组合导航系统的基本原理及应用特点
- 格式:ppt
- 大小:2.13 MB
- 文档页数:24
组合导航系统是将载体( 飞机、舰船等) 上的导航设备组合成一个统一的系统,利用两种或两种以上的设备提供多重信息,构成一个多功能、高精度的冗余系统。
组合导航系统有利于充分利用各导航系统进行信息互补与信息合作, 成为导航系统发展的方向。
在所有的组合导航系统中,以北斗与惯性导航系统INS 组合的系统最为理想, 而深组合方式是北斗与惯性导航系统( INS) 组合的最优方法。
鉴于GPS 的不可依赖性,北斗卫星导航系统与INS 的组合是我国组合导航系统的发展趋势,我国自主研制北斗/INS深组合导航系统需要解决的关键技术。
1 北斗/惯导深组合导航算法深组合导航算法是由INS导航结果推算出伪距、伪距率,与北斗定位系统观测得到的伪距、伪距率作差得到观测量。
通过卡尔曼滤波对INS的误差和北斗接收机的误差进行最优估计,并根据估计出的INS误差结果对INS进行反馈校正, 使INS保持高精度的导航。
同时利用校正后的INS 速度信息对北斗接收机的载波环、码环进行辅助跟踪, 消除载波跟踪环和码跟踪环中载体的大部分动态因素, 以降低载波跟踪环和码跟踪环的阶数,从而减小环路的等效带宽, 增加北斗接收机在高动态或强干扰环境下的跟踪能力。
其组合方式如图 1所示,图中只画出了北斗的一个通道,其他通道均相同。
图 1 深组合方式框图组合导航参数估计是组合导航系统研究的关键问题之一。
经典Kalman滤波方法是组合导航系统中使用最广泛的滤波方法,但由于动态条件下组合导航系统状态噪声和量测噪声的统计信息的不准确,常导致滤波精度的下降,影响组合导航的性能。
滤波初值的选取与方差矩阵的初值对滤波结果的无偏性和稳定性有较大的影响,不恰当的选择可能导致滤波过程收敛速度慢,甚至有可能发散。
另外系统误差模型的不准确也会导致滤波过程的不稳定。
渐消记忆自适应滤波方法通过调节新量测值对估计值的修正作用来减小系统误差模型不准确对滤波过程的影响。
当系统模型不准确时,增强旧测量值对估计值的修正作用,减弱新测量值对估计值的修正作用。
导航系统的原理如何定位和导航导航系统已经成为现代社会中不可或缺的一部分,它通过使用卫星导航系统和其他技术,为用户提供准确的定位和导航服务。
本文将介绍导航系统的原理,包括定位和导航的过程。
一、全球卫星定位系统(GNSS)全球卫星定位系统(GNSS)是现代导航系统的核心,其基本原理是通过接收卫星信号来确定接收器的位置。
这些卫星距离地球几万公里,每个卫星都以固定的速度绕地球运行,同时向地面发射信号。
接收器接收到来自多颗卫星的信号后,通过计算信号传播的时间和接收到的信号强度,可以得出接收器的位置信息。
二、定位过程1. 接收卫星信号:导航系统的接收器通过天线接收卫星发射的信号。
天线需要面向开阔的天空,以确保能够接收到足够的卫星信号。
2. 信号传播时间计算:接收器同时接收到多颗卫星的信号,并测量信号从卫星到接收器的传播时间。
根据传播时间,可以获得接收器与每颗卫星之间的距离。
3. 定位计算:接收器通过与多颗卫星的距离组合,使用三角定位原理计算出自身的位置。
通过测量多颗卫星到接收器之间的距离,交叉计算并确定接收器的位置坐标。
4. 定位误差校正:定位过程中可能存在误差,例如信号传播的延迟以及大气层对信号的影响。
系统会使用校正算法对误差进行修正,以提供更准确的定位结果。
三、导航过程1. 目的地输入:用户在导航系统中输入目的地的地址或坐标。
导航系统将根据这些信息规划最佳的行驶路线。
2. 路线规划:导航系统根据用户输入的目的地和当前位置,利用地图数据和路况信息规划最优路线。
路线规划考虑了交通流量、道路类型、限速等因素,以提供最佳的导航建议。
3. 导航指引:导航系统会在行驶过程中提供语音或图像指引,指示用户在何时、何处转向或行驶。
导航器会根据实时定位信息和路线规划,持续更新导航指引,确保用户沿着正确的路线行驶。
