图像检索系统
- 格式:doc
- 大小:894.50 KB
- 文档页数:35
基于内容的图像检索技术研究内容图像检索技术,又称为基于内容的图像检索(Content-Based Image Retrieval, CBIR),是一种通过分析图像的内容特征来实现图像检索的方法。
它与传统的基于文本的图像检索方法相比,可以直接利用图像的视觉特征,无需依赖人工标注的文本信息。
内容图像检索技术在多领域都有广泛的应用,如图像库管理、医学图像分析、视频监控等。
1. 图像特征提取:内容图像检索的第一步是提取图像的特征。
图像特征可以分为低层次特征和高层次特征。
低层次特征包括颜色、纹理、形状等,可以通过图像处理和计算机视觉的算法提取。
高层次特征则是对图像语义的抽象,如物体、场景等。
这些特征的提取旨在将图像转化为数字化的向量表示,便于后续的相似度计算和检索。
2. 相似度计算:在内容图像检索中,关键的一步是计算图像之间的相似度。
相似度可以基于图像的特征向量进行计算,常用的方法有欧氏距离、余弦相似度等。
一般来说,相似度计算会考虑多个特征之间的加权组合,以综合反映图像的相似程度。
通过相似度计算,可以建立图像库中图像之间的相似性关系,为后续的检索提供基础。
3. 检索方法:基于内容的图像检索可以采用不同的检索方法,如基于特征的检索和基于查询的检索。
基于特征的检索是指通过提取图像的特征向量,然后与图像库中的特征向量进行相似度匹配,找到相似的图像。
而基于查询的检索是指用户通过输入图像或图像的描述信息作为查询条件,系统通过计算查询图像与图像库中图像的相似度,返回检索结果。
4. 索引结构:为了提高图像检索的效率,常常需要构建索引结构来加速检索过程。
索引结构可以基于图像的特征向量进行构建,如kd树、R树等。
通过索引结构的建立,可以减少相似度计算的次数,提高检索性能。
5. 评估和优化:对于内容图像检索技术的研究,评估和优化是不可或缺的环节。
评估可以通过比较检索结果与人工标注结果之间的差异来衡量检索系统的性能。
优化则需要根据评估结果,对图像特征提取、相似度计算、索引结构等方面进行调整和改进,以提高检索的准确性和效率。
基于颜色直方图的图像检索(实验分析)1.概述在过去的十几年间,有许多知名机构都对图像检索系统进行了深入的研究,病开发出了相应的检索系统,例如IBMAlmaden研究中心研制的QBIC系统,Virage公司研发的VIRAGE系统,麻省理工大学多媒体实验室研发的Photobook系统,哥伦比亚大学研发的ViualSeek系统,斯坦福大学研发的WBIIS系统,U.C.伯克利分校研发的Blobworld系统等等。
2.相关知识2.1.RGB颜色空间RGB颜色模型中每种颜色都是由红绿蓝三种颜色组成。
这种颜色模型在许多CRT显示器和彩色光栅图形设备中被广泛使用。
这三种颜色被认为是其他颜色的添加剂,对于所需要的颜色通过对这三种颜色进行不同的比例进行相加即可得到。
RGB模型可以用如下的颜色坐标系表示。
注意从(0,0,0)到(1,1,1)的对角线,白色代表了灰阶,RGB色彩模式俯视从白色开始的。
2.2.HSV颜色空间(也称HIS颜色空间)HSV字母分别代表了色度(Hue),饱和度(Saturation),色调。
上面的锥形图说明HSV的颜色模型。
Value代表了颜色的强度,他是从图像信息中分离出来,可以表示相关信息的部分。
色度和饱和度代表了颜色在人眼中的生理特征。
色度与红色等颜色从0到1的表示不同,色度是从红色通过黄,绿,青,蓝,洋红色,再回到红色。
饱和度的区分是从0到1,他通过值大小来影响颜色的饱和度。
对于色调,也是从0到1,随着他的增大,图像的颜色就会越来越亮。
2.3.颜色模型之间的转换为了针对特定的应用更好的使用颜色,颜色空间的颜色转换是非常必要的。
一个好的颜色空间必须能够很好的表示两种颜色之间的颜色差别。
也就是说,数值表示的颜色可以近似的表示人类可以感觉的颜色的差别。
2.4.距离3.算法原理一个图像的颜色直方图是通过统计图像各个颜色的像素个数构成的。
其处理过程:1、选择颜色空间;2、对颜色空间进行量化;3、统计直方图;4、推到直方图的距离函数;5、通过索引指出最相近的图像。
面向海量植物图像的智能检索系统设计
邱金水;庄会富;金涛
【期刊名称】《计算机与现代化》
【年(卷),期】2022()10
【摘要】针对传统软件技术设计的植物图像检索系统中存在无法实现智能检索、植物图像数量增长慢、检索系统难以扩容,以及当植物图像数量达到百万级以上时检索效率低和检索请求高并发时植物图像加载慢等问题,提出利用百度AI技术、Image Sharp图像分割技术和CV2颜色识别技术实现植物图像的智能检索。
