往年数学高考题 1
- 格式:doc
- 大小:1.55 MB
- 文档页数:32
一、选择题1. 已知函数$f(x)=ax^2+bx+c$,其中$a>0$,$b=2a$,$c=3a$,则函数的对称轴方程为()A. $x=1$B. $x=-1$C. $x=0$D. $x=-2$2. 下列各数中,能被3整除的是()A. $\sqrt{27}$B. $\frac{\sqrt{3}}{2}$C. $\pi$D. $2\sqrt{3}$3. 在平面直角坐标系中,点$A(2,3)$关于直线$x+y=5$的对称点为()A. $(3,2)$B. $(3,-2)$C. $(-3,2)$D. $(-3,-2)$4. 已知等差数列$\{a_n\}$的前$n$项和为$S_n$,若$a_1=1$,$S_5=15$,则公差$d$的值为()A. 2B. 3C. 4D. 55. 下列各式中,能表示$x^2+y^2=4$的圆的方程是()A. $(x-1)^2+(y+1)^2=2$B. $(x-1)^2+(y-1)^2=2$C.$(x+1)^2+(y+1)^2=2$ D. $(x+1)^2+(y-1)^2=2$二、填空题6. 若复数$z$满足$|z-1|=|z+1|$,则$z$在复平面上的几何意义为________。
7. 函数$f(x)=\ln(x+1)$的定义域为________。
8. 二项式$(2x-1)^3$展开式中$x^2$的系数为________。
9. 已知等差数列$\{a_n\}$的首项$a_1=3$,公差$d=2$,则第10项$a_{10}$的值为________。
10. 若等比数列$\{a_n\}$的公比$q>0$,且$a_1+a_3+a_5=12$,则$a_1$的值为________。
三、解答题11. 已知函数$f(x)=x^3-3x+2$,求函数的极值。
12. 在平面直角坐标系中,已知点$A(1,2)$,$B(3,4)$,求直线$AB$的方程。
13. 已知等差数列$\{a_n\}$的首项$a_1=2$,公差$d=3$,求$\lim_{n\to\infty}\frac{a_n}{a_{n-1}}$。
一、选择题(每小题5分,共30分)1. 已知数列{an}的通项公式为an = 2n - 1,那么数列{an}的第10项是()A. 18B. 19C. 20D. 212. 函数f(x) = x^3 - 3x + 1在区间[0,2]上的最大值为()A. -1B. 0C. 1D. 33. 已知数列{an}的前n项和为Sn,且an = Sn - Sn-1,若a1 = 1,则数列{an}的通项公式为()A. an = n^2 - n + 1B. an = n^2 - 2n + 1C. an = n^2 + n + 1D. an = n^2 - n4. 函数f(x) = |x - 2| + |x + 1|的图像与x轴的交点个数为()A. 1B. 2C. 3D. 45. 已知数列{an}的递推公式为an = 2an-1 + 1,且a1 = 1,则数列{an}的前5项和为()A. 15B. 20C. 25D. 30二、填空题(每小题5分,共25分)6. 若函数f(x) = ax^2 + bx + c的图像开口向上,且顶点坐标为(-1, -2),则a、b、c的值分别为______。
7. 已知数列{an}的前n项和为Sn,且an = Sn - Sn-1,若a1 = 3,则数列{an}的通项公式为______。
8. 函数f(x) = |x - 2| + |x + 1|在区间[-1, 0]上的最大值为______。
9. 数列{an}的通项公式为an = 3n - 2,则数列{an}的前10项和为______。
10. 函数f(x) = x^2 - 4x + 3的图像与x轴的交点坐标为______。
三、解答题(每小题15分,共45分)11. (15分)已知数列{an}的通项公式为an = 2^n - 1,求证:数列{an}是递增数列。
12. (15分)已知函数f(x) = x^3 - 3x^2 + 2x + 1,求函数f(x)的单调区间。
参考公式:如果事件A 、B 互斥,那么球的表面积公式()()()P AB P A P B 24S R如果事件A 、B 相互独立,那么其中R 表示球的半径()()()P A B P A P B 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么334VRn 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径()(1)(0,1,2,)kkn kn n P k C p p k n …普通高等学校招生全国统一考试一、选择题1、复数131i i=A 2+IB 2-IC 1+2iD 1- 2i2、已知集合A ={1.3. m },B ={1,m} ,AB =A, 则m=A0或3B 0或3C 1或3D 1或33 椭圆的中心在原点,焦距为4 一条准线为x=-4 ,则该椭圆的方程为A216x+212y=1 B212x+28y=1C28x+24y=1 D212x+24y=14 已知正四棱柱ABCD- A 1B 1C 1D 1中,AB=2,CC 1=22E 为CC 1的中点,则直线AC 1与平面BED 