uc3842应用
- 格式:doc
- 大小:180.00 KB
- 文档页数:6
UC3842应用于电压反馈电路中的探讨UC3842是一种常用的控制集成电路,在开关电源和电压反馈电路中得到广泛应用。
它的工作原理是通过对开关管的开和关进行控制,实现对输出电压的稳定调节。
在电压反馈电路中的应用可以有效地实现对输出电压的准确控制和稳定调节。
UC3842具有很多优点,例如低功耗、高效率、稳定性好等。
在电压反馈电路中,UC3842可以通过对输出电压进行监测来实现对开关管的控制,以达到输出电压稳定在设定值的目的。
UC3842内部具备了电压比较器、误差放大器、PWM控制器和参考电压源等功能单元,这些功能单元可以协同工作,实现对输出电压的精确调节。
在电压反馈电路中的应用中,UC3842需要与外部电路进行配合使用。
其中比较器的输出通过驱动电路来控制开关管的导通和关断,以实现对输出电压的调节功能。
误差放大器负责将输出电压与设定值进行比较,并通过PWM控制器来给予开关管适当的驱动信号。
参考电压源则提供一个稳定的参考电压,确保调节的准确性和稳定性。
在实际应用中,UC3842的调节范围可以根据需要进行调整。
通过调整参考电压源的电压值,可以改变输出电压的设定值。
此外,UC3842还可以通过外接元件,如滤波电容和电感等,来提高输出电压的稳定性和纹波的抑制效果。
总之,UC3842作为一种常用的控制集成电路,可以在电压反馈电路中实现对输出电压的精确调节。
它具有低功耗、高效率和稳定性好等优点,能够在实际应用中发挥重要作用。
通过合理的设计和调整,可以实现对输出电压的稳定性和控制精确度的要求。
UC3842原理及应用UC3842是一种常见的开关电源控制器芯片,广泛应用于各种电源系统中。
本文将介绍UC3842的工作原理和应用。
一、UC3842的工作原理UC3842是一种基于电流模式控制的开关电源控制器。
它通过对开关管的开关时间进行调节,来控制输出电压的稳定性和负载变化时的响应速度。
UC3842的工作原理可以简单描述为以下几个步骤:1. 参考电压生成:UC3842内部有一个参考电压源,它产生一个稳定的参考电压,用于与反馈电压进行比较。
2. 反馈电压采样:开关电源的输出电压通过一个反馈电路进行采样,然后与参考电压进行比较。
3. 错误放大器:UC3842内部有一个错误放大器,它将反馈电压和参考电压之间的差值放大,并输出一个误差信号。
4. 比较器和SR锁存器:误差信号经过一个比较器,与一个锁存器相连。
如果误差信号大于零,比较器输出高电平,锁存器锁存高电平;反之,输出低电平,锁存器锁存低电平。
5. PWM信号生成:UC3842通过一个PWM模块来生成PWM信号。
PWM信号的占空比由SR锁存器的状态决定,当锁存器输出高电平时,占空比较大;反之,占空比较小。
6. 开关管控制:PWM信号经过一个驱动电路,控制开关管的开关时间。
当PWM信号为高电平时,开关管导通;反之,开关管截止。
通过上述步骤,UC3842能够实现对开关管的精确控制,从而实现输出电压的稳定性和负载变化时的响应速度。
二、UC3842的应用UC3842广泛应用于各种开关电源系统中,包括电视机、电脑、手机充电器等。
下面将介绍几个常见的应用场景。
1. 手机充电器:手机充电器通常采用开关电源设计,以提高能效和减小体积。
UC3842作为控制器芯片,可以实现对开关管的精确控制,从而实现高效率的充电。
2. 电视机:电视机的电源模块通常采用开关电源设计,以提供稳定的电源输出。
UC3842作为控制器芯片,可以实现对开关管的精确控制,从而实现电源的稳定性和响应速度。
UC3842芯片设计开关电源_中文资料开关电源是一种将交流电转换为直流电的电源,其工作原理是由中文名称为“开关电压调制控制器”的芯片进行控制。
UC3842芯片是一种常用的开关电源控制芯片,下面将介绍UC3842芯片的设计和工作原理。
UC3842芯片的主要应用是在开关电源中,尤其是中小功率开关电源中,如适配器、电子镇流器、电源管理等领域。
