模糊数学的产生发展和应用
- 格式:doc
- 大小:16.50 KB
- 文档页数:4
模糊评价法的发展历史及国内外研究一、发展和研究:模糊评价法是20 世纪60 年代美国科学家扎德教授创立的,是针对现实中大量的经济现象具有模糊性而设计的一种评判模型和方法,在应用实践中得到有关专家不断演进。
该方法既有严格的定量刻画,也有对难以定量分析的模糊现象进行主观上的定性描述,把定性描述和定量分析紧密地结合起来,因而,可以说是一种比较适合企业绩效评价的评价方法,并且也是近年来发展较快的一种新方法。
[1] 模糊评价是对受多种因素影响的事物做出全面评价的一种十分有效的多因素决策方法,其特点是评价结果不是绝对地肯定或否定,而是以一个模糊集合来表示。
模糊评价方法可以用来对公共管理中的人、事、物进行比较全面、正确而又定量的评价。
对于公共管理中方案、人才、成果的评价,人们的考虑往往是从多种因素出发的。
比如,评价一个大型公共项目一般要从经济、社会、科技、生态等方面进行评价,而这些一般只能用模糊语言来描述。
例如,评价者从考虑问题的诸因素出发,参照有关的数据和情况,根据他们的判断对问题分别作出“大、中、小”,高“、中、低”优, “、良、可、劣”好, “、较好、一般、较差、差”等不同程度的模糊评价。
然后通过模糊数学提供的方法进行运算,就能得出定量的评价结果,从而为正确决策提供依据。
一般来说,对于涉及多因素评价问题时, 大多数人感到比较困难,因为这时需要考虑的因素较多,而各因素的重要程度又不相同。
这些都会使问题变得很复杂,用经典数学方法来解决评价问题就显得很困难,而模糊数学[2]为解决模糊评价问题提供了理论依据,从而找到一种有效而简单的评价方法。
模糊评判作为模糊数学的一种具体应用方法,它主要分为两步:第一步先按照每个因素单独评判;第二步再按照所有因素评判。
其优点是:数学模型简单,容易掌握,对多因素、多层次的复杂问题评判效果比较好,是别的数学分支和模型难以替代的方法。
模糊评判方法的特点在于,评判逐对进行,对被评对象有唯一的评判值,不受被评价对象所处对象集合的影响。
模糊数学原理及其应用目录模糊数学原理及其应用目录摘要1.模糊集的定义2.回归方程3.隶属函数的确定方法3.1 隶属函数3.2 隶属度3.3 最大隶属原则4.模糊关系与模糊矩阵5.应用案例——模糊关系方程在土壤侵蚀预报中的应用5.1 研究的目的5.2 国外研究情况5.2.15.2.25.3 国内研究情况5.3.15.3.25.4 研究的意义6,小结与展望参考文献摘要:文章给出了模糊集的定义,对回归方程式做了一定的介绍并且介绍了隶属函数,隶属度,隶属度原则,以及模糊关系与模糊矩阵的联系与区别。
本文给出了一个案例,是一个关于模糊关系方程在土壤侵蚀预报中的应用,本文提出针对影响侵蚀的各个因素进行比较,找出影响最大的一项因子进行分析应用。
关键字模糊数学回归方程隶属函数模糊关系与模糊矩阵1. 模糊集1) .模糊集的定义模糊集的基本思想是把经典集合中的绝对隶属函数关系灵活化,用特征函数的语言来讲就是:元素对“集合”的隶属度不再是局限于0或1,而是可以取从0到1的任一数值。
定义一如果X是对象x的集合,贝U X的模糊集合A:A={ ( X, A (x)) I X x}-A (x)称为模糊集合A的隶属函数(简写为MF X称为论域或域。
定义二设给定论域U,U在闭区间[0,1]的任一映射J A: U > [0,1]A (x) ,x U可确定U的一个模糊子集A。
模糊子集也简称为模糊集。
J A ( x)称为模糊集合A是隶属函数(简写为MF。
2).模糊集的特征一元素是否属于某集合,不能简单的用“是”或“否”来回答,这里有一个渐变的过程。
