,求△BCD的面积.
组别次数x频数(人数)第1组80≤x<1006第2组100≤x<1208第3组120≤x<14012第4组140≤x<16018第5组160≤x<1806
(第23题)xCODBAyH24.(11分)如图,在平面直角坐标系中,直线l:bxy2与x轴交于点A(4,0),与y轴交于点B.(1)(3分)填空:b;(2)(8分)已知点P是y轴上的一个动点..,以P为圆心,3为半径作⊙P.
①若PA=PB,试判断⊙P与x轴的位置关系,并说明理由.②当⊙P与直线l相切时,求点P与原点O间的距离.
Oxy
Al
BP(备用Ox
yAl
B25.(13分)某服装商店准备购进甲、乙两种运动服进行销售.若每件甲种运动服的进价比每件乙种运动服的进价少20元,且用800元购进甲种运动服的数量与用1000元购进乙种运动服的数量相同.(1)若每件甲运动服的进价a元,①用含a的代数式表示用1000元购进乙种运动服的件数;②求a的值;(2)若该商店准备用不超过10000元购进甲、乙两种运动服120件,且每件甲种运动服的销售价格为120元,每件乙种运动服的销售价格为150元,问应如何安排购两种运动服的资金,才能使将本次购进的甲、乙两种运动服全部售出后,获得的总利润最大?最大的总利润是多少元?
26.(13分)如图,在平面直角坐标系中,抛物线216
4yx
与直线y=kx相交于A(-4,-2),B(6,b)两点.(1)求k和
b的值;(2)当点C线段..AB..上运动时,作CD∥y轴交抛物线于点D,①求CD最大值;②如果以CD为直径的圆与y轴相切,求点C的坐标.C
DA
BO
y
x(第26题)2012年秋九年级数学培A辅导试题(二)参考答案及评分标准
一、选择题(每小题4分,共24分)1.A;2.C;3.D;4.B;5.D;6.A;7.D.二、填空题(每小题3分,共36分)8.2;9.)2)(2(xx;10.49.610
;11.抽样调查;12.40;13.2;
14.4;15.3;16.减少;17.5000;150米/分钟.
三、解答题(共90分)18.(9分)计算:101
|3|20102
2
解:原式=3+1-4---------------(6分)=0---------------(9分)19.(9分)先化简,再求值:2(1)(2)aaa
,其中2a
解:原式=a2+2a+1+a2-2a----------(4分)=2a2+1-----------------------(6分)当2x时,原式=22(2)15
----------(9分)
20.证明:在□ABCD中∠A=∠C,AB=CD---------(4分)ABECDFABCDACAECF
和中---------(8分)
∴CDFABE≌---------(9分)21.解:(1)图略---------(4分)(2)跳绳成绩优秀的学生=192400%10050186(人)---------(8分)答:这个年级跳绳优秀的学生大约有192人。---------(9分)
22.解:树状图如下(列表略):开始
个位十位由上述树状图或表格知:所有可能出现的结果共有12种,恰好是18的有1种………(6分)P(恰好是18)=121.………(9分)
23.(1)解:函数(0myxx,m是常数)图象经过(14)A,,4m.3分
(2)据题意,可得B点的坐标为4aa,,D点的坐标为40a,,H点的坐标为41a,,5分1a,DBa,AH=a44。6分
由ABD△的面积为4,即14442aa,得3a,7分点B的坐标为433,.△BCD的面积=1432239分
135835815813813524.(10分)解:(1)8b;……………………………………2分(2)由(1)得B(0,8)设xOP,则xBPAP8,在Rt△AOP中,由勾股定理得222)(84xx
………………………3分
解得3x………………………………4分∵3PO=半径∴⊙P与x轴相切.………………………5分(3)当点P在点B下方时,如图,设⊙1
P与直线l相切于点M,
连接MP1,则31MP
由△1BMP∽△BOA得ABBPOAMP11……6分即54431BP,解得531BP
∴53811BPOBOP…………7分当点P在点B上方时,如图,设⊙2
P与直线l相切于点N,
连接NP2,同理可得532BP,………………………………………………8分53822BPOBOP…………………………………………9分
综上所述,此点P与原点O间的距离为538或538.………10分25.(1)800a(或201000a);……3分(2)根据题意800100020aa……5分解得a=80……6分经检验a=80是方程的解,符合题意……7分(3)设购进甲种运动服x件,则购进乙种运动服(120-x)件.根据题意80x+100(120-x)≤10000解得x≥100,……8分又80x≤10000,∴x≤125,即100≤x≤125……9分总利润w=(120-80)x+(150-100)(120-x)=6000-10x……10分由于-10<0,∴w随着x的增大而减少,……11分
OxyAl
BP
(备用图)Oxy
Al
B1P
2P
MN