它具有工作电压范围广、频率可调、输出稳定性好、过载和过温保护等优点,非常适合用于电源控制领域。
UC3842芯片的反馈引脚(FB)通过一个反馈电路来实现对输出电压的监测和控制。
当输出电压高于预设的标准电压时,反馈电压将减小,从而减小PWM信号的宽度,进而降低开关管的导通时间,使输出电压下降;反之,当输出电压低于标准电压时,PWM信号的宽度将增加,从而增加开关管的导通时间,使输出电压升高。
UC3842芯片还具有过载和过温保护功能。
当输出电流超过芯片所设定的峰值电流时,UC3842芯片会自动将PWM信号的宽度减小,从而限制输出电流的增加,保护开关电源不被过载;同时,当芯片温度超过一定值时,芯片会自动切断PWM信号,停止工作,以保护芯片不被过热。
总的来说,UC3842芯片是一款功能强大的开关电源控制芯片,具有高性能、稳定可靠的特点,可以广泛应用于开关电源等领域。
通过控制PWM信号的特性和振荡频率,UC3842芯片实现对开关电源的精确控制,提高了开关电源的效率和可靠性。
UC3842芯片设计开关电源中文资料UC3842是一款广泛应用于开关电源设计的PWM(脉冲宽度调制)控制芯片。
它能够实现具有高效率和稳定性的开关电源的设计。
UC3842具有丰富的功能和灵活的设计选项,使其成为非常受欢迎的开关电源控制器。
在本文中,我们将详细介绍UC3842的特性、应用和设计原理。
1.高精度:UC3842通过内部误差放大器和参考电压源提供高精度的电压和电流控制。
2.脉冲宽度调制:UC3842提供可调节的PWM,以实现恒定的输出电压或电流,以及保护和调节功能。
3.全面保护功能:UC3842具有过载保护、过压保护和短路保护功能,以保护开关电源和负载。
4.宽输入电压范围:UC3842可在广泛的输入电压范围内工作,以适应不同的应用环境。
5.多种封装类型:UC3842提供多种封装类型(如DIP和SOP),以满足不同产品的设计需求。
1.开关电源:UC3842可以广泛应用于开关电源,如电视机、电脑、通信设备等。
2.电气设备:UC3842可以用于控制和保护电气设备,如电动机、变压器、变频器等。
3.照明系统:UC3842适用于各种照明系统,如LED照明、荧光灯、卤素灯等。
4.汽车电子:UC3842可以用于汽车电子,如汽车发电机、点火器、电子控制单元等。
1.输入电压:UC3842的输入电压为直流电压,通常取自电源电压。
2.参考电压:UC3842内置了一个参考电压源,用于设定输出电压的参考值。
3.比较器:UC3842通过比较器将输出电压与参考电压进行比较,以确定PWM的占空比。
4.控制信号:根据比较结果,UC3842产生PWM信号控制开关管的导通时间,以调节输出电压或电流。
5.输出电压:UC3842将调节后的PWM信号通过开关管和输出电感传递到负载,实现对负载的电压或电流控制。
1.设定输出要求:确定目标输出电压或电流,并选择合适的开关电源拓扑结构和电感、电容等元件。
2.确定输入参数:确定输入电压范围、功率因数和效率要求,并选择合适的电源电压和电源电流。
电流型PWM集成控制器UC3842/UC3843的隔离单端反激式开关电源开关电源以其高效率、小体积等优点获得了广泛应用。
传统的开关电源普遍采用电压型脉宽调制(PWM)技术,而近年电流型PWM技术得到了飞速发展。
相比电压型PWM,电流型PWM具有更好的电压调整率和负载调整率,系统的稳定性和动态特性也得以明显改善,特别是其内在的限流能力和并联均流能力使控制电路变得简单可靠。
电流型PWM集成控制器已经产品化,极大推动了小功率开关电源的发展和应用,电流型PWM控制小功率电源已经取代电压型PWM控制小功率电源。
Unitrode公司推出的UC3842系列控制芯片是电流型PWM控制器的典型代表。
DC/DC转换器转换器是开关电源中最重要的组成部分之一,其有5种基本类型:单端正激式、单端反激式、推挽式、半桥式和全桥式转换器。
下面重点分析隔离式单端反激转换电路,电路结构图如图1所示。