[1]3).模糊集的论域1>离散形式(有序或无序):举例:X={上海,北京,天津,西安}为城市的集合,模糊集合C=“对城市的爱好”可以表示为:C={(上海,0.8)(北京,0.9)(天津,0.7)(西安,0.6)}又: X={0,1,2,3,4,5,6}为一个家庭可拥有自行车数目的集合,模糊集合C= “合适的可拥有的自行车数目的集合”C={(0,0.1),(1,0.3),(2,0.7),(3,1.0),(4,0.7),(5,0.3),(6,0.1)}2>连续形式令x=R为人类年龄的集合,模糊集合A= “年龄在50岁左右”则表示为:A={x,」A(X),x X }式中」A(x)2. 回归方程1>回归方程回归方程是对变量之间统计关系进行定量描述的一种数学表达式。
模糊数学应用论文(2)推荐文章计算机应用专业实习总结_计算机毕业实践工作总结报告热度:灾区送温暖慰问信热度:会计电算化应用论文相关范文热度:会计电算化结课论文热度:计算机应用的论文范文热度:模糊数学应用论文篇二模糊数学,乍听似乎不可思议。
因为数学的特点是精确,它怎么能同“模糊”连在一起呢?其实,模糊数学并非是“模糊的数学”,它真实的含义是:用数学方法来研究、处理模糊的事物。
这是1965年诞生的一门新学科,十几年来得到了迅速的发展。
从《伊索寓言》谈起在《伊索寓言》中有这样一则故事。
一次,伊索的主人酒醉后狂言,跟人打赌,发誓要喝干大海,并以他的全部财产和奴隶作赌注。
次日醒来后,他懊悔莫及。
但这一消息已轰动全城,人们早在海边等着他呢。
于是主人不得不苦苦求助聪明的伊索,伊索在讲好条件后便给他出了个主意。
主人听后如获至宝,急忙飞奔到海边,对蜂拥在那里的人群大声说道:“现在,我要再说一遍,我能喝干整个大海。
可是如今千万条江河汇入大海,海水里混杂了许多河水,如果有谁能把河水与海水分开,我就能把真正的大海喝干!”伊索朴素地应用了模糊语言学,帮助主人渡过了难关。
因为,“海水”是个模糊概念,我们虽然经常使用这个词,但给它下个定义,却往往会漏洞百出。
同样,在“水果”和“蔬菜”之间,“春、夏、秋、冬”四季之间,也都没有一条截然分明的界线。
我们生活中还有许多模糊的说法,如明暗、深浅、冷暖、宽窄、快慢、浓淡、高矮等等。
模糊事物反映在人的思维中,就产生了模糊逻辑。
在模糊逻辑中,判断一个命题的真假时,不仅可以用“是”(记作1)或“非”(记作0)来回答,还可以用介于0与1之间的小数来回答。
所以,它是一种连续值逻辑。
模糊并非罪过一般认为“模糊”是个贬意词,它的名声的确也“坏”过。
在生产力十分低下的原始社会,人们只能勉强维持生存,那时,用不着什么数学计算,是个混沌模糊的世界。
但随着生产力的不断提高,产生了剩余产品和商品交换,于是,人们开始用手指头、小石子计数,渐渐形成了自然数的概念。
模糊数学原理及应用第五版课程设计一、课程背景模糊数学是一门利用模糊逻辑探究问题的数学学科,它的发展和应用具有广泛的实际价值。
本次课程设计旨在深入了解模糊数学的原理和应用,并通过实践,学生将了解模糊数学在实际问题中的应用和价值。
二、课程内容1. 模糊集合理论模糊集合是模糊数学中的一个基本概念,学习模糊集合理论的含义和计算方法,包括模糊关系、模糊运算、模糊逻辑等。
2. 模糊控制系统利用模糊数学建立模糊控制系统,研究模糊控制器的设计和实现方法,包括模糊控制的基本结构、模糊控制器的设计方法、模糊控制器的优化等。
3. 模糊决策理论研究模糊决策理论的基本概念和计算方法,包括模糊决策树、模糊决策矩阵、模糊优化模型等。
4. 模糊数学在实际问题中的应用分析模糊数学在实际问题中的应用案例,探究模糊数学在人工智能、机器视觉、自动控制等领域中的应用。
三、课程目标通过本次课程设计,希望学生能够:1.掌握模糊数学的基本理论和计算方法;2.理解模糊数学在实际问题中的应用价值;3.能够独立设计并实现模糊控制系统和模糊决策模型;4.增强学生的模糊数学思维能力和实际应用能力。
四、课程实施方式本次课程设计采用课堂授课和实践相结合的方式。
