当前位置:文档之家› 镍氢镍镉电池充电器电路

镍氢镍镉电池充电器电路

镍氢镍镉电池充电器电路
镍氢镍镉电池充电器电路

隨著筆記型電腦(Note Book Personal Computer;以下簡稱為NB-PC)與各種可攜式電子產品的普及化與高性能化,使得二次電池大容量化的需求日益高漲,相對的高性能快速充電器成為無法欠缺的關鍵性附屬配備,因此接著要介紹幾種有關鎳氫/鎳鎘電池充電器電路,分別是利用0.5~1C充電電流作1~2小時的快速充電電路,以及另一種是可作鋰離子電池充電之switching方式高效率CVCC充電電路。

快速充電電路

【基本結構與功能】

圖1是典型的鎳氫電池快速充電器電路方塊圖,由圖可知它是由輸出值為0.5~1C的定電流電路、檢測電路、檢測電路、Timer電路所構成。

(a)有關檢測電路

圖2是鎳氫電池快速充電時的電池電壓特性,如圖所示當電池為滿充電狀態時鎳氫池電壓的下降比鎳鎘電池小,鎳氫電池電壓的下降大約是10mV左右,充電電流越低,電壓的下降幅度也越少,除此之外電壓的下降幅度,會隨著電池溫度改變不斷變化。

(b)有關檢測電路

圖3是鎳氫電池快速充電時的電池溫度特性。通常電池溫度達到時就

被視為滿充電,為了要正確量測電池溫度,因此溫度感應器必需密貼於電池。

(c)有關保護電路

檢測電路或是檢測電路未動作時,快速充電電路必需設置保護Timer、定電流電路、檢測電路、檢測電路的功能,避免充電電路發生過充電,如果充電異常時還可自動切斷(shut down)電源。

(d)有關溫度檢測電路

對快速充電的二次電池而言,電池充電時的電池溫度管理非常的重要,一般認為最佳充電效率時的周圍溫度約為。如果連續過充電時電池的溫度會升高,溫度檢測電路會偵測異常溫度並切斷電源。值得一提的是快速充電時,必需在電池廠商提供的cut off溫度範圍內停止快速充電,

(e)有關過電壓保護電路

快速充電器除了Timer電路與溫度檢測電路之外,還需要監控電池的電壓,隨時檢測異常電壓。雖然鎳氫電池的公稱電壓為1.2V,不過充電時電池的電壓可高達1.8V/ cell遠比公稱電壓還高,因此當電池呈現異常狀態時由於內部阻抗增加,電池的電壓會上升至2.0V,此時必需將它視為異常電池立即停止快速充電。此外電池內部發生短路,即使繼續施加充電電流電池的電壓仍未上升時,也必需立即停止快速充電。

Timer電路主要是管理電池的充電時間與禁止檢測的時間。由於事先已經設定充電時間的上限值,因此祇要超過設定充電時間便自動切斷電源。進行快速充電時必需使用可作快速充電的電池,雖然標準充電不太可能在充電管理環境下發生過度充電,不過由於快速充電時充電電流相當大,因此電池經常發生電池漏液、發熱、破裂、使用壽命降低等問題。

雙鎳氫電池串聯快速充電電路

圖4是快速充電電路的結構圖,快速充電電路的設計規格如下所示:

?電池種類:鎳氫電池(快速充電型,1500mAH/cell)。

?電池數量:兩個串聯。

?充電電流:870mA。

?輸入電壓:12V。

?檢測滿充電方式: 方式。

?最大充電時間:120分。

?有關充電控制IC的特性

充電控制IC為SM6781BV,它可同時支援鎳氫與鎳鎘二次電池兩者的特性,圖5是SM67 81BV IC內部結構方塊圖,表1與表2分別是SM6781BV IC端子的功能與電氣特性。檢測電壓為-4mV,禁止檢測時間為15分,Timer時間(最大充電時間)如表3所示,利用TIME端子可作80/120/240分三種設定,此外還可依照電池的定格容量與快速充電電流的狀況,作適當的充電時間設定。

圖6是SM6781BV IC的動作流程,具體流程分別如下所示:

(a)初期化

開啟電源或是解除待機模式後,便開始進行初期化,初期化動作結束後自動確認BATT端子與INH端子的輸入電壓,如圖4所示在BATT端子將電池電壓以外部電阻分壓,再輸入各cell的電壓。

(b)檢查電池電壓

初期化動作結束後確認常時BATT端子的輸入電壓,如果超過容許範圍便立即停止快速充電,容許範圍如下所示:

超過容許範圍時timer電路會停止動作,如果BATT端子的電壓在容許範圍內,便重新啟動快速充電與Timer的count。此外若將從電池切割再與連線時就成為待機模式。

(c)檢測

內建10位元解析能力的A-D轉換器,每隔2.34秒將BATT端子的輸入電壓sampling。檢測與檢測峰值電壓時是以8次取樣資料(sampling data)計算其平均值,檢測電路是當電池電壓連續兩次比峰值電壓低於4 時才會動作,同時它還會判定電池呈滿充電狀態。開始動作後15分為禁止檢測時間,因此此時

無法檢測峰值電壓。

(d)中斷充電

若將INH端子當作H level時便會停止快速充電,移至如圖6(c)的右側動作流程(flow)。若將INH端子與溫度Switch連線時就可控制溫度。

(e)有關五種充電模式

如表4所示SM6781BV IC具有五種動作狀態,它可根據BATT端子與INH端子的電壓,以及快速充電是否結束的條件決定充電模式。內部Timer祇會在快速充電模式時繼續進行count。檢測電路祇會在快速充電模式時,進行電池電壓檢測與峰值hold。峰值電壓在下列條件時會自動Reset:

?INH端子為H時。

?利用中斷快速充電與check電池NG,繼續保留快速充電時。

(f)有關最大充電時間的設定

最大充電時間可由電池定格容量與充電電流兩者

關係求得:

假設TIME端子電壓為,則timer時間可設定為120分。

(g)有關充電cell的設定

由於本設計是雙電池快速充電的電路,因此利用如圖4所示,以R

4與R

5

會將電池電壓分壓並輸入至

BATT端子。此外由於檢測電路必需檢測mV等級微弱電壓,因此利用R

11與C

4

以LPF消除噪訊

(noise)。

(h)有關定電留電路

定電留電路是由series Regulator IC

3所構成,IC

3

的輸出端子與接地端子之間的5V電壓非常穩定,因

此充電電流I

chg

(A)可由下式求得:

可快速充電狀態時GHGN端子成為高阻抗輸出,此時T

r2為OFF,T

r1

為ON。結束快速充電或是中斷快速

充電時,GHGN端子成為L,T

r2成為ON,T

r1

成為OFF,T

r3

成為OFF,從V

in

藉由的trickle充電電流

開始流動。二次電池即使是未連接負載,電池容量也會因自我放電逐漸減少,因此補充減少的容量稱為trickle充電。

(i)有關確認充電動作

首先將二次電池裝妥接著開啟電源,如果BATT端子電壓V

batt

是在容許範圍內,且INH端子電壓為L

level時,LED D

1會點燈開始快速充電;如果V

batt

超過容許範圍或是INH端子電壓為H level時,D

1

點滅同時停止快速充電;如果充電中二次電池跳脫時,就會成為待機狀態D

1

則自動熄燈,直到二次電池再度被裝妥才會解除待機狀態,並進行初期化IC開始動作。圖7是充電氣的充電特性。

如何提高充電電路的性能

?注意接觸阻抗

電池case或是電池本身污穢都是造成電池接觸阻抗增加的直接原因,電池接觸阻抗變大時,會造成電壓大幅下降等問題,電池電壓加上該電位差的電壓被輸入IC,導致即使電池都很正常卻被誤判為異常。此外如果加上振動時接觸阻抗會產生變化,並觸動-?V 檢測電路開始動作,進而中斷快速充電。除此之外接觸阻抗還會影響放電作業,主要原因是充電後一段時間內,機器往往會認為電池的電壓仍處於無法動作的level。