的距离为A 2B3C2D 1(5)已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列的前100项和为(A)100101(B)99101(C)99100(D)101100(6)△ABC 中,AB 边的高为CD ,若a ·b=0,|a|=1,|b|=2,则(A)(B )(C)(D)(7)已知α为第二象限角,sinα+sinβ=33,则cos2α=(A)5-3(B)5-9(C)59(D)53(8)已知F1、F2为双曲线C:x2-y2=2的左、右焦点,点P在C上,|PF1|=|2PF2|,则cos ∠F1PF2=(A)14(B)35(C)34(D)45(9)已知x=lnπ,y=log52,12z=e,则(A)x<y<z (B)z<x<y (C)z<y<x (D)y<z<x(10) 已知函数y=x2-3x+c的图像与x恰有两个公共点,则c=(A)-2或2 (B)-9或3 (C)-1或1 (D)-3或1(11)将字母a,a,b,b,c,c,排成三行两列,要求每行的字母互不相同,梅列的字母也互不相同,则不同的排列方法共有(A)12种(B)18种(C)24种(D)36种(12)正方形ABCD的边长为1,点E在边AB上,点F在边BC上,AE=BF=73。
一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 若函数f(x) = ax^2 + bx + c在x=1时取得最小值,则a、b、c之间的关系是:A. a > 0,b = 0,c < 0B. a > 0,b ≠ 0,c > 0C. a < 0,b = 0,c > 0D. a < 0,b ≠ 0,c < 02. 下列函数中,其图像是双曲线的是:A. y = x^2 - 1B. y = 1/xC. y = x^2 + 1D. y = 1 - x^23. 已知等差数列{an}的前n项和为Sn,若a1 = 2,S5 = 30,则公差d为:A. 2B. 3C. 4D. 54. 下列命题中,正确的是:A. 对于任意实数x,都有x^2 ≥ 0B. 对于任意实数x,都有x^3 ≥ 0C. 对于任意实数x,都有x^4 ≥ 0D. 对于任意实数x,都有x^5 ≥ 05. 已知函数f(x) = log2(x - 1),则其定义域为:A. (1, +∞)B. (0, +∞)C. (1, 2]D. [1, 2)6. 若复数z满足|z - 1| = |z + 1|,则复数z的实部为:A. 0B. 1C. -1D. 无法确定7. 下列函数中,在其定义域内单调递增的是:A. y = -x^2B. y = 2xC. y = x^3D. y = x^28. 已知等比数列{bn}的前n项和为Tn,若b1 = 3,T3 = 21,则公比q为:A. 2B. 3C. 1/2D. 1/39. 下列方程中,无实数解的是:A. x^2 - 4x + 3 = 0B. x^2 + 4x + 3 = 0C. x^2 - 4x - 3 = 0D. x^2 + 4x - 3 = 010. 下列函数中,其图像关于原点对称的是:A. y = x^2B. y = x^3C. y = x^4D. y = x^511. 已知函数f(x) = x^2 + 2x + 1,则其图像的对称轴为:A. x = -1B. x = 1C. x = -2D. x = 212. 下列命题中,正确的是:A. 两个等差数列的和也是等差数列B. 两个等比数列的积也是等比数列C. 两个等差数列的商也是等差数列D. 两个等比数列的商也是等比数列二、填空题(本大题共6小题,每小题5分,共30分。
高考数学真题全国卷(汇总5篇)1.高考数学真题全国卷第1篇一、正余弦定理正弦定理:a/sinA=b/sinB=c/sinC=2R R为三角形外接圆的半径余弦定理:a2=b2+c2-2bc*cosA二、两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)三、倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a四、半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))五、和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB2.高考数学真题全国卷第2篇集合与函数内容子交并补集,还有幂指对函数。