具体包括:1.课堂授课:老师将讲解模糊数学的基本理论和计算方法;2.学生实践:学生将根据老师提供的案例,独立设计并实现模糊控制系统和模糊决策模型;3.案例分析:学生将根据实际案例,分析模糊数学在人工智能、机器视觉、自动控制等领域中的应用。
五、课程评估方式本次课程设计将采用课堂讨论、实践报告和个人总结等方式进行评估。
1.课堂讨论:学生将参与课堂讨论,讨论有关模糊数学的基本理论、应用案例等;2.实践报告:学生将提交独立实践报告,介绍自己设计的模糊控制系统和模糊决策模型;3.个人总结:学生将撰写个人总结,对本次课程学习进行总结和反思。
六、总结本次课程设计旨在介绍模糊数学的基本理论和应用方法,帮助学生掌握模糊数学的思想和方法。
工程模糊数学方法及其应用
工程模糊数学是一种将模糊数学理论应用于工程领域的方法。
模糊数学是一种处理不确定性问题的数学方法,它可以用来处理模糊的、不完全的信息,因此在工程领域中有着广泛的应用。
在工程领域中,很多问题都存在不确定性,例如:环境污染、交通流量、市场需求等等。
这些问题的不确定性往往导致传统的精确数学方法无法有效处理。
而工程模糊数学方法则可以通过建立模糊数学模型来解决这些问题。
工程模糊数学方法主要包括模糊逻辑、模糊集合、模糊关系、模糊推理等方面。
其中,模糊逻辑是将传统的二元逻辑扩展为多元逻辑,可以用于处理多个变量之间的不确定性关系;模糊集合是将传统的集合概念扩展为模糊集合,可以用于描述模糊的、不确定的概念;模糊关系是将传统的关系扩展为模糊关系,可以用于描述模糊的、不确定的关系;模糊推理是一种基于模糊逻辑和模糊关系的推理方法,可以用于处理模糊的、不确定的问题。
工程模糊数学方法在工程领域中有着广泛的应用,例如:工程设计、控制系统、决策分析、优化问题等等。
通过使用工程模糊数学方法,可以有效地处理不确定性问题,提高工程设计的准确性和可信度,为工程实践提供有效的支持。
- 1 -。
模糊数学方法及其应用
模糊数学是一种以模糊语言描述数学思想的学科,它引入了模糊的概念,使数学研究的结果更加接近实际环境中条件的复杂性。
模糊数学正从一种理论性学科转向能够解决复杂实际问题的工具,因此它现在应用越来越广泛。
模糊数学在多个领域有着广泛的应用,如机械设计、系统设计、资源调度、决策分析、计算机科学、信息处理、经济、控制以及科学研究等。
它使用条件表示系统特性,在它的基础上可以用来解决全面含糊的问题,而不用降低系统的功能精度。
模糊数学的应用非常多,既提供了一个解决复杂实际问题的有效方法,也有助于增强人们对解决实践问题的能力。
在机械设计领域,模糊数学可用来识别实际系统中的复杂模式,改进实际系统的设计。
在决策分析方面,可以使用模糊模型来确定决策的最优结果,使决策结果更具准确性。
在系统设计、资源调度和控制方面,模糊数学可以用来表示系统中复杂变量,进而更好地描述和调节系统行为。
此外,模糊数学还可以用来处理复杂的信息处理问题。
可以使用模糊理论来提取、组织和分析大规模数据,发现有趣的规律,并根据数据的性质来改进信息处理系统,可以帮助人们更有效地处理信息。
模糊数学原理及应用
模糊数学,又称模糊逻辑或模糊理论,是一种用于处理模糊和不确定性问题的数学方法。
它与传统的二值逻辑不同,二值逻辑中的命题只能有“是”和“否”两种取值,而模糊数学允许命题
取任意模糊程度的值,介于完全是和完全否之间。
模糊数学的基本原理是模糊集合论。
在模糊集合中,每个元素都有一个属于该集合的隶属度,代表了该元素与集合之间的模糊关系。
隶属度的取值范围通常是0到1之间,其中0表示不
属于该集合,1表示完全属于。
模糊集合的隶属函数则用来描
述每个元素的隶属度大小。
模糊数学的应用广泛。
在工程领域中,它常用于模糊控制系统的设计与分析。
传统的控制系统中,输入和输出之间的关系是通过确定性的数学模型来描述的,而模糊控制则允许系统中存在不确定性和模糊性,并通过模糊推理来实现系统的控制。