?結束充電後不可立即再充電

電池的電壓從不穩定的充電作業開始數分鐘內無法檢測-?V ,因此一旦結束充電後立即再充電,數分鐘內會成為過充電狀態,過充電對二次電池而言相當危險,嚴重時會造成二次電池漏液、發熱、破裂、使用壽命降低等問題。

?使用低容量分佈的二次電池

-?V檢測電路是根據電池的平均值作判斷,電池串聯充電各電池空容量若有容量分佈不均分時,部份電池可能會發生過充電;放電時容量最少的電池會發生轉極現象進而導致電池破損。

高效率Switching方式之DC-DC充電器電路

利用泛用電源IC製作CVCC控制的鎳氫/鎳鎘/鋰離子二次電池充電器電路】

(a)電路結構

如圖8所示CVCC 充電電路使用富士通的泛用電源IC MB3759控制晶片,該晶片可支援鎳氫/鎳鎘/鋰離子二次電池特性,詳細規格如下所示:

?輸出電壓:12.6v(可變)。

?輸出電流:1300mA/400mA(可切換)。

?cell 數量:串聯鎳氫二次電池最多8個。

串聯鋰離子二次電池最多3個。

輸出電壓利用 R 87, R 88與 VR 1設定,增加 R 88可提高輸出電壓。輸出電流是藉由MAINCHG 信號的ON/OFF ,可任意切換成1300mA 與400mA 兩種模式,雖然輸出電流可用 R 82、R 83、 R 84、 R 85、R 86 調整,不過作業上相當煩瑣。因此不建議使用這種方式。MB3759控制晶片具有如下的特徵:

①error Amplifier 兩者的輸入會流至IC 外部。

②雖然 V ref 高達5V ,不過會流至IC 外部,因此可用阻抗分割方式獲得基準電壓。

③具有兩個結構相同的error Amplifier ,因此可同時作定電流控制與定電壓控制。由於泛用電源IC MB3759控制晶片具有上述特徵,因此可構成定電流DC-DC 轉換器。

(b)定電流DC-DC 轉換器專用的控制IC

定電流輸出的DC-DC 轉換器是用阻抗將輸出電壓分壓,接著feed back 至error Amplifier 穩定輸出電壓,也就是說控制IC 的error Amplifier 輸出電壓變成與內部基準電壓相同後才開始動作,而基準電壓祇有1.25V 左右,控制IC 利用上述方式構成定電流DC-DC 轉換器,同時使電流檢測阻抗兩端的電壓成

1.25V 後開始動作。檢測阻抗的損失即使輸出電流祇有1A 時都高達1.25W ,如果考慮容許電力損失與error Amplifier 的電壓檢測精度時,利用電流檢測阻抗的電壓低100mA 是妥當的設計。

如圖9所示MB3759控制晶片內建獨立的Regulator ,基準電壓是從第14Pin 輸出,如果用阻抗將該輸出作分壓時,便可獲得1.25V 以下的基準電壓。此外由於電流檢測阻抗未含電力stress ,因此可獲得高精度的電流檢測。

【利用專用電源IC 製作CVCC 控制的鎳氫/鎳鎘/鋰離子二次電池充電器電路】

如圖10所示CVCC 充電電路使用富士通的專用電源IC MB3813A 控制晶片,該晶片可支援鎳氫/鎳鎘/鋰離子二次電池特性,詳細規格如下所示:

?輸出電壓:12.6v(固定)。

?輸出電流:1300mA/400mA(可切換)。

?cell 數量:串聯鎳氫二次電池最多8個。

串聯鋰離子二次電池最多3個。

最大輸出電流 I omax 祇需在 V in2端子施加電壓就可成為可變方式,最大輸出電流I omax 可由下式求得:

雖然圖10的CVCC 充電電路結構比圖8的電路簡易不過動作卻完全相同,該電路可支援鎳氫/鎳鎘/鋰離子二次電池的充電特性,而MB3813A IC 則是專為定電壓定電流充電器電路設計的控制晶片,MB3813A IC 最大特徵是祇需改變定電流控制用error Amplifier 的基準電壓,就可任意改變輸出電流,例如祇需將D-A 轉換器與 V in2連接,就可以用數位控制輸出電流。

镍氢电池充电器电路图及原理分析

镍氢电池充电器电路图及原理分析 镍氢电池充电器原理图:由LM324组成,用TL431设置电压基准,用S8550作为调整管,把输入电压降压,对电池进电行充电,电路附图所示.其工作原理是: 1.基准电压Vref形成 外接电源经插座X、二极管VD1后由电容C1滤波。VD1起保护作用,防止外接电源极性反接时损坏TL431。R3、R4、R5和TL431组成基准电压Vref,根据图中参数Vref= 2.5×(100+820)/820=2.80(v),这个数据主要是针对镍氢充电电池而设计(单节镍氢充电电池充满后电压约 为1.40V)。 2.大电流充电 (1)工作原理 接入电源,电源指示灯LED(VD2)点亮。装入电池(参考图片,实际上是用导线引出到电池盒,电池装在电池盒中),当电池电压低于Vref时,IC1-1输出低电平,VT1导通,输出大电流给电池充电。此时,VT1处于放大状态-这是因为电池电压和-VD4压降的和约为3.2V(假设开始充 电时电池电压约为2.5V),而经VD1后的电压大约5.OV,所以,VT1的发射极-集电极压差远大于0.2V,当充电电流为300mA时,VT1发热比较严重,所以最好用PT=625mW的S8550,或者适当增大基极电阻以减小充电电流(注:由于LM324低电平驱动能力较小,实测IC1-2,IC1-4输出低电平并不是0V,而是约为0.8V)。 (2)充电的指示 首先看IC1-3的工作情况:其同相端1O脚通过R13接Vref,R14接成正反馈,反相端9脚外接电容,并有一负反馈通路,所以,它实际上构成了滞回比较器。刚开始时C2上端没有电压,则IC1-3输出高电平。这个高电平有两个放电通路,一个通路是通过R14反馈到10脚,另一通路是经电阻R15对电容C2充电,当充电的电压高于10脚电压V+ 时,比较器翻转输出低电平;与此同时,由于R14的反馈作用,10脚电压立即下跳到V-,这时,电容C2通过电阻R15放电,当放电的电压小于10脚电压V-时,比较器再次翻转输出高电平,由于R14的反馈作用,10脚电压立即上跳到V+,此后电路一直重复上述过程,因此,IC1-3的输出为频率固定的方波信号。 其次看IC1-4的工作情况:电池电压经R2、R16分压,接IC1-4的12脚,因为R2<

