1 高分子化学实行的基础知识和对苯二甲酰氯与己二胺的界面聚合
- 格式:pdf
- 大小:405.75 KB
- 文档页数:5
第一章绪论1.1 高分子的基本概念高分子化学:研究高分子化合物合成与化学反应的一门科学。
单体:能通过相互反应生成高分子的化合物。
高分子或聚合物(聚合物、大分子):由许多结构和组成相同的单元相互键连而成的相对分子质量在10000以上的化合物。
相对分子质量低于1000的称为低分子。
相对分子质量介于高分子和低分子之间的称为低聚物(又名齐聚物)。
相对分子质量大于1 000 000的称为超高相对分子质量聚合物。
主链:构成高分子骨架结构,以化学键结合的原子集合。
侧链或侧基:连接在主链原子上的原子或原子集合,又称支链。
支链可以较小,称为侧基;也可以较大,称为侧链。
端基:连接在主链末端原子上的原子或原子集合。
重复单元:大分子链上化学组成和结构均可重复出现的最小基本单元,可简称重复单元,又可称链节。
结构单元:单体分子通过聚合反应进入大分子链的基本单元。
(构成高分子链并决定高分子性质的最小结构单位称为~)。
单体单元:聚合物中具有与单体的化学组成相同而键合的电子状态不同的单元称为~。
聚合反应:由低分子单体合成聚合物的反应。
连锁聚合:活性中心引发单体,迅速连锁增长的聚合。
烯类单体的加聚反应大部分属于连锁聚合。
连锁聚合需活性中心,根据活性中心的不同可分为自由基聚合、阳离子聚合和阴离子聚合。
逐步聚合:无活性中心,单体官能团之间相互反应而逐步增长。
绝大多数缩聚反应都属于逐步聚合。
加聚反应:即加成聚合反应,烯类单体经加成而聚合起来的反应。
加聚反应无副产物。
缩聚反应:缩合聚合反应,单体经多次缩合而聚合成大分子的反应。
该反应常伴随着小分子的生成。
1.2 高分子化合物的分类1) 按高分子主链结构分类:可分为:①碳链聚合物:大分子主链完全由碳原子组成的聚合物。
②杂链聚合物:聚合物的大分子主链中除了碳原子外,还有氧、氮,硫等杂原子。
③元素有机聚合物:聚合物的大分子主链中没有碳原子孙,主要由硅、硼、铝和氧、氮、硫、磷等原子组成。
④无机高分子:主链与侧链均无碳原子的高分子。
对苯二甲酰氯与己二胺的界面缩聚实验报告实验三对苯二甲酰氯与己二胺的界面缩聚一、实验目的1.掌握缩聚反应基本原理及界面缩聚实施的方法。
2.进行对苯二甲酰氯与己二胺的界面缩聚。
二、实验原理1.界面缩聚反应界面缩聚是将两种单体分别溶于两种互不相溶的溶剂中,再将这两种溶液倒在一起,在两液相的界面上进行缩聚反应,聚合产物不溶于溶剂,在界面析出。
界面缩聚具有以下特点:(1)界面缩聚是一种不平衡缩聚反应,小分子副产物可被溶剂中某一物质所消耗吸收;(2)界面缩聚反应速率受单体扩散速率控制;(3)单体为高反应性,聚合物在界面迅速生成,其分子量与总的反应程度无关; (4)对单体纯度与功能基等摩尔比要求不严;(5)反应温度低,可避免因高温而导致的副反应,有利于高熔点耐热聚合物的合成。
界面缩聚由于需采用高活性单体,且溶剂消耗量大,设备利用率低,因此虽然有许多优点,但工业上实际应用并不多。
典型的例子是用光气与双酚A界面缩聚合成聚碳酸酯。
2. 对苯二甲酰氯与己二胺的界面缩聚对苯二甲酰氯与己二胺反应生成聚对苯二甲酰氯己二胺,反应式为:OOn N(CH)NH + n H? ClCCCl2262OO+ (2n-1) HCl ClCCNH(CH)NHH26n第1页共4页反应实施时,将对苯二甲酰氯溶于有机溶剂(如CCl),己二胺溶于水,且在水相中4加入NaOH来消除聚合反应生成的小分子副产物HCl。
将两相混合后,聚合反应迅速在界面进行,所生成的聚合物在界面析出成膜,把生成的聚合物膜不断拉出,单体不断向界面扩散,聚合反应在界面持续进行。