4. 实时路况信息:现代导航系统通常会提供实时交通信息,以帮助用户选择最佳路线。
这些信息通过接收其他车辆或交通设施传输的数据,并与地图数据进行匹配,以提供准确的路况情报。
组合导航定位的基本原理
组合导航定位的基本原理是通过将多个传感器的信息进行组合,以提供更准确、鲁棒的定位结果。
这种方法通常使用不同类型的传
感器,如全球定位系统(GPS)、惯性导航系统(INS)、地面参考站、惯性测量单元(IMU)等。
这些传感器提供的信息经过组合和融合,可以弥补彼此的局限性,从而提高定位的精度和可靠性。
组合
导航定位的基本原理是利用多传感器的信息相互校准和补偿,以实
现高精度、鲁棒的定位结果。
通过对传感器数据进行融合和处理,
可以减少误差和提高定位的准确性,从而满足不同应用场景对定位
精度的要求。
这种方法在航空航天、自动驾驶、室内定位等领域得
到广泛应用,为定位技术的发展提供了重要的支持。
卫星导航技术专题讲座(三)第6讲 组合导航技术Ξ徐 荣,边东明,张更新(解放军理工大学通信工程学院训练部,江苏南京210007)摘 要:组合导航是导航技术发展的重要方向。
随着科学技术的发展,出现了多种导航手段,而各种导航手段都有自己的优缺点,在很多应用中依赖单一手段无法达到某些应用需求。
为了获得更好的导航性能,可以将各种导航手段有机组合起来,互相取长补短,使整个导航系统的性能优化。
常用的组合方式有惯性导航与卫星导航的组合以及多卫星导航系统的组合。
未来也将会有新的导航手段和组合方式出现,推动组合导航技术不断发展。
关键词:组合导航;惯性导航;卫星导航中图分类号:TN 967.1文献标识码:A 文章编号:CN 3221289(2010)0120100205Inte g ra te d Na v iga tion Te chnique sX U R ong ,B IA N D ong 2m ing ,ZH A N G Geng 2x in(T raining D epartm ent I CE ,PLAU ST ,N anjing 210007,Ch ina )A bs tra c t :In tegrated navigati on is an i m po rtan t research field of navigati on techno logy .W iththe developm en t of science and techno logy ,m any navigati on m ethods have been inven ted ,bu t have their ow n advan tages and disadvan tages ,and can ′t m eet app licati on needs individually .To ach ieve better perfo r m ance ,all k inds of navigati on m ethod can be in tegrated .T hese m ethods he 2lp each o ther to ach ieve m o re effective capab ility .T he in tegrati on of the inertial navigati on and satellite navigati on together w ith in tegrati on of the differen t satellite navigati on system s are w idely u sed .In the fu tu re ,new navigati on m ethods and in tegrati on s w ill be p ropo sed ,and the in tegrated navigati on techn iques w ill con tinue to flou rish .Ke y w o rds :in tegrated navigati on ;inertial navigati on ;satellite navigati on随着科学技术的发展,导航的手段越来越丰富。