第一部分:选择题一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 函数f(x) = 2x^3 - 3x^2 + 4x + 1的图像与x轴的交点个数是:A. 1个B. 2个C. 3个D. 4个2. 已知等差数列{an}的前n项和为Sn,若S3 = 18,S5 = 35,则该数列的公差d 是:A. 2B. 3C. 4D. 53. 若复数z满足|z - 1| = |z + 1|,则复数z的实部是:A. 0B. 1C. -1D. 24. 下列各式中,能表示集合M = {x | x^2 - 4x + 3 = 0}的是:A. x = 1B. x = 2C. x ∈ {1, 3}D. x ∈ {1, 2}5. 在△ABC中,∠A = 60°,∠B = 45°,则sinC的值是:A. √3/2B. √2/2C. 1/2D. 1/√26. 若直线y = kx + 1与圆x^2 + y^2 = 1相切,则k的取值范围是:A. (-1, 1)B. [-1, 1]C. (-∞, -1] ∪ [1, +∞)D. (-∞, -1) ∪ (1, +∞)7. 函数f(x) = (x - 1)^2 + 1在区间[0, 2]上的最大值是:A. 1B. 4C. 5D. 68. 已知向量a = (1, 2),向量b = (2, 1),则向量a与向量b的夹角θ的余弦值是:A. 1/2B. 1/√2C. √2/2D. 09. 若等比数列{an}的首项a1 = 1,公比q = 2,则第10项a10是:A. 1024B. 2048C. 4096D. 819210. 下列各式中,能表示集合N = {x | x^2 - 3x + 2 ≥ 0}的是:A. x ≤ 1 或x ≥ 2B. x ≤ 2 或x ≥ 1C. x ≤ 1 或x ≥ 3D. x ≤ 3 或x ≥ 111. 若函数f(x) = ax^2 + bx + c在区间[-1, 2]上单调递增,则a、b、c满足的条件是:A. a > 0, b ≥ 0, c ≥ 0B. a > 0, b ≤ 0, c ≥ 0C. a > 0, b ≥ 0, c ≤ 0D. a > 0, b ≤ 0, c ≤ 012. 若直线y = kx + 1与抛物线y = x^2 - 2x - 3相交于两点,则k的取值范围是:A. (-∞, -3) ∪ (3, +∞)B. (-3, 3)C. (-∞, -3] ∪ [3, +∞)D. (-∞, -3) ∪ (3, +∞)第二部分:填空题二、填空题(本大题共6小题,每小题5分,共30分。
2024年新高考1卷数学真题试卷使用省份:山东、广东、湖南、湖北、河北、江苏、福建、浙江一、选择题:本共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}355A x x =-<<,{}3,1,0,2,3B -=-,则A B =( )A.{}1,0-B.{}2,3C.{}3,1,0--D.{}1,0,2-2.若11zi z =+-,则z =( ) A.1i -- B.1i -+ C.1i - D.1i +3.已知向量()()0,1,2,a b x ==,若()4b b a ⊥-,则x =( ) A.2-B.1-C.1D.24.已知cos()m αβ+=,tan tan 2αβ=,则cos()αβ-=( ) A.3m -B.3m -C.3m D.3m5.已知圆柱和圆锥的底面半径相等,侧面积相等,则圆锥的体积为( )A.B.C.D.6.已知函数22,0,()ln(1),0x x ax a x f x e x x ⎧---<=⎨++≥⎩在R 上单调递增,则a 的取值范围是( )A.(],0-∞B.[]1,0-C.[]1,1-D.[)0,+∞7.当[]0,2x π∈时,曲线sin y x =与2sin(3)6y x π=-的交点个数为( )A.3B.4C.6D.88.已知函数()f x 的定义域为R,()(1)(2)f x f x f x >-+-,且当3x <时,()f x x =,则下列结论中一定正确的是( ) A.(10)100f >B.(20)1000f >C.(10)1000f <D.(20)1000f <二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,部分选对的得部分分,有选错的得0分.9.为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值元 2.1x =,样本方差:20.01s =,已知该种植区以往的亩收入X 服从正态分布2(1.8,0.1)N ,假设推动出口后的亩收入Y 服从正态分布2(,)N X s ,则( )(若随机变量Z 服从正态分布2(,)N μσ,则(Z )0.8413P μσ<+≈) A.P(X>2)>0.2B.P(X>2)<0.5C.P(Y>2)>0.5D.P(Y>2)<0.810.设函数2()(1)(4)f x x x =--,则( ) A.3x =是()f x 的极小值点 B.当01x <<时,2()()f x f x <C.当12x <<时,4(21)0f x -<-<D.10x -<<时,(2)()f x f x ->11.造型可以做成美丽的丝带,将其看作图中的曲线C 的一部分,已知C 过坐标原点O ,且C上的点满足横坐标大于2-,到点F(2,0)的距离与到定直线(0)x a a =<的距离之积为4.则( ) B.点A.2a =-(22,0)在C 上C.C 在第一象限的点的纵坐标的最大值为1D.当点00(,)x y 在C 上时,0042y x ≤+ 三、填空题:本题共3小题,每小题5分,共15分.12.设双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点分别为12,F F ,过2F 作平行于y 轴的直线交C 于,A B 两点,若113,10F A AB ==,则C 的离心率为_________.13.