镍氢充电电池正确的使用方法

镍氢电池正确的使用方法: 1、新电池一般经过三到五次充放电循环容量才可达到最高值。 2、原则上采取:充满---用完---充满。 3、电池的正负级保持干净,有利于正常使用和充电。 4、请勿将新旧电池、充电状态不同、容量、种类、品牌不同的电池放在一起充电。 1、充电电池能使用多久?一般能反复充电多少次?答:充电电池使用时间视电池容量和所使用对象的耗电功率而定,在不知道耗电功率的情况下很难估算使用时间。反复充电次数与充电器质量、充电电池质量、充电是否正确有关,理论上充电电池可反复充电1000次,但由于其他原因,一般好质量的充电电池使用700-800次的样子,一般质量的300-500次,不良品或者充电不正确一般在300次以下。 2、会对MP 3、数码相机有损坏吗?答:充电电池的电流是以毫安计算,使用过程中不会对MP3、数码相机产品造成任何损坏。 3、新买的镍氢充电电池需要先充电吗?答:是否需先充视情况而定,最简单的方法就是放进用电器中试一下,如有电就先使用完。新电池头3-5次使用时,最好用慢充充电,并且充电时间可以略微长10%,这样对激活电池有利。 4、如何长时间保存镍氢电池?答:对于想长期不用的镍氢电池,要从电器中取出,然后充满电再存放。方便的话最好每1-2个月使用一次。 5、充电器都是通用的吗?答:基本上都是通用的,但如果你使用的是快充或者极速充的话就请注意(充电电流300MA以上为快充,500MA以上为极速充),这是因为新电池(或者长期未使用的电池)的充电特性曲线和正常使用的电池的充电特性曲线不同,这种不同快充和极速充判断电池是否充满往往会出现失误,经常会出现以下两种现象,一是电池已经充满,但充电器认为电池没有充满而继续充电,会对电池造成部分损坏。二是电池没有充满的时候,快充就认为电池已经充满了,而停止充电了,对电池的激活(到达最大容量)不利,所以快充的说明书上面都说,对新电池的充电可以在充满后仍然充电2-3次就是这个原因。实际使用时我们也可以发现,将用快充充满的新电池,再充电的时候,电池仍然可以充电很长的时间,而用经常使用的电池,再充满后,再充电,一般几十分钟左右充电器就停止充电了,也是这个道理。

镍镉镍氢电池的原理及充电方法

镍镉/镍氢电池的原理及充电方法 镍镉/镍氢电池的发展 1899年,Waldmar Jungner在开口型镍镉电池中,首先使用了镍极板,几乎与此同时,Thomas Edison 发 明了用于电动车的镍铁电池。遗憾的是,由 于当时这些碱性蓄电池的极板材料比其它蓄电池的村料贵得多,因此实际应用受到了极大的限制。 后来,Jungner的镍镉电池经过几次重要改进,性能明显改善。其中最重要的改进是在1932年,科学家在 镍电池中开始使用了活性物质。他们将活性 物质放入多孔的镍极板中,然后再将镍极板装入金属壳内。镍镉电池发展史上另一个重要的里程碑是1947 年密封型镍镉电池研制成功。在这种电池中 ,化学反应产生的各种气体不用排出,可以在电池内部化合。密封镍镉电池的研制成功,使镍镉电池的应 用范围大大增加。 密封镍镉电池效率高、循环寿命长、能量密度大、体积小、重量轻、结构紧凑,并且不需要维护,因此在 工业和消费产品中得到了广泛应用。 随着空间技术的发展,人们对电源的要求越来越高。70年代中期,美国研制成功了功率大、重量轻、寿命 长、成本低的镍氢电池,并且于1978年成功 地将这种电池应用在导航卫星上,镍氢电池与同体积镍镉电池相比,容量可提高一倍,而且没有重金属镉 带来的污染问题。它的工作电压与镍镉电池 完全相同,工作寿命也大体相当,但它具有良好的过充电和过放电性能。近年来,镍氢电池受到世界各国 的重视,各种新技术层出不穷。镍氢电池刚 问世时,要使用高压容器储存氢气,后来人们采用金属氢化物来储存氢气,从而制成了低压甚至常压镍氢 电池。1992年,日本三洋公司每月可生产 200万只镍氢电池。目前国内已有20多个单位研制生产镍氢电池,国产镍氢电池的综合性能已经达到国际 先进水平。 蓄电池参数 蓄电池的五个主要参数为:电池的容量、标称电压、内阻、放电终止电压和充电终止电压。电池的容量通 常用Ah(安时)表示,1Ah就是能在1A的电流 下放电1小时。单元电池内活性物质的数量决定单元电池含有的电荷量,而活性物质的含量则由电池使用 的材料和体积决定,因此,通常电池体积越

常用几种充电电池基本常识

常用几种充电电池基本常识 作者:d2010ch来源:本站原创发布时间:2009-11-220:35:03[收藏][评论] 常用几种充电电池基本常识 一、充电电池简介 充电电池的种类 镍镉电池(Ni-Cd) 电压:1.2V 使用寿命为:500次 放电温度为:-20度~60度 充电温度为:0度~45度 备注:耐过充能力较强。 镍氢电池(Ni-Mh) 电压:1.2V 使用寿命为:1000次 放电温度为:-10度~45度 充电温度为:10度~45度 备注:目前最高容量是2100mAh左右。 锂离子电池(Li-lon) 电压:3.6V 使用寿命为:500次 放电温度为:-20度~60度 充电温度为:0度~45度 备注:重量比镍氢电池轻30%~40%,容量高出镍氢电池60%以上。但是不耐过充,如果过充会造成温度过高而破坏结构=>爆炸。 锂聚合物电池(Li-polymer) 电压:3.7V 使用寿命为:500次 放电温度为:-20度~60度 充电温度为:0度~45度 备注:锂电的改良型,没有电池液,而改用聚合物电解质,可以做成各种形状,比锂电池稳定。 铅酸电池(Sealed) 电压:2V 使用寿命为:200~300次 放电温度为:0度~45度 充电温度为:0度~45度

备注:就是一般车用电瓶(它是以6个2V串联成12V的),免加水的电池使用寿命长达10年,但体积和最量是最大的。 二、电池充电的名词解释 充电率(C-rate) C是Capacity的第一个字母,用来表示电池充放电时电流的大小数值。 例如:充电电池的额定容量为1100mAh时,即表示以1100mAh(1C)放电时间可持续1小时,如以2 00mA(0.2C)放电时间可 持续5小时,充电也可按此对照计算。 终止电压(Cut-off discharge voltage) 指电池放电时,电压下降到电池不宜再继续放电的最低工作电压值。 根据不同的电池类型及不同的放电条件,对电池的容量和寿命的要求也不同,因此规定的电池放电的终止电压也不相同。 开路电压(Open circuit voltage OCV) 电池不放电时,电池两极之间的电位差被称为开路电压。 电池的开路电压,会依电池正、负极与电解液的材料而异,如果电池正、负极的材料完全一样,那么不管电池的体积有多大,几何结构如何变化,起开路电压都一样的。 放电深度(Depth of discharge DOD) 在电池使用过程中,电池放出的容量占其额定容量的百分比,称为放电深度。 放电深度的高低和二次电池的充电寿命有很深的关系,当二次电池的放电深度越深,其充电寿命就越短,因此在使用时应尽量避免深度放电。 过放电(Over discharge) 电池若是在放电过程中,超过电池放电的终止电压值,还继续放电时就可能会造成电池内压升高,正、负极活性物质的可逆性遭到损坏,使电池的容量产生明显减少。 过充电(Over charge) 电池在充电时,在达到充满状态后,若还继续充电,可能导致电池内压升高、电池变形、漏夜等情况发生,电池的性能也会显著降低和损坏。 能量密度(Energy density) 电池的平均单位体积或质量所释放出的电能。 一般在相同体积下,锂离子电池的能量密度是镍镉电池的2.5倍,是镍氢电池的1.8倍,因此在电池容量相等的情况下,锂离子电池就会比镍镉、镍氢电池的体积更小,重量更轻。 自我放电(Self discharge) 电池不管在有无被使用的状态下,由于各种原因,都会引起其电量损失的现象。 若是以一个月为单位来计算的话,锂离子电池自我放电约是1%-2%、镍氢电池自我放电约3%-5%。 充电循环寿命(Cycle life) 充电电池在反复充放电使用下,电池容量回逐渐下降到初期容量的60%-80%。