利用Fast DFS技术实现检索系统的动态扩容、负载均衡和植物图像的快速加载,利用Solr搜索引擎技术提高海量植物图像的检索效率,利用Python爬虫技术不断丰富检索系统的植物图像从而实现检索系统的可持续化发展。
实验结果表明,通过上述技术能够构建一个面向海量植物图像的智能检索系统。
【总页数】7页(P62-67)
【作者】邱金水;庄会富;金涛
【作者单位】中国科学院昆明植物研究所科技信息中心
【正文语种】中文
【中图分类】TP391.41
【相关文献】
1.面向海量告警数据的并行处理系统设计与实现
2.面向海量小文件的分布式存储系统设计与实现
3.面向制造过程的海量数字图像高效检索算法研究
4.面向分发服务
的海量影像数据管理系统设计与实现5.基于Flink的海量医学图像检索系统设计与实现
因版权原因,仅展示原文概要,查看原文内容请购买。
毕业设计(论文)说明书学院专业年级姓名指导教师年月日毕业设计(论文)任务书题目:图像检索系统的设计与实现学生姓名王超学院名称软件学院专业软件工程学号3007218015指导教师于永新职称讲师一、原始依据(包括设计或论文的工作基础、研究条件、应用环境、工作目的等。
)随着互联网的飞速发展,网络上的图片信息呈爆炸式增长,这使得人们在网上找到所需的图片越来越困难,图片检索技术成为当今非常热门的研究话题。
图像检索一直是信息检索领域的一个主流问题,涉及到图像处理、图像分割、模式识别及机器学习等多个方面。
检索的智能化和自动化是图像检索的目标。
目前主流的图像检索方法大致可以分为两大类,即基于文本的图像检索(TBIR)和基于内容的图像检索(CBIR)。
在检索原理上,无论是基于文本的图像检索还是基于内容的图像检索,主要包括三方面:一方面对用户需求的分析和转化,形成可以检索索引数据库的提问;另一方面,收集和加工图像资源,提取特征,分析并进行标引,建立图像的索引数据库;最后一方面是根据相似度算法,计算用户提问与索引数据库中记录的相似度大小,提取出满足阈值的记录作为结果,按照相似度降序的方式输出。
而搜集图片和建立索引又是实现图像检索技术的非常重要的一个环节。
网络爬虫程序就是用来搜集网页和图片的程序。
本文的研究重点在于使用网络爬虫框架Heritrix进行扩展,从网络上下载所需网页及图片并利用HTMLParser进行网页分析和图片相关信息提取。
完成上述工作后,再将图片的目录位置和提取的信息存入数据库。
并建立一个图片检索系统的Web工程,实现检索功能。
开发语言为Java, 开发工具为MyEclipse和MySQL及Tomcat.二、参考文献[1]Ritendra Datta, Dhiraj Joshi, Jia Li et al. Image Retrieval: Ideas, Influences, and Trends ofthe New Age[J].ACM Comput. Surv. 40, 2, Article 5 .April 2008.[2]李晓明,闫宏飞,王继民. 搜索引擎-原理,技术与系统[M].北京:科学出版社,2004.[3]马自萍.形状和颜色特征的混合图像检索[D].银川:北方民族大学,2010.7.[4]陈剑雄,张蓓.简析图像检索中的CBIR技术[J].情报探索(第7期),2010.7.[5]Rafael C.Gonzalez and Richard E.Woods.Digital Image Processing Second Edition[M].Prentice Hall, 2003-3.[6]沈兰荪,张箐,李晓光。
摘要基于文本的图像检索技术存在两个缺点。
首先,标注每个图像是比较困难的;再次主观性和图像注释的不精确性在检索过程中可能引起适应性问题。
基于内容的图像检索技术克服了传统的图像检索技术的缺点。
基于内容的图像检索技术分为特征提取和查询两个部分。
本文主要介绍基于颜色特征的图像检索技术颜色特征是图像的基本特征也是最为直观的特征之一。
着重探讨了颜色空间的选取颜色特征的提取和表达颜色的相似度以及现有的图像的检索系统和存在的问题。
在这里颜色空间的选取有RGB颜色模式HSV颜色模型。
颜色提取的基本思想是用颜色直方图来统计每种颜色出现的概率。
目前相关的系统有QBIC系统、Photo book系统、CORE系统等等。