图1 电路结构图电路工作过程如下:当M1导通时,它在变压器初级电感线圈中存储能量,与变压器次级相连的二极管VD处于反偏压状态,所以二极管VD截止,在变压器次级无电流流过,即没有能量传递给负载;当M1截止时,变压器次级电感线圈中的电压极性反转,使VD导通,给输出电容C充电,同时负载R上也有电流I流过。
M1导通与截止的等效拓扑如图2所示。
图2 M1导通与截止的等效拓扑电流型PWM与电压型PWM比较,电流型PWM控制在保留了输出电压反馈控制外,又增加了一个电感电流反馈环节,并以此电流反馈作为PWM所必须的斜坡函数。
下面分析理想空载下电流型PWM电路的工作情况(不考虑互感)。
电路如图3所示。
设V导通,则有L·diL/dt = ui (1)iL以斜率ui/L线性增长,L为T1原边电感。
经无感电阻R1采样Ud=R1·iL送到脉宽比较器A2与Ue比较,当Ud>Ue,A2输出高电平,送到RS锁存器的复位端,此时或非门的两个输入中必有一个高电平,经过或非门输出低电平关断功率开关管V。
UC3842中文资料1. 简介UC3842是一款常用的PWM(脉宽调制)控制器,广泛应用于开关模式电源控制电路中。
它具有高效率、低功耗和高性能特点,适用于多种应用领域,如电源适配器、LED驱动和开关模式电源等。
2. 特性及优势•采用当前模式的回路架构设计,可实现快速的动态响应和高精度的电压调整。
•内置PWM比较器,能够实现精确的脉宽调制,并且具有可调的占空比和频率。
•内置错误保护功能,包括过流保护、过热保护和欠压保护等,有利于提高系统的可靠性和稳定性。
•采用高精度的参考电压源,能够提供稳定的工作电压,并降低温度对电压的影响。
3. 电气参数UC3842的电气参数如下表所示:参数描述输入电压范围7V - 30V工作温度范围-40°C - 85°C输出电流100mA频率范围100kHz - 500kHzPWM比较器电流200nA4. 典型应用电路以下是一个基于UC3842的典型应用电路示意图:5. 使用说明在使用UC3842之前,请先仔细阅读UC3842的中文资料以了解其功能和特性。
然后按照以下步骤进行操作:1.将UC3842正确地焊接到电路板上,确保引脚与电路板正确连接。
2.根据实际需求,调整UC3842的占空比和频率。
可以通过调整电阻或电容进行设置。
3.连接输入电源,并确保输入电压在规定范围内。
4.连接输出负载,确保负载的电流符合UC3842的额定输出电流。
5.检查保护功能是否正常工作。
可以通过引入错误信号或调整输入电压来测试保护功能。
6.监测输出电压和输出电流,确保其稳定在预期的范围内。
7.如果需要,可以对UC3842进行温度测试,并检查其工作温度是否符合规格要求。
6. 注意事项在使用UC3842时,请注意以下事项:•严禁超过UC3842的额定电压、电流和温度范围,否则可能会导致不可逆的损坏。
•在操作电路时,注意安全措施,避免触电和短路等危险。
UC3842的原理及应用详解1 UC3842 内部工作原理简介图1示出了UC3842 内部框图和引脚图,UC3842 采用固定工作频率脉冲宽度可控调制方式,共有8 个引脚,各脚功能如下:①脚是误差放大器的输出端,外接阻容元件用于改善误差放大器的增益和频率特性;②脚是反馈电压输入端,此脚电压与误差放大器同相端的2.5V 基准电压进行比较,产生误差电压,从而控制脉冲宽度;③脚为电流检测输入端,当检测电压超过1V时缩小脉冲宽度使电源处于间歇工作状态;④脚为定时端,内部振荡器的工作频率由外接的阻容时间常数决定,f=1.8/(R T×C T);⑤脚为公共地端;⑥脚为推挽输出端,内部为图腾柱式,上升、下降时间仅为50ns 驱动能力为±1A ;⑦脚是直流电源供电端,具有欠、过压锁定功能,芯片功耗为15mW;⑧脚为5V 基准电压输出端,有50mA 的负载能力。