笔记本电池保护电路知识

笔记本电池保护电路知识 现在的笔记本电池都是所谓智能(smart battery)的了,她能告诉电脑:我现在还剩余多少容量,现在的电压是多少,电流是多少,按现在的放电速率我还能用多长时间,我是否该充电了,充电应该用多大的电流、电压,充电是否充过头了,放电是否放过头了,温度是否过高,等等。电池要提供这些所谓的智能信息,就要在电池中增加一个电路。这个电路通常都使用现成的专用芯片,如最流行的BQ系列芯片:BQ2060A,BQ2083,BQ2085,BQ2040等,这些芯片检测流入和流出电芯的电流,算出上面所谓的智能信息。 这个电路还要增加一个功能:保护功能。上面说了电路能检测出充电是否充过头了,放电是否放过头了。既然知道充过头了,就要使充电电源充不到电芯上去;放电放过头了,就要切断电芯对外放电。温度过高了,就要是电池停下来。这就是所谓的保护功能。 最后一个功能就是通讯,电池准备了这些信息,总要发送出去吧。所以通讯少不了。 按上所说,通常的电池其实主要是检测部分,能检测出来信息,保护功能实现自然简单,无非是开关而已。 当然有的电池将充电部分做到电池里面去了,如COMPAQ 笔记本电脑的不少电池都是如此。 先不必看BQ2060是如何检测那些智能信息的,先看BQ2060都检测出了哪些信息?这些检测出来的信息存放在什么地方了?在BQ2060的DATASHEET 中,有个Table 3. bq2060 Register functions,这里存放了BQ2060检测出来智能信息的。这些信息就是所谓的Smart Battery Data(智能电池数据),它们都被定义成标准了(见Smart Battery Data Specfication)。 BQ2050中检测出来的信息没有这么丰富,它不符合这个标准。BQ2040,BQ2083,BQ2085都符合这个标准,检测出来的信息也是这些。 下面解释一下BQ2060检测出来信息的意思。 1. 静态信息:静态信息不是检测出来的,而是生产厂家自己写进去的,它一般写在24C01中,BQ2060从24C01中读到它自己里面去。ManufactureDate, ManufactureName, DeviceName, Devicechemistry, SpecificationInfo, DesignVoltage, DesignCapacity,RemainingCapacityAlarm, RemainingTimeAlarm, BatteryMode。这些信息不言自明。 2.动态信息:动态信息中有些是检测出来的,有些是纯粹计算出来的,目的就是免去用户自己计算了。检测的:Voltage, Current, Temperature, AverageCurrent, RemainingCapacity, FullChargeCapacity, BatteryStatus。计算的:RelativeStateOfCharge, AbsoluteStateOfCharge, RunTimeToEmpty, AverageTimeToEmpty, AverageTimeToFull, CycleCount.。信息ChargingVoltage, ChargingCurrent 告诉充电器应该用多大的充电电流给它充电,在多大的电压处应该变成恒压充电。AtRate, AtRateTimeToFull, AtRateTimeToEmpty, AtRateOK 纯粹是帮用户计算信息用的。 3.每个厂家的特定信息:标准Smart Battery Data Specfication之外的一些信息。这些信息只有5项,不同厂家不一样,对于BQ2060就是VCELL1-4和PackConfigureation。对于BQ2085,PackConfigureation的意义就和BQ2060不大一样。

镍氢充电电池的使用方法

镍氢充电电池的使用方法 1.一般情况下,新的镍氢电池只含有少量的电量,大家购买后要先进行充电然后再使用。但如果电池出厂时间比较短,电量很足,推荐先使用然后再充电。.新买的镍氢电池一般要经过3-4次的充电和使用,性能才能发挥到最佳状态,很多朋友第一次充电碰到的小问题,比方第一次充电后使用时间没有想象的那么多。在3-4次充电和使用后问题就都迎刃而解了。 2.虽然镍氢电池的记忆效应小,仍然推荐大家尽量每次使用完后再充电,并且是一次性充满,不要充一会用一会然后再充。这可是“延年益寿”的重要一点噢。电池充电时,要注意充电器周围的散热,为了避免电量流失等问题发生,保持电池两端的接触点和电池盖子的内部干净,必要时使用柔软、清洁的干布轻擦。 3长时间不用的时候,记得把电池从电池仓中取出,置于干燥的环境中推荐放入电池盒中,可以避免电池短路。长期不用的镍氢电池会在存放几个月后,电池自然进入一种“休眠”状态,电池寿命大大降低。如果镍氢电池已经放置了很长的时候,建议你先用慢充进行充电为宜。、因为:据测试,镍氢电池保存的最佳条件是带电80%左右保存。这是因为镍氢电池的自放电较大(一个月10%-15%左右),如果电池完全放电后再保存,很长时间内不使用,电池的自放电现象就会造成电池的过放电,会损坏电池。不信?那你想一想新买的镍氢充电电池是不是都还有电的,其中就是这个道理。建议:多比较,纠正错误的观点,从正确的方向入手保养电池,否则会事与愿违。 4.对镍氢进行放电。专家建议,尽量不要对镍氢电池进行过放电,过放会导致充电失败,这样做的危害远远大于镍氢电池本身的记忆效应!.万用表自检电池充满与否。一般镍氢电池在充电前,电压在1.2V以下,充满后正常电压在1.4V左右。大家以此判断,也就很容易判断电池的状态了。 5.充电器主要分为快充和慢充。慢充电流小,通常在200mA左右,比如我们常见的充电电流是在160mA左右。她的充电时间长,充电1800mAh的镍氢电池要16个小时左右。时间虽然是慢了些,可是充电会充的很足,并且不伤电池。快充电流通常都在400mA以上,充电时间明显减少很多,3-4个小时就可以搞定,也赢得了大家的喜爱。快充种类很多,价格不一。所以大家也常常有疑问,同是快充,价格为什么相差甚大呢?好的充电器特别是好的快充都带有防过度充电保护功能的,比方我们常见的松下极品充电器BQ390在这方面表现尤为出色,优秀的芯片软件设计能力在对电池充电时,也把快充对电池的伤害降到了最低。 6.矛盾出现:慢充不伤电池但是充电时间太长;快充可以节省时间,但对电池有伤害,即使是目前世面上最好的松下极品充电器BQ390也只能很好的降低伤害程度,但不可完全避免。解决矛盾的方法就是要买一个快充和一个慢充。用快充充一段时间,比方5、10次之后,改用慢充充电一两次。这样就又把电池的性能恢复到最佳状态。电池使用时一般都是电池组,就是4节或6节串联起来,这时候,保持每节电池的平衡就很重要了,否则因为其中的一节电池问题而影响整个电池组的工作。首先要保证电池容量一致,最好选择相同牌子相同型号同时购买的电池。然后,要保持电池内部的电量一致,简单的说,就是电池组的电要么都是满的,要么都是空的。如果有比较多的电池组成若干组电池组,可以试着“精选”一下。具体就是说,将容量、电压等参数相近的电池单体串联成一组电池组,由于条件不足,一般情况下测一下放完点后的电压和冲好电的电压就可以了。 7.高档的NI-MH充电器用的是-DELTAV检测电池电压来判断电池是否充满。电池充电时的电压曲线和放电时有点相似,开始时是比较快的上升,之后缓慢上升,等到充好的时候,电压又开始快速下降,只是下降的幅度不是很大。之前常用的镍镉电池也类似,只是下降的速度和幅度比NI-MH都大。而市场上最多的充电器(比较便宜的那种)常常用的就是衡压充电,