组合导航系统多源信息融合关键技术研究一、本文概述随着导航技术的快速发展,组合导航系统已成为现代导航领域的重要研究方向。
它通过整合多种导航源的信息,以提高导航精度和可靠性,广泛应用于航空、航天、航海、智能驾驶等领域。
然而,多源信息融合作为组合导航系统的核心技术,其研究仍面临诸多挑战。
本文旨在探讨组合导航系统多源信息融合的关键技术,并分析其在实际应用中的效果与前景。
本文首先对组合导航系统及其多源信息融合的基本原理进行简要介绍,阐述多源信息融合在组合导航系统中的重要性和意义。
接着,文章重点分析了多源信息融合中的关键技术,包括数据预处理、信息融合算法、误差处理等方面。
在此基础上,文章通过实例分析,展示了多源信息融合技术在提高导航精度、增强系统可靠性以及应对复杂环境等方面的优势。
本文还对多源信息融合技术在组合导航系统中的应用进行了深入研究,探讨了不同导航源之间的融合策略和优化方法。
文章最后对多源信息融合技术在组合导航系统未来的发展趋势进行了展望,旨在为相关领域的研究人员和实践者提供有益的参考和启示。
二、组合导航系统基本原理组合导航系统是一种将多种导航传感器进行有机融合,以提高导航精度和可靠性的技术。
其基本原理主要基于多传感器信息融合技术,通过对不同导航传感器(如GPS、惯性导航系统、天文导航、地形匹配等)提供的导航信息进行合理处理和优化组合,以减小单一传感器误差,增强导航系统的整体性能。
传感器数据采集:从各种导航传感器中收集原始数据,这些数据可能包括位置、速度、加速度、姿态角等多种信息。
数据预处理:对采集到的原始数据进行必要的预处理,如去噪、滤波、校准等,以提高数据质量和为后续的数据融合提供基础。
数据融合:这是组合导航系统的核心部分。
通过采用适当的算法(如卡尔曼滤波、粒子滤波、神经网络等),将多个传感器的数据进行融合,生成一个更为准确、可靠的导航解算结果。
数据融合不仅需要考虑各传感器数据的权重分配,还要处理可能出现的传感器冲突和异常。
GPSMIMU嵌入式组合导航关键技术研究一、本文概述随着科技的快速发展,导航系统已经成为现代社会不可或缺的一部分,无论是在民用领域还是军事领域,其重要性都不言而喻。
而GPS/MIMU嵌入式组合导航技术,作为现代导航技术的重要组成部分,其研究与应用具有重大的理论和实际意义。
本文旨在对GPS/MIMU嵌入式组合导航的关键技术进行深入的研究和探讨,以期为该领域的发展做出一定的贡献。
本文首先介绍了GPS/MIMU嵌入式组合导航技术的基本原理和优势,阐述了其在导航领域的重要性和应用价值。
然后,重点分析了GPS/MIMU嵌入式组合导航中的关键技术,包括GPS和MIMU的数据融合算法、误差补偿技术、以及嵌入式系统的设计与实现等。
通过对这些关键技术的深入研究,本文提出了一些新的思路和方法,旨在提高导航系统的精度和稳定性。
接下来,本文还介绍了实验设计与实施过程,通过实际的数据采集和处理,验证了所提方法和思路的有效性和可行性。
实验结果表明,本文所研究的GPS/MIMU嵌入式组合导航关键技术能够显著提高导航系统的性能,具有重要的实用价值。
本文总结了研究成果,并对未来的研究方向进行了展望。
本文认为,随着技术的不断进步和应用需求的不断提高,GPS/MIMU嵌入式组合导航技术将会有更广阔的发展空间和应用前景。
因此,后续研究应继续深入探索和优化相关技术,以满足日益增长的导航需求。
二、GPS/MIMU组合导航系统基本原理GPS/MIMU组合导航系统是一种融合全球定位系统(GPS)和微型惯性测量单元(MIMU)信息的导航技术。