若曲线x y e x =+在点(0,1)处的切线也是曲线ln(1)y x a =++的切线,则a =_________. 14.甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8.两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用),则四轮比赛后,甲的总得分不小于2的概率为__________.四、解答题:本题共5小题,共77分,解答应写出文字说明、证明过程或验算步骤. 15.(13分)记ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知sin C B =,222a b c +-=. (1)求B ;(2)若ABC ∆的面积为3,求c .16.(15分)已知(0,3)A 和3(3,)2P 为椭圆2222:1(0)x y C a b a b +=>>上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且ABP ∆的面积为9,求l 的方程如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,2PA AC ==,1BC =,3AB =. (1)若AD PB ⊥,证明://AD 平面PBC ;(2)若AD DC ⊥,且二面角A CP D --的正弦值为427,求AD .18.(17分) 已知函数3()ln(1)2xf x ax b x x=++--. (1)若0b =,且'()0f x ≥,求a 的最小值; (2)证明:曲线()y f x =是中心对称图形:(3)若()2f x >-当且仅当12x <<,求b 的取值范围.设m 为正整数,数列1242,,,m a a a +是公差不为0的等差数列,若从中删去两项i a 和()j a i j <后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列1242,,,m a a a +是(,)i j -可分数列(1)写出所有的(,)i j ,16i j ≤<≤,使数列126,,,a a a 是(,)i j -可分数列;(2)当3m ≥时,证明:1242,,,m a a a +是(2,13)-可分数列;(3)从1,2,,42m +中一次任取两个数i 和()j i j <,记数列1242,,,m a a a +是(,)i j -可分数列的概率为m P ,证明:18m P >.2024年新高考1卷数学真题试卷详细解析使用省份:山东、广东、湖南、湖北、河北、江苏、福建、浙江一、选择题.1.【答案】A2.【答案】C【解析】:(1)(1)(1)(1)z i z i z i =+-=+-+ 所以1iz i =+ 所以11iz i i+==- 故选C. 3.【答案】D【解析】:()24(2,)(2,4)4(4)(2)0b b a x x x x x ⋅-=⋅-=+-=-=所以2x =. 故选D. 4.【答案】A【解析】:由cos()m αβ+=得:cos cos sin sin m αβαβ-= 由tan tan 2αβ=得:sin sin 2cos cos αβαβ= 所以cos cos ,sin sin 2m m αβαβ=-=-所以cos()cos cos sin sin 23m m m αβαβαβ-=+=--=-. 故选A. 5.【答案】B【解析】:设底面半径为r ,圆锥母线长为l .所以1222r r l ππ=⨯⨯,得:l =.所以3r ==.所以213V r h π==. 故选B. 6.【答案】B【解析】:()f x 在R 上单调递增,所以有202(1)(0)(0)a f f --⎧-≥⎪⨯-⎨⎪≤⎩,即202(1)1a a -⎧-≥⎪⨯-⎨⎪-≤⎩,解得:10a -≤≤. 故选B. 7.【答案】C【解析】:由图像知:共6个交点.故选C. 8.【答案】B【解析】:因为当3x <时,()f x x =,(1)1f ∴=,(2)2f =.考虑斐波那契数列,其前20项分别为:1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,4181,6765,10946. 则(20)1000f >. 故选B. 二、选择题.【答案】BC 【解析】:由题意:2(1.8,0.1)XN ,2(2.1,0.1)YN2=1.8+20.1=+2μσ⨯(>2)=(>+2)<(>+)=10.84130.1587P X P X P X μσμσ∴-=.故A 错误. (>2)<(>1.8)=0.5P X P X ∴.故B 正确. 2=2.10.1=μσ--(>2)>(>2.1)0.5P Y P Y ∴=.故C 正确.(>2)=(>)()0.84130.8P Y P Y P Y μσμσ∴-=<+=>.故D 错误.综上:选BC. 10.【答案】ACD【解析】:'()3(1)(3)f x x x =--.()f x ∴在(),1-∞上,在()1,3上,在()3,+∞上.故A 正确.当01x <<时,201x x <<<,故B 错误.当12x <<时,1213x <-<,所以(3)(21)(1)f f x f <-<,即4(21)0f x -<-<,故C 正确.