镍氢充电电池使用和保养

镍氢充电电池使用和保养 1.一般情况下,新的镍氢电池只含有少量的电量,大家购买后要先进行充电然 后再使用。但如果电池出厂时间比较短,电量很足,推荐先使用然后再充电。 2.新买的镍氢电池一般要经过3-4次的充电和使用,性能才能发挥到最佳状态,很多朋友第一次充电碰到的小问题,比方第一次充电后拍片数量没有想象的那 么多。在3-4次充电和使用后就都迎刃而解了。 3.虽然镍氢电池的记忆效应小,仍然推荐大家尽量每次使用完后再充电,并且 是一次性充满,不要充一会用一会然后再充。这可是“延年益寿”的重要一点噢。 4.电池充电时,要注意充电器周围的散热,太刻意用什么风扇吹没有什么必要,但要注意的是充电器周围不要放置太多杂物。普通用户在使用电池的过程中, 电池往往没有专用的存放包;用户在替换电池后,会习惯性的把电池随手放好,而不管所放的地方是否干净、潮湿。这样的后果就是电池容易弄脏、触点易与 金属?比如钥匙等接触、容易受潮,而这些都是电池的大敌。建议:用户应该设置一个电池专用放置点,并保持电池的清洁。为了避免电量流失等问题发生,保持电池两端的接触点和电池盖子的内部干净,必要时使用柔软、清洁的干布 轻擦。 5.长时间不用的时候,记得把电池从电池仓中取出,置于干燥的环境中推荐放 入牌电池盒中,可以避免电池短路。 6.长期不用的镍氢电池会在存放几个月后,电池自然进入一种“休眠”状态,电 池寿命大大降低。如果镍氢电池已经放置了很长的时候,建议你先用慢充进行 充电为宜。、因为:据测试,镍氢电池保存的最佳条件是带电80%左右保存。这是因为镍氢电池的自放电较大(一个月10%-15%左右),如果电池完全放 电后再保存,很长时间内不使用,电池的自放电现象就会造成电池的过放电, 会损坏电池。不信?那你想一想新买的镍氢充电电池是不是都还有电的,其中 就是这个道理。建议:多比较,纠正错误的观点,从正确的方向入手保养电池,否则会事与愿违。 7.对镍氢进行放电。专家建议。尽量不要对镍氢电池放电,过放会导致充电失败,这样做的危害远远大于镍氢电池本身的记忆效应! 8.万用表自检电池充满与否。一般镍氢电池在充电前,电压在1.2V以下,充 满后正常电压在1.4V左右。大家以此判断,也就很容易判断电池的状态了。

锂电池充电电路详解

锂电池充电电路图 锂电池是继镍镉、镍氢电池之后,可充电电池家族中的佼佼者.锂离子电池以其优良的特性,被广泛应用于: 手机、摄录像机、笔记本电脑、无绳电话、电动工具、遥控或电动玩具、照相机等便携式电子设备中。 一、锂电池与镍镉、镍氢可充电池: 锂离子电池的负极为石墨晶体,正极通常为二氧化锂。充电时锂离子由正极向负极运动而嵌入石墨层中。放电时,锂离子从石墨晶体内负极表面脱离移向正极。所以,在该电池充放电过程中锂总是以锂离子形态出现,而不是以金属锂的形态出现。因而这种电池叫做锂离子电池,简称锂电池。 锂电池具有:体积小、容量大、重量轻、无污染、单节电压高、自放电率低、电池循环次数多等优点,但价格较贵。镍镉电池因容量低,自放电严重,且对环境有污染,正逐步被淘汰。镍氢电池具有较高的性能价格比,且不污染环境,但单体电压只有1.2V,因而在使用范围上受到限制。 二、锂电池的特点: 1、具有更高的重量能量比、体积能量比; 2、电压高,单节锂电池电压为3.6V,等于3只镍镉或镍氢充电电池的串联电压; 3、自放电小可长时间存放,这是该电池最突出的优越性; 4、无记忆效应。锂电池不存在镍镉电池的所谓记忆效应,所以锂电池充电前无需放电; 5、寿命长。正常工作条件下,锂电池充/放电循环次数远大于500次; 6、可以快速充电。锂电池通常可以采用0.5~1倍容量的电流充电,使充电时间缩短至1~2小时; 7、可以随意并联使用; 8、由于电池中不含镉、铅、汞等重金属元素,对环境无污染,是当代最先进的绿色电池; 9、成本高。与其它可充电池相比,锂电池价格较贵。 三、锂电池的内部结构: 锂电池通常有两种外型:圆柱型和长方型。 电池内部采用螺旋绕制结构,用一种非常精细而渗透性很强的聚乙烯薄膜隔离材料在正、负极间间隔而成。正极包括由锂和二氧化钴组成的锂离子收集极及由铝薄膜组成的电流收集极。负极由片状碳材料组成的锂离子收集极和铜薄膜组成的电流收集极组成。电池内充有有机电解质溶液。另外还装有安全阀和PTC元件,以便电池在不正常状态及输出短路时保护电池不受损坏。 单节锂电池的电压为3.6V,容量也不可能无限大,因此,常常将单节锂电池进行串、并联处理,以满足不同场合的要求。字串5 四、锂电池的充放电要求; 1、锂电池的充电:根据锂电池的结构特性,最高充电终止电压应为4.2V,不能过充,否则会因正极的锂离子拿走太多,而使电池报废。其充放电要求较高,可采用专用的恒流、恒压充电器进行充电。通常恒流充电至4.2V/节后转入恒压充电,当恒压充电电流降至100mA 以内时,应停止充电。 充电电流(mA)=0.1~1.5倍电池容量(如1350mAh的电池,其充电电流可控制在135~2025mA之间)。常规充电电流可选择在0.5倍电池容量左右,充电时间约为2~3小时。 2、锂电池的放电:因锂电池的内部结构所致,放电时锂离子不能全部移向正极,必须保留一部分锂离子在负极,以保证在下次充电时锂离子能够畅通地嵌入通道。否则,电池寿命就相应缩短。为了保证石墨层中放电后留有部分锂离子,就要严格限制放电终止最低电压,也就是说锂电池不能过放电。放电终止电压通常为3.0V/节,最低不能低于2.5V/节。电池放