图1 UC3842 内部原理框图2 UC3842 组成的开关电源电路图2 是由UC3842 构成的开关电源电路,220V 市电由C1、L1 滤除电磁干扰,负温度系数的热敏电阻R t1限流,再经VC 整流、C2滤波,电阻R1、电位器RP1降压后加到UC3842 的供电端(⑦脚),为UC3842 提供启动电压,电路启动后变压器的付绕组③④的整流滤波电压一方面为UC3842 提供正常工作电压,另一方面经R3、R4 分压加到误差放大器的反相输入端②脚,为UC3842 提供负反馈电压,其规律是此脚电压越高驱动脉冲的占空比越小,以此稳定输出电压。
④脚和⑧脚外接的R6、C8 决定了振荡频率,其振荡频率的最大值可达500KHz。
R5、C6用于改善增益和频率特性。
⑥脚输出的方波信号经R7、R8 分压后驱动MOSFEF 功率管,变压器原边绕组①②的能量传递到付边各绕组,经整流滤波后输出各数值不同的直流电压供负载使用。
电阻R10 用于电流检测,经R9、C9 滤滤后送入UC3842 的③脚形成电流反馈环. 所以由UC3842 构成的电源是双闭环控制系统,电压稳定度非常高,当UC3842 的③脚电压高于1V 时振荡器停振,保护功率管不至于过流而损坏。
UC3842原理及应用UC3842是一款常用的开关电源控制器芯片,广泛应用于各种开关电源设计中。
它具有高性能、低成本和广泛的应用范围等特点,因此备受工程师们的喜爱。
一、UC3842的原理UC3842是一种固定频率PWM控制器,它通过控制开关管的导通时间和关断时间来调节输出电压。
它采用了电流模式控制,即根据电感电流的变化来控制开关管的开关时间。
UC3842内部集成了一个误差放大器、一个比较器、一个PWM控制器和一个电流检测电路。
1. 误差放大器:UC3842的误差放大器用于将输出电压与参考电压进行比较,产生一个误差电压。
这个误差电压经过放大后,用于控制PWM控制器的输出。
2. 比较器:UC3842的比较器用于将误差放大器的输出与一个三角波进行比较。
当误差放大器的输出大于三角波时,比较器输出高电平;当误差放大器的输出小于三角波时,比较器输出低电平。
3. PWM控制器:UC3842的PWM控制器用于根据比较器的输出,控制开关管的导通和关断时间。
当比较器输出低电平时,PWM控制器使开关管导通;当比较器输出高电平时,PWM控制器使开关管关断。
4. 电流检测电路:UC3842的电流检测电路用于检测电感电流的变化,并将其转换为电压信号。
这个电压信号经过放大后,用于与误差放大器的输出进行比较,实现电流模式控制。
二、UC3842的应用UC3842广泛应用于开关电源的设计中,下面介绍几个常见的应用案例:1. 单端反激开关电源:在单端反激开关电源中,UC3842用于控制主开关管的导通和关断时间,以实现输出电压的稳定调节。
通过调整反激变压器的变比和电感电流的变化,可以实现不同输出电压的设计要求。
2. 双端反激开关电源:在双端反激开关电源中,UC3842用于控制两个开关管的导通和关断时间,以实现输出电压的稳定调节。
双端反激开关电源相比于单端反激开关电源具有更低的输出纹波和更高的效率。
3. 电池充电器:在电池充电器中,UC3842用于控制充电电流和充电时间,以实现对电池的有效充电。
UC3842反激式开关电源环路补偿计算书一、介绍1.1 UC3842简介UC3842是一款具有反激式开关电源功能的控制IC,它被广泛应用于交换电源、逆变器和其他开关电源中。
UC3842具有工作频率可调的特点,典型应用中通常工作在50kHz至500kHz的范围内。
它内部集成有高压开关管,用于控制开关管的导通和关断,从而实现输出电压的稳定控制。
1.2 反激式开关电源环路补偿的重要性反激式开关电源的环路补偿是影响其稳定性和性能的关键因素之一。
正确的环路补偿设计可以有效地提高电源的动态响应和稳态精度,在保证系统稳定性的还能够提高系统的动态性能和抗干扰能力。
进行反激式开关电源环路补偿的计算十分重要。
二、环路补偿计算2.1 反激式开关电源的环路补偿原理反激式开关电源的环路补偿主要通过在控制回路中引入补偿网络来实现。
