生物传热学
- 格式:ppt
- 大小:577.81 KB
- 文档页数:13
生物传热学
生物传热学是生物医学领域内交叉于生物、热物理、临床医学等诸多领域的学科分支,主要研究生物组织的传热机理。
其探索的是生命最基本的特征之一——物质和能量的传输规律,并加以有效应用。
其研究内容包括生物组织宏观、微观结构与传热、传质关系的研究、各类非均质生物组织热生理参数的在体或离体测定、生命体空间温度场无损重构以及各种热生理机制的热学解释等。
此外,该学科的研究方向也涵盖对各种生命层次上热物性参数的测定并构建相应的测试仪器,对生物组织传热、传质过程中具有重要意义的热物性参数进行测定,应用数学模型对生命系统、器官的正常或异常热生理过程进行描述,以及对各种热物理因素作用于生物组织时产生的热学效应进行研究等。
生物传热学的研究成果在临床治疗中显示出巨大的应用价值和潜力。
量化研究是生物科学技术进步的重要标志,以往很多生命热现象和热问题都因工程热物理方法与技术的引入取得了重要突破。
因此,生物传热学在医学、生物学、工程学等多个领域都有着广泛的应用前景。
以上内容仅供参考,如需更多信息,建议查阅相关文献或咨询相关学者。
Prepared on 22 November 2020传热学的发展历史及其现状摘要:20世纪初,传热学从物理学中的热学部分独立出来而成为一门学科。
一百多年来,传热学研究者们对传热现象进行了广泛深入的研究,发表了大量的科学论着和研究报告,并出版了大量有价值的学术专着’促进了传热学理论的完善和学术的发展。
历史总是向前发展的,尽管现有传热学具有坚实的理论基础,也取得了巨大成就.但新出现的现象已与现有的传热学体系产生了尖锐的矛盾’使现有的传热学理论捉襟见肘,暴露出其局限性。
关键词:传热学发展历史现有困境突破一、引言传热学是研究由温度差异引起的热量传递过程的科学。
传热现象在我们的曰常生活中司空见惯,早在人类文明之初,人们就学会了烧火取暖。
随着工业革命的到来.蒸汽机、内燃机等热动力机械相继出现.传热研究更是得到了飞速的发展,被广泛地应用于工农业生产与人们的日常生活之中。
当今世界,国与国之间的竞争是经济竞争。
而伴随着经济的高速发展也带来了资源、人口与环境等重大国际问题。
传热学在促进经济发展和加强环境保护方面起着举足轻重的作用:1近年来,随着工业经济的兴起,环境问题日益严重。
重点整治环境.保障人民的身体健康已成为实现我国经济可持续发展的重大战略。
传热学的研究极大地提高了能源利用效率,不但节约能源,同时也大大减少了各种废料的排放量.最大限度地控制了现代工业文明对自然生态系统的破坏。
在2050年以前我国能源结构仍将以啡洁净能源,一煤为主,传热研究在环境和生态领域方面所起的重要作用是显而易见的。
人们越来越关注的生命科学也离不开传热学。
生命系统是一个典型的耗散结构系统.生命通过与赖以生存的环境进行物质和能量的交换而得以维持。
对生命系统中的能量与物质传输的认识ffs 待进行传热学研究。
随着人体环境学的发展尤其是生物医学领域中诸如低温外科手术、移植器官冷冻储存、肿瘤加热疗法、疾病热诊技术’以及烧伤冻伤、烫伤等临床医学和康复医学的进步,要求人们深人认识人体传热的特性和机制。
热工理论在工业窑炉中的应用摘要:工业炉窑的发展与生产工艺密切相关。
为发展新型无机材料及其各类复合材料,目前在科研工作中也发展了一些规模较小的各种炉子。
全面掌握热工理论是控制,改进,设计,提高工业窑炉效率的的关键。
如降低制品热耗,提高传热速率,减少热损失,窑内气体运动合理,减少气体穿越物料的阻力损失,保证燃料在炉内的充分燃烧问题。
关键字:伯努利方程式热传导热对流热工理论工业炉窑正文传热学在窑炉设备中的应用:传热学是研究不同温度的物体,或同一物体的不同部分之间热量传递规律的学科,在冶金和硅酸盐工业中存在许多传热现象。