当10x -<<时,3(2)()2(1)0f x f x x --=-->,故D 正确.综上:选ACD. 11.【答案】ABD【解析】:因为C 过坐标原点O ,所以24a -⨯=,得:2a =-.故A 正确.设曲线上一点任意一点(,)P x y ,则曲线C 的方程为:22(2)(2)4(2)x x y x +-+=>-,得:2224()(2)2y x x =--+.点(22,0)满足方程,故B 正确.取132x =,则216412071494196y =-=>,所以11y >,故C 错误. 222200044()(2)()22y x x x =--≤++,所以0004422y x x ≤=++,故D 正确. 综上:选ABD. 三、填空题. 12.【答案】32【解析】:1213,10,5F A AB AF ==∴=.1212212,21358c F F a AF AF ∴====-=-=36,4,2c c a e a ∴====. 13.【答案】ln 2.【解析】:''(),()1,(0)2,x x f x e x f x e f =+=+∴=∴切线l 的方程为21y x =+.'1()ln(1),()1g x x a g x x =++=+,当12x =-时,'1()22g -=,'11()ln +ln 222g a a -==- 所以切线方程为:1(ln 2)2()2y a x --=+,故ln 20a -=,即:ln 2a =.14.【答案】12【解析】不妨设甲的顺序是1,3,5,7,考虑甲得分为0,1的情况(1)甲得0分情况:只有1种,1,3,5,72,4,6,8⎛⎫⎪⎝⎭(2)甲得1分情况①甲出3的时候得分,此时只有1种1,3,5,74,2,6,8⎛⎫⎪⎝⎭②甲出5的时候得分,此时乙对应有两种情况乙出4的时候有1种情况,乙出2的时候有2种情况,所以共有3种. ③甲出7的时候得分,此时乙对应有3种情况乙出6的时候有1种情况,乙出4的时候有2种情况,乙出2的时候有4种情况,从而共7种情况.所以甲的总得分小于2的概率为11122-=.所以甲的总得分不小于2的概率为44113712A +++=. 四、解答题. 15.【答案】(1)3π(2) 【解析】:(1)2222cos cos 24a b c ab C C C π+-==⇒=⇒=由sin C B =得:1cos 23B B π==⇒= (2)由(1)得:512A B C ππ=--=,==,a b ∴==11sin 322S ab C ∴===+c ∴=16.【答案】(1)12e =(2)1:2l y x =或332y x =- 【解析】:(1)(0,3)A 和3(3,)2P 代入椭圆方程得22220919941a b a b⎧+=⎪⎪⎨⎪+=⎪⎩,解得:22129a b ⎧=⎨=⎩.12c e a ∴===.(2)如图,设点(0,3)A 到l 的距离为d①当l 斜率不存在时,:3l x = 3(3,),3,32B PB d ∴-== 1933922ABP S ∆=⨯⨯=≠,不满足条件. ②当l 斜率存在时,设3:(3)2l y k x -=- 记11(,)P x y ,22(,)B x y联立223(3)21129y k x x y ⎧=-+⎪⎪⎨⎪+=⎪⎩得:2222(43)(2412)3636270k x k k x k k +--+--= 由韦达定理可得:2122212223124336362743k k x x k k k x x k ⎧-+=⎪⎪+⎨--⎪=⎪+⎩2222743139443k k k PB k ⋅+⋅++∴=+23321k d k +=+ 22223273431391124922431ABP k k k k S PB d k k ∆++++∴=⋅=⋅=++解得:12k =或32k = 1:2l y x ∴=或332y x =- 17.【答案】(1)见解析 (2)3AD =【解析】:(1)证明:PA ⊥底面ABCD ,AD ⊂平面ABCDPA AD ∴⊥,,,AD PB PA PB P PA PB ⊥⋂=⊂平面PABAD ∴⊥平面PABAB ⊂平面PAB ,AD AB ∴⊥在ABC ∆中,222,AB BC AC AB BC +=∴⊥,,,A B C D 四点共面,//AD BC ∴BC ⊂平面PBC ,AD ⊄平面PBC//AD ∴平面PBC(2)如图,延长CB 至点E ,使得EA AC ⊥.以AE 为x 轴,AC 为y 轴,AP 为z 轴建立坐标系.设ACD θ∠=,则22cos (2cos sin ,2cos ,0)AD D θθθθ=⇒-(0,2,0)C ,(0,0,2)P ,则平面ACP 的法向量是1(1,0,0)n =2(0,2,2),(2cos sin ,2cos ,2)PC PD θθθ=-=--则平面PCD 的法向量是2(tan ,1,1)n θ=-则12cos ,n n <>==解得:tan θ=所以cos 2θ=故AD =18.【答案】(1)2- (2)见解析(3)2,3⎡⎫-+∞⎪⎢⎣⎭【解析】:(1)由题意:()f x 的定义域为(0,2).0b =时,()ln 2xf x axx =+-,'2111122()0()22(2)(1)1f x a a x x x x x x x =++≥⇒≥-+=-=------+要使22(1)1a x ≥---+恒成立,必须max 22()2(1)1a x ≥-=---+所以a 的最小值是2-.