三、主要仪器与试剂(1)仪器带塞锥形瓶(250mL,1个),烧杯(250mL,1个),烧杯(100mL,1个),玻璃棒(1支),镊子(1把)。
(2)试剂对苯二甲酰氢(1.35g),己二胺(0.77 g),CCl(100mL),NaOH(0.53 g)。
4四、流程图、实验步骤及现象(1)流程图己二胺溶液0.77g己二胺溶解0.53gNaOH溶解混合均匀混合溶液1.35g对苯二甲酰氯200mL1%HCl4100mL无水CCl溶解反应聚合物水溶液浸泡80?真空干水洗至中性蒸馏水洗压干、剪碎产物燥第2页共4页(2)实验步骤及现象实验步骤实验现象 1.于干燥的250mL烧杯中称取1.35g对对苯二甲酰氯充分溶解后,仍有混浊物苯二甲酰氯,加入100mL无水CCl,存在。
实验四对苯二甲酰氯与己二胺的界面缩聚一、实验目的1.了解缩合聚合的特点,掌握界面缩聚的机理及对单体活性的要求。
2.通过对苯二甲酰氯与己二胺的界面缩聚,掌握界面缩聚实施必须满足的基本条件。
二、实验原理对苯二甲酰氯与己二胺反应生成聚对苯二甲酰己二胺。
反应式如下:反应实施时,将对苯二甲酰氯溶于有机溶剂(如CCl4 ),己二胺溶于水,且在水相中加入来消除聚合反应生成的小分子副产物。
将两相混合后,聚合反应迅速在界面进行,所生成的聚合物在界面析出成膜,把生成的聚合物膜不断拉出,单体不断向界面扩散,聚合反应在界面持续进行。
三、主要药品与仪器药品:对苯二甲酰氯 1.35 g、己二胺0.77 g、CCl4 100 ml、NaOH 0.53 g、仪器:带塞锥形瓶(250 ml )1个、烧杯(250ml)2个、试管若干、玻璃棒1支、镊子1把四、实验步骤于干燥的250 ml 锥形瓶中称取1.35 g 对苯二甲酰氯,加入100 ml无水CCl4,盖上塞子,摇荡使对苯二甲酰氯尽量溶解配成有机相。
另取两个100 ml 烧杯,分别称取新蒸己二胺0.77 g 和NaOH 0.53 g ,共用100 ml 水将其分别溶解后倒入250 ml 烧杯中混合均匀,配成水相。
将有机相倒入干燥的250 ml 烧杯中,然后用玻棒紧贴烧杯壁并插到有机相底部,沿玻棒小心地将水倒入,马上就可在界面观察到聚合物膜的生成。
用镊子将膜小心提起,并缠绕在一玻璃棒上,转动玻璃棒,将持续生成的聚合物膜卷绕在玻璃棒上。
所得聚合物放入盛有200 ml 1% HCl 水溶液中浸泡后,用水充分洗涤至中性,最后用蒸馏水洗,压干,减碎,置真空干燥箱中于80℃真空干燥。
计算产率。
五、实验记录所有药品均按实验步骤准确称取。
M(己二胺)=116g/mol、M(对苯二甲酰氯)=203g/mol(1:1,均为0.00665 mol)、M (HCL)=36.5g/mol理论产量的计算:单体1:1缩聚,假设完全反应,仅生成一条高分子链,聚合度n 即为0.00665 mol,并脱去2n-1 mol HCl,(2n-1)中的“1”相对于2n可以忽略不计,则有理论产量:(116+203-36.5×2) g/mol × 0.00665 mol = 1.64 g产率= 所得产物的质量(-)g / 1.64g ×100% =六、思考题1、为什么在水相中需加入两倍量的NaOH?若不加,将会发生什么反应?对聚合反应有何影响?答:由有机反应式中可知,缩聚反应会生成约2倍量的(2n-1 mol)HCl溶在水相中,加入2倍量的NaOH为了中和缩聚反应生成的HCl。
高分子化学知识点总结
高分子化学是研究高分子物质的结构、性质、合成、加工及应用的学科。
以下是高分子化学的主要知识点总结:
1. 高分子物质的基本概念:高分子物质是由大量重复单元构成的超分子结构。
2. 高分子物质的分类:按照来源可以分为天然高分子和合成高分子;按照结构可以分为线性高分子、支化高分子、交联高分子、共聚高分子等。