传热的基本方式有热传导、热对流和热辐射三种。
传热的基本方式有热传导、热对流和热辐射三种。
热传导是指在不涉及物质转移的情况下,热量从物体中温度较高的部位传递给相邻的温度较低的部位,或从高温物体传递给相接触的低温物体的过程,简称导热。
热对流是指不同温度的流体各部分由相对运动引起的热量交换。
工程上广泛遇到的对流换热,是指流体与其接触的固体壁面之间的换热过程,它是热传导和热对流综合作用的结果。
决定换热强度的主要因素是对流的运动情况。
热辐射是指物体因自身具有温度而辐射出能量的现象。
它是波长在0.1~100微米之间的电磁辐射,因此与其他传热方式不同,热量可以在没有中间介质的真空中直接传递。
太阳就是以辐射方式向地球传递巨大能量的。
每一物体都具有与其绝对温度的四次方成比例的热辐射能力,也能吸收周围环境对它的辐射热。
辐射和吸收所综合导致的热量转移称为热辐射传热学科在很多高技术领域里同样发挥着重要的和无法替代的作用。
(1)人类征服天空和宇宙空间的不懈努力以及所取得的巨大成果,是当今世界上各领域高技术、新材料研究最集中的体现。
其中传热学所起的作用功不可没。
据美国航空和宇宙航行局(NASA)所作的技术分析,美国航天飞机的技术关键只有一个半,这半个是大推力的液氢—液氧火箭发动机(其中自然与传热有密切的关系),而那一个关键则是所谓“热防护系统”(TPS),即指以航天飞机外表面的防热瓦为主的整个热防护结构。
传热学知识点概念总结传热学是研究热量传递的科学,主要涉及热传导、热辐射和对流传热三个方面。
下面将对传热学中的一些重要知识点进行概念总结。
1.热传导:热传导是指物质内部由于分子或原子之间的相互作用而引起的热量传递。
热传导的速率与传热介质的导热性质有关,如导热系数、传热介质的温度梯度和传热介质的厚度。
2.热辐射:热辐射是指由于物体表面温度而产生的电磁辐射,无需经过介质媒质进行传热。
热辐射的能量传递与物体的温度和表面特性有关,如表面发射率和吸收率。
3.对流传热:对流传热是指通过流体的流动使热量传递的过程。
对流传热受到流体流动速度、温度差和流体介质的热传导性质的影响。
对流传热可以分为自然对流和强制对流两种形式。
4.导热系数:导热系数是描述材料导热性质的物理量,定义为单位厚度和单位温度梯度时的热流密度。
导热系数是描述热传导能力大小的重要参数,与物质的组成、结构和温度有关。
5.温度梯度:温度梯度是指在物体内部或空间中温度随着距离的变化率。
温度梯度越大,热传导的速率越快。
6.热阻:热阻是指单位时间内单位温差时热传导的阻力。
热阻与传热介质的导热系数和厚度有关。
可通过热阻来描述传热介质对热传导的阻碍程度。
7.热容量:热容量是指单位质量物质温度升高单位温度所需的热量。
热容量与物质的物理性质有关,如比热容和密度。
8.辐射强度:辐射强度是指单位时间内单位面积上辐射通过的能量。
辐射强度与物体的表面发射率和温度有关。
9.辐射传热:辐射传热是指由于物体表面发射和吸收辐射而进行的传热。
辐射传热受到物体表面发射率、吸收率、温度差和介质的辐射传递能力的影响。
10.热傅里叶定律:热傅里叶定律是描述物体内部热传导的定律,其表达式为热流密度与传热介质的导热系数、温度梯度和传热介质的横截面积成正比。
以上是传热学中一些重要的知识点的概念总结。
传热学的研究对于理解和应用热量传递过程具有重要意义,可广泛应用于工程领域的热处理、热能转化和热工学等方面。
传热学在高新技术领域中的应用摘要:热传递现象无时无处不在,它的影响几乎遍及现代所有的工业部门,也渗透到农业、林业等许多技术部门中。
本文介绍了航空航天、核能、微电子、材料、生物医学工程、环境工程、新能源以及农业工程等诸多高新技术领域在不同程度上应用传热研究的最新成果。