在人工智能领域中,模糊数学也有着重要的应用。
模糊逻辑可以用来处理自然语言的模糊性和歧义性,对于机器翻译、信息检索和智能对话系统等任务具有重要意义。
此外,模糊数学还可以应用于风险评估、决策分析、模式识别、数据挖掘等领域。
通过将模糊数学方法应用于这些问题,可以更好地处理不确定性和模糊性信息,并得到更准确的结果。
总而言之,模糊数学是一种处理模糊和不确定性问题的数学方法,通过模糊集合论和模糊推理来建模和分析。
它在各个领域
都有广泛的应用,可以帮助人们更好地处理现实世界中的复杂问题。
模糊逻辑的基本概念、方法及应用侯旭北京信息职业技术学院, 北京 100015摘要:早在上世纪20年代初,出现了大批关于模糊理论的研究者,他们的目标就是为了解决在现实生活中我们所遇到的模糊问题,而这些问题是传统数学所不能很好解答的,这样就有了模糊数学的概念,随着时间的推移,技术的不断提高,模糊数学和模糊逻辑的研究成了必然。
直至今日模糊数学已经成为了数学领域的一个重要分支,模糊逻辑成了人工智能的核心技术,模糊控制为越来越多的企业个人带来便利。
本文希望能够通过对模糊理论的产生到实际应用的简单介绍,使更多的人能够来了解这一重要的科学领域。
关键词:模糊理论;模糊数学;模糊集合中图分类号:TN911.22 文献标识码:A 文章编号:1671-5810(2015)07-0006-021 引言本文是根据现代市场的不断创新给各行各业带来的巨大的竞争压力,虽然目前为止模糊理论的著作很少,但是根据模糊理论所研究的实际应用却越来越多,这也预示着模糊理论能给我们的技术提升带来很多的力量。
所以此篇文章从他的历史背景至当今的实际应用进行了小结,期望各位能够指出不足。
2 模糊理论产生背景模糊理论的创世人Lotfi A. Zadeh在1965年首次发表的《Fuzzy Sets》中,将模糊理论带给了大家,就像其本人说的:“I don’t know what it can do ,but you can”,模糊逻辑理论是包罗万象的,是种起源,以下是我对模糊逻辑的一些浅见。
模糊理论的到来给了世人一种新的思维方式或者看问题的角度,在模糊逻辑产生之前,人们对事物的看法是很难统一协调的,人们天性使得我们对于事物的看法是追求精确化、概念化、简单化和清晰化的,凡事尽可能的要找出分界线,分清从属关系,寻找自然界的循环规律。
然而在千变万化的大自然中很难找到一个明确的分界点。
在人们形容一个物体什么是多什么是少,在形容空气温度时多少度是高温多少度是低温,在形容天气时怎样算阴天怎样算晴天,在形容雨量时是31474滴雨是小雨量而31475滴雨时是大雨量?有些自然事物是我们无法非常准确的量化的,在描述雨量的时候我们假设命题A=“31474滴雨是否是小雨”,然后我们可以把这个命题拿到生活中去进行调查,这样我们就可以统计出31474滴雨是小雨的概率,但不管结果怎样,此时A命题已经是一个模糊命题,而其中的A的集合也已经是一个模糊集合,这可能就是我们今天在描述物体时常用的一种模糊逻辑的方法。
模糊数学和模糊算法的区别在现实生活中,我们经常会遇到模糊的概念和问题。
比如,我们可能不太确定某个人的年龄、某个物品的重量或某个事件的发生时间。
此时,我们可以使用模糊数学和模糊算法来处理这些问题。
虽然这两个概念看似非常相似,但它们之间存在着一些区别。
一、模糊数学模糊数学又称为灰色数学,是对模糊概念的表示和处理方法进行研究的数学分支。
它是基于模糊集合理论而发展起来的一门数学学科,用于表达那些不太确定的事物或概念。
在模糊数学中,一个数学集合可以由许多个元素组成,每个元素都有一定的隶属度。
隶属度是一个介于0和1之间的实数,表示这个元素属于这个集合的程度。
当隶属度等于0时,这个元素完全不属于这个集合;当隶属度等于1时,这个元素完全属于这个集合。
模糊数学的一个重要应用是模糊推理。