在设计中需要考虑控制回路的开环增益、相位裕度、带宽等参数,以及输出环路特性和负载特性等因素。
通常使用频率补偿网络和振荡器来实现环路补偿。
2.2 环路补偿计算步骤进行环路补偿计算时,需要依次进行以下步骤:步骤一:根据设计要求确定系统的带宽和相位裕度。
步骤二:选择合适的频率补偿网络和振荡器。
步骤三:计算补偿网络的元件参数。
步骤四:进行仿真验证和实际电路测试。
三、计算实例3.1 设计要求假设需要设计一个输出电压为12V、输出电流为2A的反激式开关电源,工作频率为100kHz。
系统要求带anWh (abolt-Var) 。
宽3dB,相位裕度为45°。
现进行环路补偿的计算和元件选择。
3.2 计算过程步骤一:根据设计要求计算系统的带宽和相位裕度。
设计带宽=100kHz,相位裕度=45°。
步骤二:选择频率补偿网络和振荡器。
选择一个合适的频率补偿网络和振荡器,比如R-C振荡器和阻容型频率补偿网络。
步骤三:计算补偿网络的元件参数。
根据选择的频率补偿网络,计算出所需的元件参数。
步骤四:进行仿真验证和实际电路测试。
UC3842工作原理及应用1.参考电压:UC3842内部有一个参考电压,一般为5V。
通过内部的稳压元件和电流源产生该固定的参考电压。
2. 错相比较器:UC3842内部有一个错相比较器,用于与参考电压进行比较。
该比较器有两个输入端,一个输入端为参考电压(Vref),另一个输入端为反馈电压(Vfb)。
3.电流限制:UC3842实现电流限制的方法是通过在电流环内设定一个参考电流,当反馈电流超过参考电流时,控制器自动进行关断操作,以避免输出电流过大。
4.错相比较器输出:根据参考电压与反馈电压的比较结果,错误相比较器输出一个控制信号,用来控制MOSFET的导通和关断。
5.PWM信号:根据错误相比较器的输出信号,控制MOSFET的导通和关断时间,从而控制输出电压。
1.开关电源:UC3842常用于开关电源中的主控制器,通过PWM控制输出电压和电流,实现稳定的直流电源输出。
它具有频率可调、电流限制、过电流保护等功能,可满足不同功率和输出电压的要求。
2.逆变器:逆变器是将直流电源转换为交流电源的设备,常见于太阳能、风能等新能源系统中。
UC3842可用于逆变器的控制电路,通过PWM控制开关管的导通和关断,实现直流到交流的转换。
3.DC-DC转换器:UC3842也可应用于DC-DC转换器中,将输入电压转换为不同的输出电压。
通过PWM控制器对开关管的控制,可以实现高效率、稳定的DC-DC转换。
总结:UC3842是一种高性能可编程电流模式双极性PWM控制器,它通过比较电流环实现电流控制和保护。
UC3842的应用非常广泛,特别在开关电源、逆变器和DC-DC转换器等电子设备中得到了广泛的应用。
通过对UC3842的工作原理和应用的理解,我们可以更好地设计和应用开关电源控制器,满足不同设备的要求。
UC3842的工作原理及3842在开关电源中的应用
2008/11/20 02:55
电流控制型脉宽调制器UC3842工作原理及应用
UC3842是美国Unitrode公司(该公司现已被TI公司收购)生产的一种高性能单端输出式电流控制型脉宽调制器芯片,可直接驱动双极型晶体管、MOSFEF 和IGBT 等功率型半导体器件,具有管脚数量少、外围电路简单、安装调试简便、性能优良等诸多优点,广泛应用于计算机、显示器等系统电路中作开关电源驱动器件。
1 UC384
2 内部工作原理简介
图1 示出了UC3842 内部框图和引脚图,UC3842 采用固定工作频率脉冲宽度可控调制方式,共有8 个引脚,各脚功能如下:
①脚是误差放大器的输出端,外接阻容元件用于改善误差放大器的增益和频率特性;
②脚是反馈电压输入端,此脚电压与误差放大器同相端的2.5V 基准电压进行比较,产生误差电压,从而控制脉冲宽度;
③脚为电流检测输入端,当检测电压超过1V时缩小脉冲宽度使电源处于间歇工作状态;
④脚为定时端,内部振荡器的工作频率由外接的阻容时间常数决定,f=1.8/(R T×C T);