可以说除了极个别的情况以外,很难发现一个行业、部门或者工业过程和传热完全没有任何关系。
不仅传统工业领域,像能源动力、冶金、化工、交通、建筑建材、机械以及食品、轻工、纺织、医药等要用到许多传热学的有关知识,而且诸如航空航天、核能、微电子、材料、生物医学工程、环境工程、新能源以及农业工程等很多高新技术领域也都在不同程度上有赖于应用传热研究的最新成果,并涌现出像相变与多相流传热、(超)低温传热、微尺度传热、生物传热等许多交叉分支学科。
在某些环节上,传热技术及相关材料设备的研制开发甚至成为整个系统成败的关键因素。
一、在航空航天、核能、微电子领域的应用(1)人类征服天空和宇宙空间的不懈努力以及所取得的巨大成果,是当今世界上各领域高技术、新材料研究最集中的体现。
其中传热学所起的作用功不可没。
据美国航空和宇宙航行局(NASA)所作的技术分析,美国航天飞机的技术关键只有一个半,这半个是大推力的液氢—液氧火箭发动机(其中自然与传热有密切的关系),而那一个关键则是所谓“热防护系统”(TPS),即指以航天飞机外表面的防热瓦为主的整个热防护结构。
它被视为可反复使用的航天飞机成败的最大关键。
之所以把热防护系统提到如此重要的地位,是由于航天飞机极端复杂的气动热环境以及要求该防热系统必须能够重复使用造成的。
举几个数字为证:航天飞机在地球轨道上将反复地经受因太阳直接辐照产生的高温和进入地球阴影时面对接近0K的宇亩空间导致的低温,变化范围达到-157—55℃,同时还要经受1.33×10-4Pa的高真空环境;在以7.5km/s的速度从120km高度重返地球大气层时,飞行器表面的热流密度大约达到 2.5×105W/m2,机翼前缘和头锥帽上的温度高达1650℃!除此之外还必须能够经受太阳紫外线、高能粒子和微陨石可能的撞击。
传热学及其应用引言:热量在温度差作用下从一个物体传递至另外一个物体,或者在同一物体的各个部分之间进行传递的过程称为传热。
将传热进行分类的一个基本原则是按照热量传递的不同机理,即热量以何种方式或何种运动形式进行传递。
经过大量归纳总结,人们发现按传热的不同机理,可将传热划分成三种基本方式:热传导、热对流和热辐射。
当物体内有温度差或两个不同温度的物体接触时,在物体各部分之间不发生相对位移的情况下,物质微粒(分子、原子或自由电子)的热运动传递了热量,这种现象被称为热传导,简称导热。
流体中,温度不同的各部分之间发生相对位移时所引起的热量传递过程叫热对流。
流体各部分之间由于密度差而引起的相对运动称为自然对流;而由于机械(泵或风机等)的作用或其它压差而引起的相对运动称为强迫对流(或受迫对流)。
物体通过电磁波传递能量的过程称为辐射。
物体会因各种原因发出辐射能。
由于热的原因,物体的内能转化成电磁波的能量而进行的辐射过程称为热辐射。
一、传热学的应用实际传热过程一般都不是单一的传热方式,如火焰对炉壁的传热,就是辐射、对流和传导的综合,而不同的传热方式则遵循不同的传热规律。
为了分析方便,人们在传热研究中把三种传热方式分解开来,然后再加以综合。
热科学的工程领域包括热力学和传热学.传热学的作用是利用可以预测能量传递速率的一些定律去补充热力学分析,因后裔只讨论在平衡状态下的系统.这些附加的定律是以三种基本的传热方式为基础的,即导热、对流和辐射。
传热学是研究不同温度的物体,或同一物体的不同部分之间热量传递规律的学科。
传热不仅是常见的自然现象,而且广泛存在于工程技术领域。
例如,提高锅炉的蒸汽产量,防止燃气轮机燃烧室过热、减小内燃机气缸和曲轴的热应力、确定换热器的传热面积和控制热加工时零件的变形等,都是典型的传热问题。
在化学和石油化学工业领域内,使用着大量各式各样的传热和传质设备。
从一定意义上说,该领域是换热设备门类最齐全、形式最多的一个行业。