3. 高分子物质的性质:高分子物质具有物理性质和化学性质两个方面。
物理性质包括流变学、热学、力学、光学、电学等。
化学性质包括氧化、还原、加成、置换、水解等。
4. 高分子物质的合成方法:包括聚合反应、缩合反应、聚合缩合反应、重排反应、羟化反应、酯交换反应、酯化反应等。
5. 结构表征方法:高分子物质的结构表征方法包括分子量测定、组成分析、形态表征、晶体学、核磁共振、红外光谱、拉曼光谱等。
6. 高分子物质的加工:高分子物质的加工包括塑化加工、固化加工、成型加工、加热处理、冷却处理、表面处理等。
7. 高分子物质的应用:高分子物质广泛应用于塑料、纤维、胶粘剂、涂料、电子材料、医药材料、环保材料等领域。
需要注意的是,以上知识点只是高分子化学的基础,实际上高分子化学是一个非常广泛和深入的领域,需要多读书、多实践,才能掌握其核心和精髓。
第一章绪论1.1 高分子的基本概念高分子化学:研究高分子化合物合成与化学反应的一门科学。
单体:能通过相互反应生成高分子的化合物。
高分子或聚合物(聚合物、大分子):由许多结构和组成相同的单元相互键连而成的相对分子质量在10000以上的化合物。
相对分子质量低于1000的称为低分子。
相对分子质量介于高分子和低分子之间的称为低聚物(又名齐聚物)。
相对分子质量大于1 000 000的称为超高相对分子质量聚合物。
主链:构成高分子骨架结构,以化学键结合的原子集合。
侧链或侧基:连接在主链原子上的原子或原子集合,又称支链。
支链可以较小,称为侧基;也可以较大,称为侧链。
端基:连接在主链末端原子上的原子或原子集合。
重复单元:大分子链上化学组成和结构均可重复出现的最小基本单元,可简称重复单元,又可称链节。
结构单元:单体分子通过聚合反应进入大分子链的基本单元。
(构成高分子链并决定高分子性质的最小结构单位称为~)。
单体单元:聚合物中具有与单体的化学组成相同而键合的电子状态不同的单元称为~。
聚合反应:由低分子单体合成聚合物的反应。
连锁聚合:活性中心引发单体,迅速连锁增长的聚合。
烯类单体的加聚反应大部分属于连锁聚合。
连锁聚合需活性中心,根据活性中心的不同可分为自由基聚合、阳离子聚合和阴离子聚合。
逐步聚合:无活性中心,单体官能团之间相互反应而逐步增长。
绝大多数缩聚反应都属于逐步聚合。
加聚反应:即加成聚合反应,烯类单体经加成而聚合起来的反应。
加聚反应无副产物。
缩聚反应:缩合聚合反应,单体经多次缩合而聚合成大分子的反应。
该反应常伴随着小分子的生成。
1.2 高分子化合物的分类1) 按高分子主链结构分类:可分为:①碳链聚合物:大分子主链完全由碳原子组成的聚合物。
②杂链聚合物:聚合物的大分子主链中除了碳原子外,还有氧、氮,硫等杂原子。
③元素有机聚合物:聚合物的大分子主链中没有碳原子孙,主要由硅、硼、铝和氧、氮、硫、磷等原子组成。
④无机高分子:主链与侧链均无碳原子的高分子。
高分子化学知识点总结高分子化学是研究高分子化合物的合成、结构、性能和应用的一门学科。
它是化学领域中的一个重要分支,对于材料科学、生物医学、环境保护等众多领域都有着深远的影响。
以下是对高分子化学一些重要知识点的总结。
一、高分子的基本概念高分子化合物是指相对分子质量很大的化合物,其相对分子质量通常在 10^4 到 10^7 之间。
高分子化合物由许多结构单元通过共价键重复连接而成,这些结构单元被称为单体。
例如,聚乙烯是由乙烯单体聚合而成,其结构单元就是乙烯。
高分子的相对分子质量具有多分散性,即同一种高分子化合物中,不同分子的相对分子质量大小不同。
通常用平均相对分子质量来表示高分子的相对分子质量,常见的平均相对分子质量有数均相对分子质量、重均相对分子质量和粘均相对分子质量。