镍氢电池快速充电器方案

镍氢电池快速充电器V1.1 一、充电器的特点 1、本充电器由一个充电器和一个低压直流电源组成,低压直流电源可以使 用普通变压器、开关电源或汽车12V电源。当使用开关电源时,也可以和充电器做在同一块PCB上从而使快速充电器的组成更加简洁。 2、适用于1到4节AA/AAA电流的充电。 3、安全可靠的防过充和防过热保护。 4、高速PWM技术、全贴片元件,从而成本更低、体积更小。 5、特有的补电模式,保护放电过度的电池。 6、四组完全独立的充电控制: 智能选择合适充电电流,适应不同容量电池的充电。 可适应不同厂家的镍氢电池 四组电池可以任意组合 采用负电压斜率(-ΔV)检测 过热检测和计时两种方式的防过充双重保护 二、参数说明 1、最大快充电流1.8A 2、各种模式下充电电流 充电方式充电电流 涓流模式 60mA 补电模式 450mA 快充模式 450-1800mA 3、支持1-4节电池的任意组合 4、支持不同容量的电池任意组合快充 5、支持电池在任意时间加入或离开充电队列。 6、理论充电时间 种类型号容量(mAh) 理论时间 Ni-MH AA 1300 43min Ni-MH AA 1600 53min Ni-MH AA 2100 70min 说明: (1)、对1600mAh以下容量的电池,如果只支持1C充电,则充电时间为60 分钟左右,本充电器可以自动选择合适的充电电流。 (2)、充电时间还受电池的放电深度影响,如果电池放电程度过深,充电时间 也会变长。

三、测试数据 1、不同容量电池混合充电测试数据 种类型号容量(mAh) 实际时间 Ni-MH AA 1300 52min Ni-MH AA 1600 55min Ni-MH AA 2100 77min 说明: (1)、由于市场上购买的1300mAh电池只支持1C充电,充电器自动调整充电 电流,因此充电时间在一小时左右。 2、容量电池(1600mAh、2100mAh)充电测试数据 型号标称容量 (mAh) 快充时间 (min) 电池温度 (℃) 放电容量 (mAh) 充饱程度 AA 1300 49 60 1108 85.23% AA 1800 71 60 1470 81.67% AA 2000 74 60 1616 80.8% 说明: (1)、放电容量测试方法:以1.0A恒流放电,放电到电池端电压为1.0V 时停止放电所测量出的放电容量。 (2)、上面的数据只是比较快充的效果,因此没有做快充后的涓流充电。 四、附录 a) 原理图 b) PCB零件布置

锂电池过充电_过放_短路保护电路详解

该电路主要由锂电池保护专用集成电路DW01,充、放电控制MOSFET1(内含两只N沟道MOSFET)等部分组成,单体锂电池接在B+和B-之间,电池组从P+和P-输出电压。充电时,充电器输出电压接在P+和P-之间,电流从P+到单体电池的B+和B-,再经过充电控制MOSFET到P-。在充电过程中,当单体电池的电压超过4.35V时,专用集成电路DW01的OC脚输出信号使充电控制MOSFET关断,锂电池立即停止充电,从而防止锂电池因过充电而损坏。放电过程中,当单体电池的电压降到2.30V时,DW01的OD脚输出信号使放电控制MOSFET关断,锂电池立即停止放电,从而防止锂电池因过放电而损坏,DW01的CS脚为电流检测脚,输出短路时,充放电控制MOSFET的导通压降剧增,CS脚电压迅速升高,DW01输出信号使充放电控制MOSFET迅速关断,从而实现过电流或短路保护。 二次锂电池的优势是什么? 1. 高的能量密度 2. 高的工作电压 3. 无记忆效应 4. 循环寿命长 5. 无污染 6. 重量轻 7. 自放电小 锂聚合物电池具有哪些优点? 1. 无电池漏液问题,其电池内部不含液态电解液,使用胶态的固体。 2. 可制成薄型电池:以 3.6V400mAh的容量,其厚度可薄至0.5mm。 3. 电池可设计成多种形状 4. 电池可弯曲变形:高分子电池最大可弯曲900左右 5. 可制成单颗高电压:液态电解质的电池仅能以数颗电池串联得到高电压,高分子电池由于本身无液体,可在单颗内做成多层组合来达到高电压。

7. 容量将比同样大小的锂离子电池高出一倍 IEC规定锂电池标准循环寿命测试为: 电池以0.2C放至3.0V/支后 1. 1C恒流恒压充电到4.2V截止电流20mA搁置1小时再以0.2C放电至3.0V(一个循环) 反复循环500次后容量应在初容量的60%以上 国家标准规定锂电池的标准荷电保持测试为(IEC无相关标准). 电池在25摄氏度条件下以0.2C放至3.0/支后,以1C恒流恒压充电到4.2V,截止电流10mA,在温度为20+_5下储存28天后,再以0.2C放电至2.75V计算放电容量 什么是二次电池的自放电不同类型电池的自放电率是多少? 自放电又称荷电保持能力,它是指在开路状态下,电池储存的电量在一定环境条件下的保持能力。一般而言,自放电主要受制造工艺,材料,储存条件的影响自放电是衡量电池性能的主要参数之一。一般而言,电池储存温度越低,自放电率也越低,但也应注意温度过低或过高均有可能造成电池损坏无法使用,BYD 常规电池要求储存温度范围为-20~45。电池充满电开路搁置一段时间后,一定程度的自放电属于正常现象。IEC标准规定镍镉及镍氢电池充满电后,在温度为20度湿度为65%条件下,开路搁置28天,0.2C放电时间分别大于3小时和3小时15分即为达标。 与其它充电电池系统相比,含液体电解液太阳能电池的自放电率明显要低,在25下大约为10%/月。 什么是电池的内阻怎样测量? 电池的内阻是指电池在工作时,电流流过电池内部所受到的阻力,一般分为交流内阻和直流内阻,由于充电 电池内阻很小,测直流内阻时由于电极容量极化,产生极化内阻,故无法测出其真实值,而测其交流内阻可免除极化内阻的影响,得出真实的内值. 交流内阻测试方法为:利用电池等效于一个有源电阻的特点,给电池一个1000HZ,50mA的恒定电流,对其电 压采样整流滤波等一系列处理从而精确地测量其阻值. 什么是电池的内压电池正常内压一般为多少? 电池的内压是由于充放电过程中产生的气体所形成的压力.主要受电池材料制造工艺,结构等使用过程因素影响.一般电池内压均维持在正常水平,在过充或过放情况下,电池内压有可能会升高: 如果复合反应的速度低于分解反应的速度,产生的气体来不及被消耗掉,就会造成电池内压升高. 什么是内压测试? 锂电池内压测试为:(UL标准) 模拟电池在海拔高度为15240m的高空(低气压11.6kPa)下,检验电池是否漏液或发鼓. 具体步骤:将电池1C充电恒流恒压充电到4.2V,截止电流10mA ,然后将其放在气压为11.6Kpa,温度为 (20+_3)的低压箱中储存6小时,电池不会爆炸,起火,裂口,漏液. 环境温度对电池性能有何影响? 在所有的环境因素中,温度对电池的充放电性能影响最大,在电极/电解液界面上的电化学反应与环境温度有关,电极/电解液界面被视为电池的心脏。如果温度下降,电极的反应率也下降,假设电池电压保持恒定,放电电流降低,电池的功率输出也会下降。如果温度上升则相反,即电池输出功率会上升,温度也影响电