(2)()f x 的定义域为(0,2).332()(2)ln ln (2)(1)(1)22x xf x f x ax a x b x b x a x x -+-=+++-+-+-=-.故曲线()f x 关于点(1,)a 对称.(3)由(2)知()f x 关于点(1,)a 对称..()2f x >-当且仅当12x <<.()2f x ∴≤-当且仅当01x <≤.由于()f x 的连续性,(1)2f a ∴==-.3()ln (1)22xf x ax b x x ∴=++->--对(1,2)x ∀∈恒成立.(1)2,f =-又2'222112(1)2()23(1)3(1)(1)32(2)(2)x f x b x b x x b x x x x x x ⎡⎤-=+-+-=+-=-+⎢⎥---⎣⎦'(1)0,f =又''2211()6(1)(2)f x b x x x =-++-- ''(1)0,f =又'''3322()6(2)f x b x x =++- '''(1)46f b =+令'''(1)460f b =+≥,得:23b ≥- 此时4'22222(1)()(1)3(1)20(2)(2)(2)x f x x b x x x x x x x ⎡⎤⎡⎤-=-+≥--=≥⎢⎥⎢⎥---⎣⎦⎣⎦ 故()f x 在(1,2)上单调递增所以对(1,2)x ∀∈,()2f x >-恒成立.综上:b 的取值范围是2,3⎡⎫-+∞⎪⎢⎣⎭. 19.【答案】(1)(1,2),(1,6),(5,6) (2)见解析(3)见解析.【解析】:(1)(1,2),(1,6),(5,6)(2)证明:当3m =时,注意到{}{}{}1471036912581114,,,,,,,,,,,a a a a a a a a a a a a 三组的4个数都能构成等差数列,故3m =时,1242,,,m a a a +是(2,13)-可分数列.当3m >时,前面的3组按照3m =时的分法,即{}{}{}1471036912581114,,,,,,,,,,,a a a a a a a a a a a a ,剩余的部分每4个相邻项分一组,即{}43444546,,,,3,4,,1r r r r a a a a r m ++++=-.综上所述:3m ≥时,1242,,,m a a a +是(2,13)-可分数列. (3),,,p q r s a a a a 成等差,,,p q r s ⇔成等差.故1242,,,m a a a +是(,)i j -可分数列1,2,,42m ⇔+是(,)i j -可分数列.①情形一:1,2,,42m +是(41,42),0k r k r m ++≤≤≤可分数列. 具体构造:前1,2,,4k 项每4个相邻项分一组(0k =时不存在该组),中间42,,41k r ++每4个相邻项分一组(k r =时不存在该组),后面43,,42r m ++每4个相邻项分一组(r m =时不存在该组).此种分组显然满足题意.此时共211(1)(1)(2)2m C m m m +++=++种. ②情形二:1,2,,42m +是(42,41),0k r k r m ++≤<≤,且2r k -≥是可分数列. 记2q r k =-≥具体构造:前1,2,,4k 项每4个相邻项分一组(0k =时不存在该组),后面4 3.44,,42r r m +++每4个相邻项分一组(r m =时不存在该组).中间41,43,44,,41,4,42k k k r r r +++-+共4()4r k q -=项.要说明41,43,44,,41,4,42k k k r r r +++-+可分为q 组,只需考虑1,3,4,,41,4,42q q q -+是可分的.将1,3,4,,41,4,42q q q -+ 分为{}1,1,21,13q q q +++,{}3,3,23,33q q q +++{}4,4,24,34q q q +++ {}5,5,25,35q q q +++,{},,2,3,4q q q q {},2,22,32,42q q q q ++++共q 组,且满足条件. 此时的(42,41)k r ++的数目等于 (,)(,),2k r k k p p =+≥的数目. 此时共211(1)2m C m m m +-=-种. 故22224211(1)(2)(1)11122(21)(41)8618m m m m m m m m m m P C m m m m ++++-++++≥==>++++.。
第一部分 历年高考题 2010年高考题
一、选择题
1.(2010安徽文)(4)过点(1,0)且与直线x-2y-2=0平行的直线方程是 (A)x-2y-1=0 (B)x-2y+1=0 (C)2x+y-2=0 (D)x+2y-1=0 【答案】A 【解析】设直线方程为20xyc,又经过(1,0),故1c,所求方程为210xy. 【方法技巧】因为所求直线与与直线x-2y-2=0平行,所以设平行直线系方程为20xyc,代入此直线所过的点的坐标,得参数值,进而得直线方程.也可以用验证法,判断四个选项中方程哪一个过点(1,0)且与直线x-2y-2=0平行.