⑤脚为公共地端;
⑥脚为推挽输出端,内部为图腾柱式,上升、下降时间仅为50ns 驱动能力为±1A ;
⑦脚是直流电源供电端,具有欠、过压锁定功能,芯片功耗为15mW;
⑧脚为5V 基准电压输出端,有50mA 的负载能力。
图1 UC3842 内部原理框图
2 UC3842 组成的开关电源电路
图2 是由UC3842 构成的开关电源电路,220V 市电由C1、L1 滤除电磁干扰,负温度系数的热敏电阻R t1限流,再经VC 整流、C2滤波,电阻R1、电位器RP1降压后加到UC3842 的供电端(⑦脚),为UC3842 提供启动电压,电路启动后变压器的付绕组③④的整流滤波电压一方面为UC3842 提供正常工作电压,另一方面经R3、R4 分压加到误差放大器的反相输入端②脚,为UC3842 提供负反馈电压,其规律是此脚电压越高驱动脉冲的占空比越小,以此稳定输出电压。
④脚和⑧脚外接的R6、C8 决定了振荡频率,其振荡频率的最大值可达500KHz。
R5、C6用于改善增益和频率特性。
⑥脚输出的方波信号经R7、R8 分压后驱动MOSFEF 功率管,变压器原边绕组①②的能量传递到付边各绕组,经整流滤波后输出各数值不同的直流电压供负载使用。
电阻R10 用于电流检测,经R9、C9 滤滤后送入UC3842 的③脚形成电流反馈环. 所以由UC3842 构成的电源是双闭环控制系统,电压稳定度非常高,当UC3842 的③脚电压高于1V 时振荡器停振,保护功率管不至于过流而损坏。
图2 UC3842 构成的开关电源
3 电路的调试
此电路的调试需要注意:一是调节电位器RP1使电路起振,起振电流在1mA左右;二是起振后变压器③④绕组提供的直流电压应能使电路正常工作,此电压的范围大约为11~17V 之间;三是根据输出电压的数值大小来改变R4,以确定其反馈量的大小;四是根据保护要求来确定检测电阻R10 的大小,通常R10 是2W、1Ω以下的电阻。
电流控制型脉宽调制器UC3842在开关电源中的应用
开关稳压电源被誉为“新型高效节能电源”,它代表着稳压电源的发展方向。
由于内部器件工作在高频开关状态,因此本身消耗的能量极低,电源效率可以达到80%以上,比串连调整线性稳压电源的效率提高近一倍。
随着电源技术的飞速发展,开关稳压电源正朝着小型化、高频化、集成
化的方向发展,高效率的开关稳压电源已得到越来越广泛的应用。
本文首先概述开关稳压电源的基本工作原理,接着介绍电流型脉宽调制器UC3842芯片,着重论述了UC3842在开关稳压电源中的应用,并以一个实际应用实例分析了电源电路的构成和参数计算。
开关电源的基本工作原理
相对于线性稳压电源功耗较大的缺点,开关电源的效率可达90%以上,而且造价低、体积小。
开关电源的工作原理如图1所示,它由调整管、滤波电路、比较器、三角波发生器、比较放大器和基准源等构成。
在图1中,三角波发生器的输出波形加到比较器的反相端,其同相端接比较放大器的输出Vf。
当三角波的幅度小于比较器的同相输入时,比较器输出高电平,对应调整管导通的时间为ton。
反之,当三角波的幅度大于比较器的同相输入时,对应调整管的截至时间为toff。
为了稳定电压输出,按电压负反馈方式引入反馈,以确定基准源和比较放大器之间的联系。
假设输出电压增加,则FVo增加,比较放大器的输出Vf减小,那么比较器的输出波形中toff增加,从而使调整管的导通时间减小,输出电压下降,起到稳压的作用。
如果忽略电感的直流电阻,那么输出电压Vo为调整管发射极电压Ve的平均分量,于是有:
其中,q为占空比。
在输入电压一定的时候,输出电压与占空比正比,通过改变比较器输出波形的占空比就可以控制输出电压的幅值。
图1 开关电源的工作原理
UC3842的工作原理
UC3842是美国Unitorde公司生产的一种性能优良的电流控制型脉宽调制芯片。
该调制器单端输出,能直接驱动双极型的功率管或场效应管。