镍镉电池镍氢电池的原理及充电方法

镍镉电池镍氢电池的原理及充电方法 发表于81 天前???被围观151 views+ 镍镉/镍氢电池的发展 1899年,Waldmar Jungner在开口型镍镉电池中,首先使用了镍极板,几乎与此同时,Thomas Edison 发明了用于电动车的镍铁电池。遗憾的是,由于当时这些碱性蓄电池的极板材料比其它蓄电池的村料贵得多,因此实际应用受到了极大的限制。 后来,Jungner的镍镉电池经过几次重要改进,性能明显改善。其中最重要的改进是在1932年,科学家在镍电池中开始使用了活性物质。他们将活性物质放入多孔的镍极板中,然后再将镍极板装入金属壳内。镍镉电池发展史上另一个重要的里程碑是1947年密封型镍镉电池研制成功。在这种电池中,化学反应产生的各种气体不用排出,可以在电池内部化合。密封镍镉电池的研制成功,使镍镉电池的应用范围大大增加。 密封镍镉电池效率高、循环寿命长、能量密度大、体积小、重量轻、结构紧凑,并且不需要维护,因此在工业和消费产品中得到了广泛应用。 随着空间技术的发展,人们对电源的要求越来越高。70年代中期,美国研制成功了功率大、重量轻、寿命长、成本低的镍氢电池,并且于 1978年成功地将这种电池应用在导航卫星上,镍氢电池与同体积镍镉电池相比,容量可提高一倍,而且没有重金属镉带来的污染问题。它的工作电压与镍镉电池完全相同,工作寿命也大体相当,但它具有良好的过充电和过放电性能。近年来,镍氢电池受到世界各国的重视,各种新技术层出不穷。镍氢电池刚问世时,要使用高压容器储存氢气,后来人们采用金属氢化物来储存氢气,从而制成了低压甚至常压镍氢电池。1992年,日本三洋公司每月可生产200万只镍氢电池。目前国内已有20多个单位研制生产镍氢电池,国产镍氢电池的综合性能已经达到国际先进水平。 蓄电池参数

锂电池和镍氢电池自适应充电器的设计

锂电池和镍氢电池自适应充电器的设计 1曹阳,2周浩,1张楠,1杨伟 1中国矿业大学信电学院,江苏徐州(221008) 2健雄职业技术学院,江苏苏州(215411) E-mail :mengnancaoyang@https://www.doczj.com/doc/ac12968036.html, 摘 要:本文介绍了一种智能充电器的工作原理、设计特点和2种充电模式,详细讨论了系统的硬件构成及软件实现方法,并针对通用充电器的工作特点,设计了一种以PIC877单片机为核心、结合MAX846A 充电芯片的镍氢和锂电池自适应充电器,该充电器可以在没有确定化学类型的时候不改变硬件结构而通过软件实现自适应充电,并利用了热敏电阻对电池在充电时产生的热量进行监控,防止电池过冲。由于采用了高性能的微控制器及高分辨率的A/D 转换电路,保证了充电器具有很高的精度,较好地解决锂离子电池和镍氢/镍镉电池的充电问题。 关键词:自适应;锂电池;镍氢电池;A/D 转换 中图分类号:TM910.6 1. 引言 生活中我们接触到很多类型的充电电池,有镍氢电池,锂电池等等。镍氢电池以其相对低廉的价格和允许大电流放电的特性使其普及率很高,锂电池则由其高能量密度小巧的外形普遍用于移动电话等小型设备中。但是,类型不一样的电池充电方法不一样,常常要配备好几个充电器,这给我们的生活带来很大的不便。多类型自适应电池充电器可以在不知道电池类型的情况下自动识别电池并充电,简化了充电步骤。 2. 自适应充电方法 2.1 锂电池和镍氢电池的电气特性 对于不知道化学性质的电池进行充电,充电器需要完成对所充电池的识别,然后再充电。由表1可以看出锂电池和镍氢电池在电压上的区别很明显。在单片机中设置电压门限q V 为2V ,开始充电前对电池电压抽样检测,当Vq V 时判定为锂电池。然后针对不同电池采取不同的充电方法。 表1 锂电池、镍氢电池的电气特征 Tab.1 Lithium batteries, Ni-MH battery electrical characteristics 镍氢电池 锂电池 工作电压 1.2V 3.6V 放电截止电压 0.9~1V 3V 充电端电压 1.4V 4.2V 充电电流 0.2C 0.5C 放电电流 0.1C~2C 0.25C 2.2 锂电池和镍氢电池充电方法 镍氢电池采用恒流充电的方法进行充电,充电结束标志为-?V ,即电池端电压下降,且-?V=(6~15) mV/节,同时需要控制电池温度上升率d θ/dt ≥1℃/] 1[节,由于温度的变化容易受

电池保护电路工作原理

电池保护电路工作原理 随着科技进步与社会发展,象手机、笔记本电脑、MP3播放器、PDA、掌上游戏机、数码摄像机等便携式设备已越来越普及,这类产品中有许多是采用锂离子电池供电,而由于锂离子电池的特性与其它可充电电池不同,内部通常都带有一块电路板,不少人对该电路的作用不了解,本文将对锂离子电池的特点及其保护电路工作原理进行阐述。 锂电池分为一次电池和二次电池两类,目前在部分耗电量较低的便携式电子产品中主要使用不可充电的一次锂电池,而在笔记本电脑、手机、PDA、数码相机等耗电量较大的电子产品中则使用可充电的二次电池,即锂离子电池。与镍镉和镍氢电池相比,锂离子电池具备以下几个优点: 1.电压高,单节锂离子电池的电压可达到3.6V,远高于镍镉和镍氢电池的1.2V 电压。 2.容量密度大,其容量密度是镍氢电池或镍镉电池的1.5-2.5 倍。 3.荷电保持能力强(即自放电小),在放置很长时间后其容量损失也很小。 4.寿命长,正常使用其循环寿命可达到500 次以上。 5.没有记忆效应,在充电前不必将剩余电量放空,使用方便。 由于锂离子电池的化学特性,在正常使用过程中,其内部进行电能与化学能相互转化的化学正反应,但在某些条件下,如对其过充电、过放电和过电流将会导致电池内部发生化学副反应,该副反应加剧后,会严重影响电池的性能与使用寿命,并可能产生大量气体,使电池内部压力迅速增大后爆炸而导致安全问题,因此所有的锂离子电池都需要一个保护电路,用于对电池的充、放电状态进行有效监测,并在某些条件下关断充、放电回路以防止对电池发生损害。 下页中的电路图为一个典型的锂离子电池保护电路原理图。 如图中所示,该保护回路由两个MOSFET(V1、V2)和一个控制IC(N1)外加一些阻容元件构成。控制IC负责监测电池电压与回路电流,并控制两个MOSFET的栅极,MOSFET在电路中起开关作用,分别控制着充电回路与放电回路的导通与关断,C3为延时电容,该电路具有过充电保护、过放电保护、过电流保护与短路保护功能,其工作原理分析如下: 1、正常状态