其基本原理在于利用GPS提供的高精度绝对位置信息,与MIMU提供的连续、独立的姿态和速度信息进行组合,以克服各自系统的局限性,提高导航精度和可靠性。
GPS系统基于地球表面的卫星信号,通过三角测量法确定接收机的位置。
然而,GPS信号易受到天气、建筑物遮挡、多路径效应等因素的影响,导致信号丢失或精度下降。
相比之下,MIMU利用陀螺仪和加速度计测量载体在三维空间的角速度和加速度,通过积分运算得到载体的姿态、速度和位置信息。
卫惯组合导航系统的原理
卫惯组合导航系统是一种将卫星导航系统和惯性导航系统相结
合的导航系统,其原理是利用卫星导航系统(比如GPS、GLONASS等)提供的位置、速度和时间信息,结合惯性导航系统(如陀螺仪、加
速度计等)提供的姿态和加速度信息,通过融合算法来实现对飞行器、航行器或车辆的精确定位与导航。
首先,卫星导航系统通过接收来自卫星的信号,计算接收机与
卫星之间的距离,进而确定接收机的位置。
卫星导航系统能够提供
全球范围内的定位和导航服务,但在某些环境下(如城市高楼群、
山区、隧道等)信号可能会受到遮挡或多径效应的影响,导致定位
精度下降。
其次,惯性导航系统则是利用惯性传感器测量飞行器或车辆的
加速度和角速度,通过积分计算得到姿态、速度和位置信息。
惯性
导航系统具有快速响应、不受外界干扰的优点,但是由于误差累积
的问题,长时间的导航会导致位置漂移,导航精度下降。
卫惯组合导航系统的原理就是将两者的优势互补,通过融合算
法将卫星导航系统和惯性导航系统的信息进行优化处理,以获得更
加精确和可靠的定位和导航结果。
融合算法通常包括卡尔曼滤波、扩展卡尔曼滤波、粒子滤波等方法,通过对两种导航系统输出数据的加权融合,实现对位置、速度和姿态的精确估计。
总的来说,卫惯组合导航系统的原理是利用卫星导航系统和惯性导航系统相互补充的优势,通过融合算法实现对飞行器、航行器或车辆的精确定位与导航,从而提高导航的精度和可靠性。
第6章组合导航系统6.1引言从惯性导航的工作原理和误差分析可以看出,惯导系统的自主性很强,它可以连续地提供包括姿态基准在内的全部导航参数,并且具有非常好的短期精度和稳定性。
在航空、航天、航海和许多民用领域都得到了广泛的应用,成为目前各种航行体上应用的一种主要导航设备。
其主要缺点是导航定位误差随时间增长,导航误差积累的速度主要由初始对准的精度、导航系统使用的惯性传感器的误差以及主运载体运动轨迹的动态特性决定。
因而长时间独立工作后误差会增加[1]。
解决这一问题的途径有两个,一是提高惯导系统本身的精度。
主要依靠采用新材料、新工艺、新技术,提高惯性器件的精度,或研制新型高精度的惯性器件。
实践已经证明,这需要花费很大的人力和财力,且惯性器件精度的提高是有限的。
另一个途径是采用组合导航技术。
主要是使用惯性系统外部的某些附加导航信息源,用以改善惯性系统的精度,通过软件技术来提高导航精度。
在实际应用中有多种不同原理的其它导航系统,它们具有不同的特点:如多普勒导航系统,系统的误差和工作时间长短无关,但保密性不好;天文导航系统,位置精度高,但受观测星体可见度的影响;卫星导航的精度高,容易做到全球、全天候导航,但它需要一套复杂的定位设备,当载体做机动飞行时,导航性能下降,尤其重要的是,卫星导航在战时将受到导航星发射国家的制约。
于是,人们设想把具有不同特点的导航系统组合在一起,取长补短,用以提高导航系统的精度。
实践证明,这是一种很有效的方法。
现在可以利用的各种现代辅助导航手段结合估算处理技术和高速计算机的进展,使组合导航系统在近年来获得了广泛的应用。
组合导航技术是目前导航技术发展的重要方向。
6.2 组合导航系统的基本原理和方法6.2.1 组合导航系统基本原理在辅助的惯性导航系统中,一个或多个惯性导航系统的输出信号与独立测量的由外部源导出的相同的量进行比较。
然后根据这些测量值的差异导出对惯性导航系统的修正。
适当组合这些信息,就有可能获得比独立使用惯性系统更高的导航精度[2]。
组合导航产品综述应用随着互联网的快速发展,导航产品也在不断创新和进化。