在模糊推理中,我们可以使用模糊规则来推断出一些模糊概念的结果。
例如,在医疗诊断中,我们可能需要根据病人的症状判断他是否患有某种疾病。
由于症状和疾病之间的关系不是非常直接,我们可以使用模糊数学来进行推理,得出更准确的结果。
二、模糊算法模糊算法是通过对模糊概念的处理来得到模糊结果的一种算法。
它基于模糊数学的概念和方法,用于处理一些复杂的、含糊的问题。
与传统的算法不同,模糊算法的输入和输出都是模糊的。
在模糊算法中,我们需要将问题和答案都用模糊的形式来表示,然后通过模糊推理来得到结果。
例如,在图像识别中,我们可能需要判断一张图像中是否存在某个物体。
由于图像中的物体可能存在旋转、遮挡等情况,我们可以使用模糊算法来处理这些问题,得到更准确的结果。
三、模糊数学和模糊算法的区别虽然模糊数学和模糊算法都是用于处理模糊概念和问题的工具,但它们之间存在着一些区别。
主要有以下几点:1.定义不同:模糊数学主要是研究如何表示和处理模糊概念;而模糊算法是一种通过对模糊概念进行处理得到模糊结果的算法。
2.应用范围不同:模糊数学可以应用于各种领域,如决策分析、模式识别、控制论等;而模糊算法主要用于一些对精确性要求不高的领域,如图像识别、自然语言处理等。
模糊数学的用途模糊数学是指处理不确定、不精确或模糊的信息的一种数学方法。
它在解决一些模糊的、复杂的、现实问题上有着广泛的应用。
本文将从理论和实际两个方面介绍模糊数学的用途。
一、理论1. 模糊逻辑模糊逻辑是模糊数学的一种应用,它是一种适合于处理不确定信息和复杂信息的逻辑。
模糊逻辑能够描述自然语言中常见的模糊概念,例如“大概”、“差不多”等,这些概念不是精确的。
2. 模糊集合模糊集合是指元素不明确的集合。
在实际问题中,许多情况下我们无法精确地界定某些事物或概念的界限,这就需要运用模糊集合理论进行模糊处理。
3. 模糊数学在控制理论中的应用模糊控制是应用模糊数学于控制系统中的一种方法。
模糊控制理论可应用于自动化和工业过程控制等领域,这些领域包括风力发电、热卷机、机器人控制、航空航天等。
二、实际应用1. 生产优化在现代制造业的生产过程中,影响因素很多,而这些影响因素由于互相作用具有模糊性,很难用传统的数学方法进行分析和优化。
而采用模糊数学的方法进行分析和优化,就可以更好地解决生产过程中的问题,提高生产效率。
2. 市场营销在激烈的市场竞争中,企业要制定有效的市场营销策略。
而模糊数学的决策分析技术可以对市场进行模糊建模,对市场数据进行模糊处理和分析,提出最佳的市场策略。
3. 金融风险分析模糊数学在金融风险分析中也有广泛的应用。
比如股票交易、保险、债券等金融领域,通过模糊数学的方法可以对未来的财务走向进行预测,以便制定更为准确、有效的风险管理策略,降低金融风险。
综上所述,模糊数学在现代社会中有着广泛的应用。
无论是从理论层面还是实际应用层面,模糊数学都能为我们提供更为准确、有效的分析和决策的方法,帮助我们解决现实中的复杂问题。
模糊数学知识小结与模糊数学相关的问题模糊聚类分析—根据研究对象本身的属性构造模糊矩阵,在此基础上根据一定的隶属度来确定其分类关系模糊层次分析法—两两比较指标的确定模糊综合评判—综合评判就是对受到多个因素制约的事物或对象作出一个总的评价,如产品质量评定、科技成果鉴定、某种作物种植适应性的评价等,都属于综合评判问题。
由于从多方面对事物进行评价难免带有模糊性和主观性,采用模糊数学的方法进行综合评判将使结果尽量客观从而取得更好的实际效果模糊数学基础一.Fuzzy 数学诞生的背景1)一个古希腊问题:“多少粒种子算作一堆?”2)Fuzzy 概念的广泛存在性,如“找人问题”3)何谓Fuzzy 概念?,如何描述它?由集合论的要求,一个对象x,对于一个集合,要么属于A,要么不属于A,二者必居其一,且仅居其一,绝对不允许模棱两可。