镍氢电池首次充电方法介绍-全文

镍氢电池首次充电方法介绍 - 全文 镍氢电池和镍镉电池一样都有记忆效应,但是要远 小于镍镉电池。所以没有必要每次充电都进行放电操作(因 为操作不当会损害电池) ,只需三个月一次完全充放电以缓 25?35% (月),镍镉电池为15?30% (月),锂电池为2 5% (月)。镍氢电池的自放电率为最大,而锂电池与其他两 氢电池和锂电池都不能耐过充电。因此,镍氢电池以定电流 充电的 PICK CUT 控制方式在充电电压达到最高时, 停止继 续充电为最好的充电方式。而锂电池则使用定电流、定电压 方式充电最好,若以镍镉电池的充电器 -DV 控制方式进行充 使用的时间越长。抛开体积和重量的因素,当然容量越高越 也相同,实际测的初始容量不同:比如一个为 660mAh ,另 个是 605mAh ,那么 660mAh 的就比 605mAh 的好吗。 实际情况可能是容量高的是因为电极材料中多了增加初始 容量的东西,而减少了电极稳定用的东西,其结果就是循环 使用几十次以后,容量高的电池迅速容量衰竭,而容量低的 解记忆效应。 2.镍氢电池的自放电率 镍氢电池为 类电池相比放电率极低。 3.镍氢电池的充电方式 电的话对镍氢电池和锂电池会造成使用寿命的影响。 4. 镍氢电池容量越高越好吗 不同型号的电池,容量越高, 好。 但是同样的电池型号,标称容量(比如 600mAh ) 号,

电池却依然坚挺。许多国内的电芯厂家往往以这个方式来获 得高容量的电池。而用户使用半年以后待机时间却是差得 塌糊涂。民用的那些AA 镍氢电池 (就是五号电池) , 般是1400mAh ,却也有标超高容量的 ( 1600mAh ),道理也 是一样。提高容量的代价就是牺牲循环寿命,厂家不在 电池材料的改性上下文章,是不可能真正“提高”电池容量的。 镍氢电池充电方法科学的充电方法可以延长镍氢电池 的使用寿命。①一般情况下,新的镍氢电池只有很少的 电量,购买后要先进行充电然后再使用。但如果电池出 厂时间短,电量很足,推荐先使用再充电。新的镍氢电池般要经过3-4 次的充电和使用,性能才能发挥到最佳状态。 ②镍氢电池的记忆效应虽然小,最好还是每次使用完再充电,并且是一次性充满,不要充一会用一会然后再充。这是“延年益寿”的重要一点。③ 充电的时候,要注意充电器周围的散热。不用的时候要保持电池清洁,尤 其是两端的触点,必 要时使用柔软的干布轻擦。长时间不用的话,要把电池从电个月后,会进入一种“休眠”状态,电池寿命大大降低。如果镍氢电池已经放置了很长时间,建议先用慢充进行充电为宜。 池仓中取出,置于干燥的环境中④镍氢电池在存放几 般镍氢电池在充电前,电压是在1.2V 以下,充满后正常电压在1.4V 左右。以此可以判断电池是否已经充满。 氢电池第一次充电镍氢电池出厂后的第一次充电包括

锂电池保护板工作原理

锂电池保护板工作原理 锂电池保护板根据使用IC,电压等不同而电路及参数有所不同,下面以DW01 配MOS管8205A进行讲解: 锂电池保护板其正常工作过程为: 当电芯电压在2.5V至4.3V之间时,DW01 的第1脚、第3脚均输出高电平(等于供电电压),第二脚电压为0V。此时DW01 的第1脚、第3脚电压将分别加到8205A的第5、4脚,8205A内的两个电子开关因其G极接到来自DW01 的电压,故均处于导通状态,即两个电子开关均处于开状态。此时电芯的负极与保护板的P-端相当于直接连通,保护板有电压输出。 2.保护板过放电保护控制原理:

当电芯通过外接的负载进行放电时,电芯的电压将慢慢降低,同时DW01 内部将通过R1电阻实时监测电芯电压,当电芯电压下降到约2.3V时DW01 将认为电芯电压已处于过放电电压状态,便立即断开第1脚的输出电压,使第1脚电压变为0V,8205A内的开关管因第5脚无电压而关闭。此时电芯的B-与保护板的P-之间处于断开状态。即电芯的放电回路被切断,电芯将停止放电。保护板处于过放电状态并一直保持。等到保护板的P 与P-间接上充电电压后,DW01 经B-检测到充电电压后便立即停止过放电状态,重新在第1脚输出高电压,使8205A内的过放电控制管导通,即电芯的B-与保护板的P-又重新接上,电芯经充电器直接充电。 4.保护板过充电保护控制原理: 当电池通过充电器正常充电时,随着充电时间的增加,电芯的电压将越来越高,当电芯电压升高到4.4V时,DW01 将认为电芯电压已处于过充电电压状态,便立即断开第3脚的输出电压,使第3脚电压变为0V,8205A内的开关管因第4脚无电压而关

充电电池的标识方法

充电电池的标识方法 根据IEC标准镍镉镍氢电池的标识由5部分组成 1. 电池种类KR标识镍镉电池HF表示镍氢电池HR表示型镍氢电池 2. 电池尺寸资料包括圆形电池的直径高度方型电池的高度宽度厚度数值之间用斜杠隔开单位mm 3. 放电特性符号L表示适宜放电电流倍率在0.5C以内 M表示适宜放电电流倍率在0.5-3.5C以内 H表示适宜放电电流倍率在3.5-7.0C以内 X表示电池能在7C-15C高倍率的放电电流下工作 4. 高温电池符号用T表示 5. 电池连接片表示CF代表无连接片HH表示电池拉状串联连接片用的连接片HB表示电池带并排串联连接用连接片 例如HF18/07/49表示方形镍氢电池宽为18mm,厚度为7mm高度为49mm KRMT33/62HH表示镍镉电池放电倍率在0.5C-3.5之间高温系列单体电池无连接片直径33mm高度为62mm 根据IEC61960标准二次锂电池的标识如下: 1. 电池标识组成3个字母后跟5个数字圆柱形或6个方形数字 2. 第一个字母表示电池的负极材料I表示有内置电池的锂离子L表示锂金属电极或锂合金电极 3. 第二个字母表示电池的正极材料C基于钴的电极N基于镍的电极M基于锰的电极V基于钒的电极 4. 第三个字母表示电池的形状R表示圆柱形电池L表示方形电池 5. 数字圆柱形电池5个数字分别表示电池的直径和高度直径的单位为毫米高 度的单位为十分之一毫米直径或高度任一尺寸大于或等于100mm时两个尺寸之间应加一条斜线

方型电池6个数字分别表示电池的厚度宽度和高度单位毫米三个尺寸任一个大于或等于100mm时尺寸之间应加斜线三个尺寸中若有任一小于1mm,则在此尺寸前加字母t此尺寸单位为十分之一毫米。 例如: ICR18650表示一个圆柱形二次锂离子电池正极材料为钴其直径约为18mm高约为65mm。 ICR20/1050 ICP083448表示一个方形二次锂离子电池正极材料为钴其厚度约为8mm,宽度约为34mm高约为48mm。 ICP08/34/150表示一个方形二次锂离子电池正极材料为钴其厚度约为8mm,宽度约为34mm高约为150mm。 ICPt73448表示一个方形二次锂离子电池正极材料为钴其厚度约为0.7mm,宽度约为34mm高约为48mm。

相关主题
文本预览
相关文档 最新文档