关键词:基于内容的图像检索技术;特征提取;特征表达;颜色直方图;AbstractTraditional text-based image retrieval techniques have two shortcomings: First, it has been difficulties to note each image. Second, the subjectivity and no precision of image anno-tation may lead to the adaptation in the retrieval process. CBIR overcome the shortcomings of the traditional text-based image retrieval .Content-based image retrieval can divide into two parts, that is feature extraction and query. In this paper, based Color Image Retrieval is mainly introduced. Color features are the basic characteristics of the image as well as are one of the most intuitive features. Here we focused on the selection of color space, color feature extrac-tion and expression, color similarity, and the existing image retrieval systems and problems. There are many color models to express color such as the RGB color model, the HSV color model. The basic idea to extract color is to use color histogram to calculate the probability statistics of each color .Currently there are some related systems QBIC system related system, Photo book system, CORE system and so on.Keywords: Content-based image retrieval; Feather extraction; Feather presentation; color histogram;目录1 绪论 (1)1.1 图像检索技术的发展 (1)1.2 图像检索技术的特点和应用 (1)1.3 图像检索系统的关键技术 (2)1.4 基于内容图像检索的典型系统 (3)1.4.1 QBIC系统 (3)1.4.2 Virage系统 (3)1.4.3 Photobook系统 (3)1.4.4 VisualSEEK和WebSEEK系统 (3)1.4.5 Netra系统 (4)2 颜色空间 (5)2.1 RGB 颜色空间 (5)2.2HSI颜色空间 (7)3 颜色特征的表达 (9)3.1 颜色直方图 (9)3.2 全局直方图 (10)3.3 累积直方图 (11)3.4 局部累加直方图 (11)4 颜色特征的相似性度量 (12)4.1 距离度量方法 (12)4.2 直方图的交集的方法 (12)4.3 欧氏距离法 (12)4.4 模糊理论 (13)5 系统的设计与实现 (15)5.1 系统的设计 (15)5.1.1 系统名称 (15)5.1.2 系统的开发环境 (15)5.1.3 系统的结构 (15)5.1.4 系统的实现算法描述 (17)5.1.5 系统中的图像库和索引表的建立 (17)5.1.6 容差值的设定 (18)5.2 系统的实现 (18)5.2.1 颜色空间的代码实现 (18)5.2.2 直方图显示的代码实现 (21)5.2.3 欧式距离的代码实现 (24)6 实例分析 (25)6.1 图像检索过程 (25)6.2 图像的直方图的分析 (26)6.3 数据记录 (27)6.4 目前研究中存在的主要问题及对未来的展望 (29)结束语 (30)致谢 (31)参考文献 (32)1 绪论1.1 图像检索技术的发展早期的图像检索是通过人工的标注来实现的,随着计算机技术和通信网技术的发展,特别是因特网的快速发展,图像数据的容量越来越大了,这种“以关键字找图”的方法越来越不适应检索技术的发展了[1]。
由于图像内容的丰富内涵以及人们对图像内容进行抽象时的主观性不同的人对同一幅图像有不同的理解,这就引入了主观多义,不利于检索[2]。
90年代以来出现了对图像的内容语义,如图像的颜色、纹理、布局等进行分析和检索的图像检索技术,即基于内容的图像检索。