3.(2010重庆文)(8)若直线yxb与曲线2cos,sinxy([0,2))有两个不同的公共点,则实数b的取值范围为 (A)(22,1) (B)[22,22] (C)(,22)(22,) (D)(22,22) 【答案】D
解析:2cos,sinxy化为普通方程22(2)1xy,表示圆,
因为直线与圆有两个不同的交点,所以21,2b解得2222b 法2:利用数形结合进行分析得22,22ACbb 同理分析,可知2222b 4.(2010重庆理)(8) 直线y=323x与圆心为D的圆33cos,13sinxy
0,2
交与A、B两点,则直线AD与BD的倾斜角之和 为 A. 76 B. 54 C. 43 D. 53 【答案】C 解析:数形结合 301
302
由圆的性质可知21 3030
故43 5.(2010广东文)
6.(2010全国卷1理)(11)已知圆O的半径为1,PA、PB为该圆的两条切线,A、B为两切点,那么PAPB的最小值为 (A) 42 (B)32 (C) 422 (D)322 7.(2010安徽理)9、动点,Axy在圆221xy上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周。已知时间0t时,点A的坐标是13(,)22,则当012t
时,动点A的纵坐标y关于t(单位:秒)的函数的单调递增区间是 A、0,1 B、1,7 C、7,12 D、0,1和7,12 【答案】 D 【解析】画出图形,设动点A与x轴正方向夹角为,则0t时3,每秒钟旋转6,在0,1t上[,]32,在7,12上37[,]23,动点A的纵坐标y关于t都是单调递增的。 【方法技巧】由动点,Axy在圆221xy上绕坐标原点沿逆时针方向匀速旋转,可知与三角函数的定义类似,由12秒旋转一周能求每秒钟所转的弧度,画出单位圆,很容易看出,当t在[0,12]变化时,点A的纵坐标y关于t(单位:秒)的函数的单调性的变化,从而得单调递增区间. 二、填空题 1.(2010上海文)7.圆22:2440Cxyxy的圆心到直线3440xy的距离d 。 【答案】3 解析:考查点到直线距离公式
圆心(1,2)到直线3440xy距离为3542413 2.(2010湖南文)14.若不同两点P,Q的坐标分别为(a,b),(3-b,3-a),则线段PQ的垂直平分线l的斜率为 ,圆(x-2)2+(y-3)2=1关于直线 对称的圆的方程为 【答案】-1 3.(2010全国卷2理)(16)已知球O的半径为4,圆M与圆N为该球的两个小圆,AB为圆M与圆N的公共弦,4AB.若3OMON,则两圆圆心的距离MN . 【答案】3 【命题意图】本试题主要考查球的截面圆的性质,解三角形问题. 【解析】设E为AB的中点,则O,E,M,N四点共面,如图,∵4AB,所以22AB
OER232
,∴ME=3,由球的截面性质,有
OMME,ONNE,∵3OMON,所以MEO与NEO全等,所以MN被OE垂直平分,在直角三角形中,由面积相等,可得,MEMOMN=23OE 4.(2010全国卷2文)(16)已知球O的半径为4,圆M与圆N为该球的两个小圆,AB为圆M与圆N的公共弦,4AB,若3OMON,则两圆圆心的距离MN 。 【解析】3:本题考查球、直线与圆的基础知识
∵ ON=3,球半径为4,∴小圆N的半径为7,∵小圆N中弦长AB=4,作NE垂直于AB,∴ NE=3,同理可得3ME,在直角
三角形ONE中,∵ NE=3,ON=3,∴ 6EON,∴ 3MON,∴ MN=3 5.(2010山东文)(16) 已知圆C过点(1,0),且圆心在x轴的正半轴上,直线l:1yx被该圆所截得的弦长为22,则圆C的标准方程为 . 答案:
6.(2010四川理)(14)直线250xy与圆228xy相交于A、B两点,则
O M
N E A
B AB . 解析:方法一、圆心为(0,0),半径为22 圆心到直线250xy的距离为d=22|005|51(2)
故2|AB| 得|AB|=23 答案:23 7.(2010天津文)(14)已知圆C的圆心是直线x-y+1=0与x轴的交点,且圆C与直线x+y+3=0相切。则圆C的方程为 。 【答案】22(1)2xy 本题主要考查直线的参数方程,圆的方程及直线与圆的位置关系等基础知识,属于容易题。 令y=0得x=-1,所以直线x-y+1=0,与x轴的交点为(-1.0)
因为直线与圆相切,所以圆心到直线的距离等于半径,即|103|22r,
所以圆C的方程为22(1)2xy 【温馨提示】直线与圆的位置关系通常利用圆心到直线的距离或数形结合的方法求解。
8.(2010广东理)12.已知圆心在x轴上,半径为2的圆O位于y轴左侧,且与直线x+y=0相切,则圆O的方程是
12.22(5)5xy.设圆心为(,0)(0)aa,则22|20|512ar,解得5a.
9.(2010四川文)(14)直线250xy与圆228xy相交于A、B两点,则AB .
【答案】23 解析:方法一、圆心为(0,0),半径为22圆心到直线250xy的距离为d =22|005|51(2)故2|AB| 得|AB|=23 10.(2010山东理)
【解析】由题意,设所求的直线方程为x+y+m=0,设圆心坐标为(a,0),则由题意知: 22|a-1|()+2=(a-1)
2,解得a=3或-1,又因为圆心在x轴的正半轴上,所以a=3,
故圆心坐标为(3,0),因为圆心(3,0)在所求的直线上,所以有3+0+m=0,即m=-3,故所求的直线方程为x+y-3=0。 【命题意图】本题考查了直线的方程、点到直线的距离、直线与圆的关系,考查了同学们解决直线与圆问题的能力。 11.(2010湖南理)
12.(2010江苏卷)9、在平面直角坐标系xOy中,已知圆422yx上有且仅有四个点到直线12x-5y+c=0的距离为1,则实数c的取值范围是___________ [解析]考查圆与直线的位置关系。 圆半径为2, 圆心(0,0)到直线12x-5y+c=0的距离小于1,||113c,c的取值范围是(-13,13)。 2009年高考题 一、选择题 1.(辽宁理,4)已知圆C与直线x-y=0 及x-y-4=0都相切,圆心在直线x+y=0上,则圆C的方程为
A.22(1)(1)2xy B. 22(1)(1)2xy
C.22(1)(1)2xy D. 22(1)(1)2xy 【解析】圆心在x+y=0上,排除C、D,再结合图象,或者验证A、B中圆心到两直线的距离等于半径2即可. 【答案】B 2.(重庆理,1)直线1yx与圆221xy的位置关系为( ) A.相切 B.相交但直线不过圆心 C.直线过圆心 D.相离
【解析】圆心(0,0)为到直线1yx,即10xy的距离1222d,而
2012,选B。
【答案】B 3.(重庆文,1)圆心在y轴上,半径为1,且过点(1,2)的圆的方程为( )
A.22(2)1xy B.22(2)1xy C.22(1)(3)1xy D.22(3)1xy 解法1(直接法):设圆心坐标为(0,)b,则由题意知2(1)(2)1ob,解得2b,故圆的方程为22(2)1xy。 解法2(数形结合法):由作图根据点(1,2)到圆心的距离为1易知圆心为(0,2),故圆的方程为22(2)1xy 解法3(验证法):将点(1,2)代入四个选择支,排除B,D,又由于圆心在y轴上,排除C。 【答案】A 4.(上海文,17)点P(4,-2)与圆224xy上任一点连续的中点轨迹方程是 ( )