这种绝对的方法,是不能处理所有科学的问题,即现实生活中的一切事物一切现象都进行绝对的精确化时行不通的,从而产生模糊概念。
二.模糊与精确的关系对立统一,相互依存,可互相转化。
- 精确的概念可表达模糊的意思:如“望庐山瀑布”“飞流直下三千尺,凝是银河落九天”- Fuzzy的概念也能表达精确的意思:模糊数学不是让数学变成模模糊糊的东西,而是让数学进入模糊现象这个禁区,即用精确的数学方法去研究处理模糊现象。
三. 模糊性与随机性的区别事物分确定性现象与非确定性现象- 确定性现象:指在一定条件下一定会发生的现象。
- 非确定性现象分随机现象与模糊现象* 随机性是对事件的发生而言,其事件本身有着明确的含义,只是由于发生的条件不充分,事件的发生与否有多种可能性。
* 模糊性是研究处理模糊现象的,它所要处理的事件本身是模糊的。
模糊数学的广泛应用性模糊技术是21世纪的核心技术模糊数学的应用几乎渗透到自然科学与社会科学的所有领域:1)软科学方面:投资决策、企业效益评估、经济宏观调控等。
2)地震科学方面:地震预报、地震危害分析。
模糊数学的产生发展和应用
模糊数学又称FUZZY 数学。“模糊”二字译自英文“FUZZY ”一词,该词除了
有模糊意思外,还有“不分明”等含意。有人主张音义兼顾译之为“乏晰”等。但他
们都没有“模糊”含意深刻。模糊数学是研究和处理模糊性现象的一种数学理论和
方法。
模糊数学的产生
现代数学是建立在集合论的基础上。集合论的重要意义就一个侧面看,在与
它把数学的抽象能力延伸到人类认识过程的深处。一组对象确定一组属性,人们
可以通过说明属性来说明概念(内涵),也可以通过指明对象来说明它。符合概
念的那些对象的全体叫做这个概念的外延,外延其实就是集合。从这个意义上讲,
集合可以表现概念,而集合论中的关系和运算又可以表现判断和推理,一切现实
的理论系统都可能纳入集合描述的数学框架。
但是,数学的发展也是阶段性的。经典集合论只能把自己的表现力限制在那
些有明确外延的概念和事物上,它明确地限定:每个集合都必须由明确的元素构
成,元素对集合的隶属关系必须是明确的,决不能模棱两可。在某些方面模糊是
一种基于精确的模糊是一种相对模糊,对于那些外延不分明的概念和事物,经典
集合论是暂时不去反映的,属于待发展的范畴。
在较长时间里,精确数学及随机数学在描述自然界多种事物的运动规律中,
获得显著效果。但是,在客观世界中还普遍存在着大量的模糊现象。以前人们回
避它,但是,由于现代科技所面对的系统日益复杂,模糊性总是伴随着复杂性出
现。各门学科,尤其是人文、社会学科及其它“软科学”的数学化、定量化趋向把
模糊性的数学处理问题推向中心地位。更重要的是,随着电子计算机、控制论、
系统科学的迅速发展,要使计算机能像人脑那样对复杂事物具有识别能力,就必
须研究和处理模糊性。
我们研究人类系统的行为,或者处理可与人类系统行为相比拟的复杂系统,
如航天系统、人脑系统、社会系统等,参数和变量甚多,各种因素相互交错,系
统很复杂,它的模糊性也很明显。从认识方面说,模糊性是指概念外延的不确定
性,从而造成判断的不确定性。
在日常生活中,经常遇到许多模糊事物,没有分明的数量界限,要使用一些
模糊的词句来形容、描述。比如,比较年轻、高个、大胖子、好、漂亮、善、热、
远……。在人们的工作经验中,往往也有许多模糊的东西。例如,要确定一炉钢
水是否已经炼好,除了要知道钢水的温度、成分比例和冶炼时间等精确信息外,
还需要参考钢水颜色、沸腾情况等模糊信息。因此,除了很早就有涉及误差的计
算数学之外,还需要模糊数学。
人与计算机相比,一般来说,人脑具有处理模糊信息的能力,善于判断和处
理模糊现象。但计算机对模糊现象识别能力较差,为了提高计算机识别模糊现象
的能力,就需要把人们常用的模糊语言设计成机器能接受的指令和程序,以便机
器能像人脑那样简洁灵活的做出相应的判断,从而提高自动识别和控制模糊现象