基于内容的图像检索技术直接从要查找的图像的视觉特征出发,在图像库中找到与之相似的图像,是“图找图”的方法。
从研究方向的层面来看,基于内容的图像检索可分为三层:第一层是根据图像的底层特性来进行检索,如颜色、纹理,形状等等,涉及图像信息处理、图像分析和相似性匹配技术;第二层是基于图像对象语义,如图像中实体及实体之间的拓扑关系的检索,对象级检索技术建立在下层特征基础上,并引入了对象模型库、对象识别和人工智能等图像理解技术;第三层是基于图像的抽象属性如行为语义,情感语义和场景语义的推理学习来进行检索。
需要用到知识库和更加有效的人工智能和神经网络技术。
这三个层次由低到高,与人的认知接近,下一个层次通常包含了比上一个层次更高级的语义,更高层的语义往往通过较低层的语义推理获得。
尽管经过了多年的研究,较为成熟的基于内容的图像检索技术目前仍处于底层水平,由于底层研究是上层研究的基础,为了给上层建立准确、有效的图像特征提取方法,底层的研究仍在不断的发展。
1.2 图像检索技术的特点和应用基于内容的图像检索技术有以下特点:一是它突破了传统的基于表达式检索的局限,从媒体内容中提取信息线索。
利用图像内容特征建立索引进行检索,使得检索更加有效,适应性更强。
二是基于内容的图像检索是一种近似匹配,即按照某种相似性度量,比较图像特征间的差异度。
相似度较低的图像将作为检索结果返回给用户。
三是它是大型数据库的快速检索。
在实际的多媒体数据库中,数据量巨大,而且种类和数量巨大,因此要求CBIR技术快速地实现对多媒体信息的检索。
四是以相关反馈为有效手段。
为了提高检索的准确性,整个过程是个逐步逼近和相关反馈的过程。
用户的交互性增强了表达查询、评价查询结果和基于评价结果进行进一步检索的能力。
CBIR技术涉及多个领域,包括图像处理、计算机领域、数据挖掘、人机交互等等。
可以广泛应用于社会安全、遥感、医学、数字图书馆、医学、计算机辅助设计等等,前景广阔。
1.3 图像检索系统的关键技术对于通用的静止图像检索,用于检索的特征主要有颜色(Color)、纹理(Texture)、形状(Shape)等,其中颜色、纹理、形状应用尤为普遍,本文主要研究对静止图像检索。
颜色特征是在图像检索中应用最为广泛的视觉特征。
面向图像检索的颜色特征的表达涉及若干问题。
首先,要选择合适的颜色空间来描述颜色特征;其次,要采用一定的量化方法将颜色特征表达为向量的形式;最后,还要定义一种相似度( 距离) 标准用来衡量图像之间在颜色上的相似性。
颜色内容包含两个一般的概念,一个对应于全局颜色分布,一个对应于局部颜色信息。
按照全局颜色分布来索引图像可以通过计算每种颜色的像素的个数并构造颜色灰度直方图来实现,这对检索具有相似的总体颜色内容的图像是一个很好的途径。
局部颜色信息是指局部相似的颜色区域,它考虑了颜色的分类与一些初级的几何特征。
比如Smith等提出了颜色集合(color set)方法来抽取空间局部颜色信息并提供颜色区域的有效索引。
颜色特征是图像最直观而明显的特征,一般采用直方图来描述。
颜色直方图是表示图像中颜色分布的一种方法,它的横轴表示颜色等级,纵轴表示在某一个颜色等级上具有该颜色的像素在整幅图像中所占的比例,直方图颜色空间中的每一个刻度表示了颜色空间中的一种颜色。
本文主要讨论颜色特征的图像检索技术,其关键技术路径如图1-1所示:图1-1 关键技术的路径其中,颜色空间选用RGB空间,用全局直方图来表达颜色特征,相似性度量选用欧氏距离计算方法。
1.4 基于内容图像检索的典型系统鉴于基于内容的图像数据库检索系统的重要性、有效性和优越性,近年来国内外已经纷纷投入人力物力广泛开展研究并且已经研制出了一些系统。
其中既有各研究机构研制的演示软件也有商业应用软件。
下面列举一些具有代表性的图像检索系统。
1.4.1 QBIC系统国际商用机器公司IBM的QBIC是第一个商业化的基于内容的图像检索系统。
它的系统结构包括图像入库、特征计算、查询阶段。
QBIC系统允许使用例子图像、用户构建的草图和图画、选择的颜色和纹理模式、镜头和目标运动和其他图形信息等,对大型图像和视频数据库进行查询。
1.4.2 Virage系统Virage是由Virage公司开发的基于内容的图像搜索引擎。
它支持颜色、颜色布局、纹理、结构的查询,并且与QBIC相比较支持四个查询的任意组合。
用户可以根据自己的查询意图调整四个查询的权重。
Virage的核心技术是Virage Engine以及在图像对象层上的操作。
Virage Engine主要有图像分析、图像比较、图像管理三个方面的功能。
1.4.3 Photobook系统Photobook是MIT的媒体实验室在1994年开发研制的用于浏览和搜索图像的一套交互式工具。