其主要优点是管脚数量少,外围电路简单,电压调整率可达0.01%,工作频率高达500kHz,启动电流小于1mA,正常工作电流为5mA,并可利用高频变压器实现与电网的隔离。
该芯片集成了振荡器、具有温度补偿的高增益误差放大器、电流检测比较器、图腾柱输出电路、输入和基准欠电压锁定电路以及PWM锁存器电路。
其内部结构及基本外围电路如图2所示。
图2 UC3842的内部结构及基本外围电路
UC3842是8脚的双列直插的封装形式。
如图2所示:
第1脚为补偿脚,内部误差放大器的输出端,外接阻容元件以确定误差放大器的增益和频响。
第2脚是反馈脚,将采样电压加到误差放大器的反相输入端,再与同相输入端的基准电压进行比较,产生误差电压,控制脉冲的宽度。
第3脚为电流传感端,在功率管的源极串接一个小阻值的采样电阻,构成过流保护电路。
当电源电压异常时,功率管的电流增大,当采样电阻上的电压超过1V时,UC3842就停止输出,有效地保护了功率管。
第4脚为锯齿振荡器外部定时电阻R与定时电容C的公共端。
第5脚为地。
第6脚为图腾柱式输出电压,当上面的三极管截止的时候下面的三极管导通,为功率管关断时提供了低阻抗的反向抽取电流回路,加速了功率管的关断。
第7脚为输入电压,开关电源启动的时候需要在该引脚加一个不低于16V的电压,芯片工作后,输入电压可以在10~30V之间波动,低于10V时停止工作。
第8脚为内部5.0V的基准电压输出,电流可达50mA。
电路上电时,外接的启动电路通过引脚7提供芯片需要的启动电压。
在启动电源的作用下,芯片开始工作,脉冲宽度调制电路产生的脉冲信号经6脚输出驱动外接的开关功率管工作。
功率管工作产生的信号经取样电路转换为低压直流信号反馈到3脚,维护系统的正常工作。
电路正常工作后,取样电路反馈的低压直流信号经2脚送到内部的误差比较放大器,与内部的基准电压进行比
较,产生的误差信号送到脉宽调制电路,完成脉冲宽度的调制,从而达到稳定输出电压的目的。
如果输出电压由于某种原因变高,则2脚的取样电压也变高,脉宽调制电路会使输出脉冲的宽度变窄,则开关功率管的导通时间变短,输出电压变低,从而使输出电压稳定,反之亦然。
锯齿波振荡电路产生周期性的锯齿波,其周期取决于4脚外接的RC网络。
所产生的锯齿波送到脉冲宽度调制器,作为其工作周期,脉宽调制器输出的脉冲周期不变,而脉冲宽度则随反馈电压的大小而变化。
实际应用电路
图3 开关稳压电源系统总体框图
根据UC3842的特点,设计一个30~36V可调的开关型稳压电源,其总体结构框图如图3所示。
交流输入后通过整流滤波得到直流电压,经过LM317后获得16.5V的直流电压,作为UC3842芯片的启动电压。
芯片启动后通过脉宽调制控制功率管的开关从而实现稳压输出。
控制电路的核心是UC3842,其后级的高速开关功率管要求满足一定的耐压值和足够大的额定电流。
这里可以选用IRF540,其耐压值高达100V,额定电流可以达到33A。
高频变压器的升压系数为1.2,采用双桥间距为0.3mm的铁氧铁芯,由直径0.65mm的铜丝绕制而成。
高频变压器出来的脉动直流电压,先通过二极管整理,再通过3个50V/3300μF的电解电容,和由一个33μH电感和2个104的电容构成∏型滤波器进行滤波后输出。
其UC3842的核心电路如图4所示。
图4 UC3842的核心电路图
如图4所示,UC3842的工作频率由4脚和8脚间的RT和CT决定的。
理论上,其内部的振荡频率最高可达500kHz。
在本系统中RT和CT分别选用了10kΩ和0.045μF,根据公式:
可以计算得其工作频率约为40kHz,符合开关电源的要求。
在UC3842的2脚处接上一个10kΩ的电位器,通过调节电位器的阻值改变反馈电压,使脉宽的占空比发生变化,从而可以实现输出电压30~36V的连续可调变化。
结语
利用UC3842设计的电流制型脉宽调制开关稳压电源,克服了电压控制型脉宽调制开关稳压电源频响慢、电压调整率和负载调整率低的缺点,电路结构简单,成本低、体积小、易实现。
该稳压电源是目前实用和理想的稳压电源,具有很大的发展前景。