组合导航产品作为一种集成了多种导航功能的综合性工具,已经成为现代人生活中必不可少的一部分。
本文将综述组合导航产品的应用领域、特点以及对用户生活的影响。
一、组合导航产品的应用领域组合导航产品广泛应用于各个领域,包括交通导航、旅游导航、户外导航等。
在交通导航领域,通过集成地图、实时路况、导航路径规划等功能,组合导航产品能够帮助用户选择最佳的行车路线,并提供实时的交通信息,使用户能够更加高效地出行。
在旅游导航领域,组合导航产品可以提供景点介绍、周边推荐、导航路线等功能,帮助用户规划旅游行程,并提供详细的导航指引。
在户外导航领域,组合导航产品能够结合GPS定位、高度测量、气象预报等功能,帮助用户在野外环境中进行定位和导航,提高安全性和便利性。
二、组合导航产品的特点1.综合性:组合导航产品集成了多种导航功能,能够满足用户在不同领域的导航需求,提供全方位的导航服务。
2.实时性:组合导航产品通过与云端服务器的实时数据交互,能够及时获取最新的路况、天气等信息,并根据用户的实际情况进行导航路径的调整。
3.个性化:组合导航产品可以根据用户的个性化需求进行定制,提供个性化的导航设置和推荐服务,使用户能够更好地适应不同的导航场景。
4.多平台支持:组合导航产品不仅可以在智能手机上使用,还可以在车载导航系统、智能手表等设备上使用,提供多种导航方式和使用场景。
5.数据共享:组合导航产品通过云端服务,可以将用户的导航数据进行共享和存储,方便用户进行历史记录查看和数据分析,提供更好的导航体验。
三、组合导航产品对用户生活的影响组合导航产品的出现极大地改变了用户的出行方式和生活习惯。
首先,组合导航产品提供了更准确、更及时的导航信息,能够帮助用户节省时间和精力,提高出行效率。
其次,组合导航产品提供了更多样化的导航功能,满足了用户对不同场景导航的需求,使用户能够更加便捷地进行出行和旅游。
导航系统的原理及其应用在当今高科技时代,导航系统已经成为人们生活中普遍使用的工具之一。
从最初的GPS定位到现今的Google地图、百度地图等,导航系统已经变得十分精准、便捷。
但是,很多人可能不了解导航系统的原理及其应用。
本文将为读者详细解释导航系统的原理和应用。
一、导航系统的原理导航系统的原理主要基于卫星和地面设备的组合。
目前的卫星导航系统主要有GPS系统(美国)、GLONASS系统(俄罗斯)、Galileo系统(欧洲联盟)、北斗系统(中国)。
这些卫星搭载了大量的电子设备,包括高性能的原子钟、无线电发射器和接收器、天线等等。
首先,卫星会定时向地面发送电磁信号。
接收器会接受到这些信号,并计算出从卫星到接收器的距离。
由于卫星搭载了原子钟,所以卫星发送的信号时间可以被精确测量。
如果接收器同时接收到多颗卫星的信号,那么它就可以计算出自己在地球上的位置。
但是,由于地球是一个三维的物体,所以接收器无法确定自己在地球上的高度。
此时,地面设备就派上用场了。
地面设备一般会放置在地图上已知位置的点上。
接收器将自己接收到的信号发送给地面设备,地面设备将处理后的信息返回给接收器,接收器再基于返回的信息计算自己的高度。
二、导航系统的应用导航系统的应用十分广泛,它被广泛应用于航空、航海、汽车、旅游等多个领域。
下面就针对各个领域进行讲解。
1.航空领域:在飞行过程中,导航系统可以为机组人员提供飞机所在的经纬度、高度、速度等信息,以及航线和交通信息等。
飞行员可以通过导航系统快速地确定下一航点并做好相应的准备工作。
2.航海领域:导航系统在海上航行中也同样十分有用。
现在的船只已经普遍配备了导航系统,为船员提供了精准的定位。
导航系统也可以提供海图、天气预报、潮汐预报、船舶间的通信等信息。
3.汽车领域:导航系统在汽车领域的应用也十分广泛。
汽车的导航系统可以为驾驶员提供方向盘转动的角度、速度、所在的地理位置、行程时间等信息。
导航系统还可以为驾驶员提供最佳路线,避免过于拥挤的道路等。