二、高分子的分类根据来源,高分子可以分为天然高分子和合成高分子。
天然高分子如纤维素、蛋白质、淀粉等,是自然界中存在的;合成高分子则是通过人工合成得到的,如聚乙烯、聚丙烯、聚苯乙烯等。
按照高分子的主链结构,可分为碳链高分子、杂链高分子和元素有机高分子。
碳链高分子的主链完全由碳原子组成,如聚乙烯、聚丙烯;杂链高分子的主链除了碳原子外,还含有氧、氮、硫等原子,如聚酯、聚酰胺;元素有机高分子的主链中不含碳原子,而是由硅、磷、钛等元素组成,侧链则为有机基团。
三、高分子的合成方法(一)加聚反应加聚反应是指由不饱和单体通过加成聚合反应生成高分子化合物的过程。
在加聚反应中,单体分子中的双键或三键打开,相互连接形成高分子链。
常见的加聚反应有自由基聚合、离子聚合和配位聚合。
自由基聚合是应用最广泛的一种加聚反应,其反应条件相对简单,通常在加热或引发剂的作用下进行。
引发剂分解产生自由基,引发单体聚合。
离子聚合包括阳离子聚合和阴离子聚合,它们对反应条件要求较高,需要在无水、无氧的环境中进行。
配位聚合可以制备具有规整结构的高分子,如等规聚丙烯。
(二)缩聚反应缩聚反应是指由具有两个或两个以上官能团的单体通过缩合反应生成高分子化合物,并伴随有小分子副产物(如水、醇、氨等)生成的过程。
对苯二甲酰氯与己二胺的界面缩聚10材化1 2010307501一、实验目的1.了解缩合聚合的特点,掌握界面缩聚的机理及对单体活性的要求。
2.通过对苯二甲酰氯与己二胺的界面缩聚,掌握界面缩聚实施必须满足的基本条件。
二、实验原理对苯二甲酰氯与己二胺反应生成聚对苯二甲酰己二胺。
反应实施时,将对苯二甲酰氯溶于有机溶剂(如CCl4 ),己二胺溶于水,且在水相中加入来消除聚合反应生成的小分子副产物。
将两相混合后,聚合反应迅速在界面进行,所生成的聚合物在界面析出成膜,把生成的聚合物膜不断拉出,单体不断向界面扩散,聚合反应在界面持续进行。
三、主要药品与仪器对苯二甲酰氯 1.35g己二胺 0.77gCCl4 100mlNaOH 0.53g带塞锥形瓶(250ml ) 1个烧杯(250ml ) 2个玻璃棒 1支镊子 1把四、实验步骤于干燥的250mL 锥形瓶中称取 1.35g 对苯二甲酰氯,加入100ml无水CCl4, ,盖上塞子,摇荡使对苯二甲酰氯尽量溶解配成有机相。
另取两个100mL烧杯,分别称取新蒸己二胺0.79g 和NaOH 0.57g ,各用50ml水将其分别溶解后倒入250mL 烧杯中混合均匀,配成水相。
将有机相倒入干燥的250mL烧杯中,然后用一玻棒紧贴烧杯壁并插到有机相底部,沿玻棒小心地将水倒入,马上就可在界面观察到聚合物膜的生成。
用镊子将膜小心提起,并缠绕在一玻璃棒上,转动玻璃棒,将持续生成的聚合物膜卷绕在玻璃棒上。
所得聚合物放入盛有200mL 1% HCl 水溶液中浸泡后,用水充分洗涤至中性,最后用蒸馏水洗,压干,减碎,置真空干燥箱中于80℃真空干燥,计算产率。
五、数据处理称量可得产品质量为g;产率=产品/(对苯二甲酰氯+NaOH)=六、思考题1、为什么在水相中需加入两倍量的NaOH?若不加,将会发生什么反应?对聚合反应有何影响?答:nmol的对苯二甲酰氯和nmol己二胺反应生成(2n-1)molHCl,故需加入两倍量的NaOH以中和聚合反应生成的小分子副产物HCl。
高分子化学实验教案(1)
一、实验内容:
高分子化学实验的基础知识和对苯二甲酰氯与己二胺的界面聚合
二、实验目的与要求:
1、了解高分子化学实验的基础知识;
2、了解聚合反应装置、聚合体系的除湿除氧技术、常见引发剂的提纯、聚
合物的分离与纯化;
3、掌握界面聚合的基本原理;