的效率。这样,就需要寻找一种描述和加工模糊信息的数学工具,这就推动数学
家深入研究模糊数学。所以,模糊数学的产生是有其科学技术与数学发展的必然
性。
模糊数学的研究内容
1965年,美国控制论专家、数学家查德发表了论文《模糊集合》,标志着
模糊数学这门学科的诞生。模糊数学的研究内容主要有以下三个方面:
第一,研究模糊数学的理论,以及它和精确数学、随机数学的关系。察德以
精确数学集合论为基础,并考虑到对数学的集合概念进行修改和推广。他提出用
“模糊集合”作为表现模糊事物的数学模型。并在“模糊集合”上逐步建立运算、变
换规律,开展有关的理论研究,就有可能构造出研究现实世界中的大量模糊的数
学基础,能够对看来相当复杂的模糊系统进行定量的描述和处理的数学方法。
在模糊集合中,给定范围内元素对它的隶属关系不一定只有“是”或“否”两种
情况,而是用介于0和1之间的实数来表示隶属程度,还存在中间过渡状态。
比如“老人”是个模糊概念,70岁的肯定属于老人,它的从属程度是 1,40岁的
人肯定不算老人,它的从属程度为 0,按照查德给出的公式,55岁属于“老”的程
度为0.5,即“半老”,60岁属于“老”的程度0.8。查德认为,指明各个元素的隶属
集合,就等于指定了一个集合。当隶属于0和1之间值时,就是模糊集合。
第二,研究模糊语言学和模糊逻辑。人类自然语言具有模糊性,人们经常接
受模糊语言与模糊信息,并能做出正确的识别和判断。
为了实现用自然语言跟计算机进行直接对话,就必须把人类的语言和思维过
程提炼成数学模型,才能给计算机输入指令,建立和是的模糊数学模型,这是运
用数学方法的关键。查德采用模糊集合理论来建立模糊语言的数学模型,使人类
语言数量化、形式化。
如果我们把合乎语法的标准句子的从属函数值定为1,那么,其他文法稍有
错误,但尚能表达相仿的思想的句子,就可以用以0到1之间的连续数来表征
它从属于“正确句子”的隶属程度。这样,就把模糊语言进行定量描述,并定出一
套运算、变换规则。目前,模糊语言还很不成熟,语言学家正在深入研究。
人们的思维活动常常要求概念的确定性和精确性,采用形式逻辑的排中律,
既非真既假,然后进行判断和推理,得出结论。现有的计算机都是建立在二值逻
辑基础上的,它在处理客观事物的确定性方面,发挥了巨大的作用,但是却不具
备处理事物和概念的不确定性或模糊性的能力。
为了使计算机能够模拟人脑高级智能的特点,就必须把计算机转到多值逻辑
基础上,研究模糊逻辑。目前,模糊罗基还很不成熟,尚需继续研究。
第三,研究模糊数学的应用。模糊数学是以不确定性的事物为其研究对象的。
模糊集合的出现是数学适应描述复杂事物的需要,查德的功绩在于用模糊集合的
理论找到解决模糊性对象加以确切化,从而使研究确定性对象的数学与不确定性
对象的数学沟通起来,过去精确数学、随机数学描述感到不足之处,就能得到弥
补。在模糊数学中,目前已有模糊拓扑学、模糊群论、模糊图论、模糊概率、模
糊语言学、模糊逻辑学等分支。
模糊数学的应用
模糊数学是一门新兴学科,它已初步应用于模糊控制、模糊识别、模糊聚
类分析、模糊决策、模糊评判、系统理论、信息检索、医学、生物学等各个方面。
在气象、结构力学、控制、心理学等方面已有具体的研究成果。然而模糊数学最
重要的应用领域是计算机职能,不少人认为它与新一代计算机的研制有密切的联
系。
目前,世界上发达国家正积极研究、试制具有智能化的模糊计算机,1986
年日本山川烈博士首次试制成功模糊推理机,它的推理速度是1000万次/秒。
1988年,我国汪培庄教授指导的几位博士也研制成功一台模糊推理机——分立
元件样机,它的推理速度为1500万次/秒。这表明我国在突破模糊信息处理难关
方面迈出了重要的一步。
模糊数学还远没有成熟,对它也还存在着不同的意见和看法,有待实践去检
验。但是模糊数学做为一个新的研究领域和新的研究方向有巨大的研究空间。