4、掌握苯二甲酰氯与己二胺界面聚合的实施方法和注意事项。
三、实验教时: 6教时
四、实验指导
(一)(一)高分子化学实验的基础知识
由于聚合物产量大、品种多、应用广、经济效益高,因此现代高分子工业发展迅猛。
并随着与生物学、信息学、医学等多学科的日益交叉渗透,高分子科在人类的经济和社会生活中占据着越来越重要的地位,渗透到许多的科学技术领域和部门。
现在每年全球生产约2亿吨聚合物材料,以满足全世界60亿人的各种使用需要。
相应地,社会对高分子专业人才的需求量也越来越大,因此越来越多的高校开设高分子方面的专业课程。
高分子化学是一门实验性很强的学科,作为基本技能的训练,高分子化学实验是高分子教学的重要环节。
高分子化学与有机化学有着密切的关系,许多高分子化学反应都是在有机化学实验技术的的基础之上,许多操作都有共同之处,但高分子合成毕竟不同于有机合成,对反应的实施与控制有自己的特点,对仪器设备要求也有所不同,因此有必要进行专门的高分子化学实验技能的训练。
1、聚合反应装置
2、聚合体系的除湿除氧
3、单体的纯化与贮存
4、常见引发剂(催化剂)的提纯
5、聚合物的分离与提纯
(二)实验室规则
A、切实做好实验前的准备工作;
B、进入实验时,应熟悉实验室的电器开关、灭火器材、急救药品的放置位
置和使用方法;
C、实验时要遵守纪律、保持安静;
D、遵从教师的指导,按照实验教科书所规定的步骤、仪器的使用方法、试
剂的用量进行实验
E、应经常保持实验室的整洁;
F、爱护公共仪器和工具,使用完后应放在指定的地方,并保持整洁;
G、实验完毕,值日生要清理实验室,并做到关电、关水、关灯、关窗和关
门。
(三)高分子实验室安全知识
由于有机化学实验所用的药品多数是有毒、可燃、有腐蚀性或有爆炸性的,所用的仪器大部分是玻璃制品,所以,在有机化学实验室中工作,若粗心大意,就容易发生事故。
如割伤、烧伤,乃至火灾,中毒或爆炸等,必须认识到化学
实验室是潜在危险的场所。
然而,只要我们经常重视安全问题,提高警惕,实
验时严格遵守操作规程,加强安全措施,事故是可能避免的。
(四)实验室的安全守则
A.验开始前应检查仪器是否完整无损,装置是否正确,在征得指导教师同意之后,才可进行实验。
B.实验进行时,不得离开岗位,要注意反应进行的情况和装置有无漏气和破裂等现象。
C.当进行有可能发生危险的实验时,要根据实验情况采取必要的安全措施,如戴防护眼镜、面罩或橡皮手套等,但不能戴隐形眼镜。
D.使用易燃、易爆药品时,应远离火源。
实验试剂不得入口。
严禁在实验室内吸烟或吃食物。
实验结束后要细心洗手。
E.熟悉安全用具如灭火器材、砂箱以及急救药箱的放置地点和使用方法,并妥善爱护。
安全用具和急救药品不准移作它用。
(五)对苯二甲酰氯与己二胺的界面聚合
1、界面聚合原理
界面聚合是将两种单体分别溶于互不相溶的两种溶剂中,再将这两种溶液
倒在一起,在两相界面上进行缩聚反应,聚合物产物不溶于溶剂中,在界面处
析出。
如己二胺溶于水中,癸二酸溶于氯仿中,放在烧杯内,搅拌,在室温下
界面出迅速反应,用玻璃棒拉出纤维,水相中加适量的碱,以中和副产物氯化氢。
否则氯化氢将与胺结合成盐,使反应减慢。
碱过多,又将二酰氯部分水解成羧酸或单酰氯,使聚合速率和分子量降低。
2、界面聚合的优点
(1)界面聚合是一种不平衡缩聚反应,小分子副产物可被溶剂中某一物质所消耗吸收;
(2)界面缩聚反应速率受单体扩散速率控制;
(3)单体为高反应活性,聚合物在界面迅速生成,其分子量与总的反应程度无关;
(4)对单体纯度与功能基等摩尔比要求不严;
(5)反应温度低,可避免因高温而导致的副反应,有利于高熔点耐热聚合物的合成。
3、界面聚合的缺点
1、需要高活性的单体;
2、溶剂消耗大,设备利用率低。
4、本实验原理
对苯二甲酰氯与己二胺反应生成聚对苯二甲酰己二胺,反应式为:
将对苯二甲酰氯溶于有机溶剂(四氯化碳),己二胺溶于水,且在水中加入氢氧化钠来消除聚合反应生成的小分子副产物HCl。
将两相混合后,聚合反应迅速在界面进行,所生成的聚合物在界面处析出成膜,把生成的聚合物膜不断拉出,单体不断相界面扩散,聚合反应在界面持续进行。
5、主要药品和仪器
(1)药品
名称用量(g)作用熔点沸点
对苯二甲酰氯 1.35单体79-81℃266℃己二胺0.77单体41~42℃204~205℃
CCl4100mL有机溶剂76.8℃
NaOH0.53中和剂318℃1390℃
水100mL0℃100℃(2)仪器
带具塞锥形瓶(250mL)1个
烧杯(250mL)2个
烧杯(100 mL)2个
玻璃棒1支
镊子1把
6、实验步骤
于干燥的250mL锥形瓶中称取1.35g对苯二甲酰氯,加入100mL无水
CCl4,盖上塞子,摇荡使对苯二甲酰氯尽量溶解配成有机相。
另取两个100mL
烧杯,分别称取蒸馏己二胺0.77g和0.53gNaOH,共用100mL水将其分别溶解
后倒入250mL烧杯中混合均匀,配成水相。
将有机相倒入250mL干燥烧杯中,然后用玻璃棒紧贴烧杯壁并插到有机
相底部,沿玻璃棒小心将水相带入有机相中,马上在界面处观察到聚合物膜的
生成。
用镊子将膜小心提起,并缠绕在玻璃棒上,转动玻璃棒,将持续生成的
聚合物膜卷绕在玻璃棒上。
所得聚合物放入盛有200mL1%HCl水溶液中浸泡后,用水充分洗涤至中性,最后用蒸馏水洗涤,压干,剪碎,置真空干燥箱中于80℃真空干燥,计算产率。
7、思考题
1、为什么在水中需加入两倍量的NaOH?若不加,将会发生什么反应?(生成的HCl与己二胺反应成盐)
2、二酰氯可与双酚类单体进行界面缩聚合成聚酯,但却不能与二醇类单
一进行界面缩聚,为什么?(双酚类可以与NaOH形成双酚钠盐,二醇类物质
不能与NaOH反应)
附录:主要原材料的性质:
1、四氯化碳
四氯化碳又名四氯甲烷(Tetrachloromethane),英文名:Carbon tetrachloride,化学式CCl4,分子量153.84,CAS号:56-23-5。
为无色、透明、具有醚味的油状液体,具氯仿的微甜气味。
并具有一种令人愉快的气味。
沸点77℃,密度1.595g/cm3(20/4℃),沸点76.8℃,蒸气压15.26kPa(25℃),蒸气密
度5.3g/L,不易燃烧,易挥发;接触火焰或热的物体表面可分解为二氧化碳、
氯化氢、光气和氮气。
2、对苯二甲酰氯
对苯二甲酰氯别名对苯二酰二氯,英文名称Terephthaloyl chloride;1,4-benzenedicarbonyl chloride,分子式C8H4Cl2O2;(ClCO)2C6H4,分子量203.02 ,CAS号100-20-9,外观为白色固体,密度相对密度(空气=1)7.0。
蒸汽压0.01kPa/38℃,闪点:180℃,熔点79-81℃,沸点:266℃。
遇水分解。
3、己二胺
己二胺别名1,6-二氨基己烷;1,6-己二胺产品,英文名:1,6-Diaminohexane;Hexamethylene diamine,分子式NH2(CH2)6NH2;CAS号124-09-4。
白色片状结晶体,有氨臭,可燃。
熔点41~42℃。
沸点204~205℃。
相对密度0.883(30/4℃)。
粘度(50℃)1.46kPa·s。
折射率nD(40℃)1.4498。
闪点81℃。
微溶于水(0℃,100ml水中溶解2.0g;30℃,100ml水中溶解0.85g)。
难溶于乙醇、乙醚和苯。
在空气中易吸收水分和二氧化碳。
用作尼龙66, 聚氨酯泡沫塑料的原料及环氧树脂固化剂。