2010年考研数学一真题及答案
- 格式:doc
- 大小:3.64 MB
- 文档页数:21
2010年考研数学一真题及答案2010年考研数学一真题及答案2010年的考研数学一真题是考生备战考研数学的重要参考资料。
本文将对该真题进行分析和解答,帮助考生更好地理解和掌握数学一的考点和解题技巧。
第一题是选择题,考察的是函数的性质和极限。
题目要求求函数f(x) = x^2 - 4x + 3的极限lim(x→2) f(x)。
首先,我们可以通过代入x=2来计算函数在x=2处的取值,即f(2) = 2^2 - 4*2 + 3 = 3。
接下来,我们可以通过直接代入x=2来计算极限,即lim(x→2) f(x) = lim(x→2) (x^2 - 4x + 3) = 2^2 - 4*2 + 3 = 3。
因此,该题的答案是3。
第二题是选择题,考察的是向量的数量积和向量的夹角。
题目给出两个非零向量A = (1, 2, -1)和B = (2, -1, 3),要求计算向量A和向量B的数量积和它们的夹角。
首先,我们可以计算向量A和向量B的数量积,即A·B = 1*2 + 2*(-1) + (-1)*3 = 2 - 2 - 3 = -3。
接下来,我们可以计算向量A和向量B的模长,即|A|= √(1^2 + 2^2 + (-1)^2) = √6,|B| = √(2^2 + (-1)^2 + 3^2) = √14。
然后,我们可以利用数量积的定义来计算它们的夹角,即cosθ = (A·B) / (|A| |B|) = -3 / (√6 √14)。
最后,我们可以通过反余弦函数来计算夹角θ的值,即θ =arccos(-3 / (√6 √14))。
因此,该题的答案是-3 / (√6 √14)。
第三题是计算题,考察的是微分方程的解。
题目给出微分方程dy/dx = (x^2 - 1) / y,要求求出它的通解。
首先,我们可以将微分方程变形为y dy = (x^2 - 1) dx。
接下来,我们可以对方程两边同时积分,即∫y dy = ∫(x^2 - 1) dx。
2010年全国硕士研究生入学统一考试数学(一)试卷一、选择题(1-8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1)极限= (A)1 (B) (C)(D)【考点分析】:考察1∞型不定性极限。
【求解过程】:⏹ 方法一:利用求幂指型极限的一般方法:I =lim x→∞[x 2x−a x+b ]x=lim x→∞ex ln x 2(x−a )(x+b)归结为求222lim ln()()lim ln 11()()lim 1()()()lim ()()x x x x x w x x a x b x x x a x b x x x a x b a b x abx x a x b a b→∞→∞→∞→∞=-+⎡⎤⎛⎫=+-⎢⎥ ⎪-+⎝⎭⎣⎦⎡⎤=-⎢⎥-+⎣⎦-+=⋅-+=- 因此,I =e a−b ,选C 【基础回顾】:对于一般的幂指型极限有:()()ln ()lim ()ln ()lim ()lim g x g x f x g x f x f x e e ==⏹ 方法二:利用第二个重要极限求解22()lim ()()lim lim 11()()()()()lim 1()()x xx x x xa b x abx x a x b x a bx x I x a x b x a x b a b x ab e x a x b e →∞→∞→∞-+⋅-+→∞-⎡⎤⎡⎤⎛⎫==+-⎢⎥ ⎪⎢⎥-+-+⎣⎦⎝⎭⎣⎦⎡⎤-+=+=⎢⎥-+⎣⎦=2lim ()()xx x x a x b →∞⎡⎤⎢⎥-+⎣⎦e ea b-eb a-【基础回顾】:一般地,对于1∞型极限,均可利用第二个重要极限求解: 设lim ()1f x =,lim ()g x =∞,则()()()lim(()1)()lim ()lim 1()1g x g x f x g x f x f x e⋅-⋅=+-⎡⎤⎣⎦=(2)设函数由方程确定,其中为可微函数,且则= (A) (B) (C)(D)【考点分析】:隐函数求导 【求解过程】:⏹ 方法一:全微分法 方程(,)0y z F x x=两边求全微分得:12()()0y z F d F d x x ''+=,即12220xdy ydx xdz zdxF F x x --''+= 整理得 12122yF zF F dz dx dy xF F '''+=-''所以,122yF zF z x xF ''+∂=∂',12F z y F '∂=-∂'。
2010年全国硕士研究生入学统一考试数学试题详解及评分参考数 学(一)一.选择题:1 - 8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个 是符合题目要求的,请将所选项前的字母填在答题纸指定的位置上.(1)极限2lim ()()()x x x x a x b ®¥=-+(A)1(B)e(C)a be -(D)b ae -【答】 应选 (C) .【解】 因22ln ln()ln()lim ln()lim()()1/x x x x x x a x b x a x b x®¥®¥---+=-+()()()3222112=lim lim 1x x a b x abx x x a x b a b x x a x b x ®¥®¥---+-+==--+-,所以2lim (()()x a x b x x a x b e ®¥-=-+,故选 (C) .(2)设函数(,)z z x y =由方程(,0y zF x x=确定,其中F 为可微函数,且20F ¢¹,则z z x y x y ¶¶+=¶¶(A)x (B)z (C)x -(D)z-【答】 应选 (B) .【解】 在方程两边分别对x 和对y 求偏导,得122211()0y z F z F x x x x ¶¢¢-+-=¶,12110z F F x x y¶¢¢+=¶于是有 22()z z x y F zF x y ¶¶¢¢+=¶¶, 即z zx y z x y ¶¶+=¶¶,故选 (B) .(3)设,m n均是正整数,则反常积分ò的收敛性(A)仅与m 的取值有关(B)仅与n 的取值有关(C)与,m n 的取值都有关(D)与,m n 的取值都无关【答】 应选 (D) .【解】 显然该反常积分有且仅有两个瑕点0,1x x ==,于是需分成两个积分加以考察:dx =+ò(1)对于,易见被积函数非负,且只在0x +®时无界,于是当1n >时,由+0lim 0x®=及120ò收敛,知收敛;当1n=时12/1mx-:及212101mdx x-ò收敛,知收敛;(2)对于,易见被积函数非负,且只在1x -®时无界,于是当1m >时,由11lim lim 0x x --®®==及1收敛,知 收敛;当1m =时,由21/211ln (1)lim lim 0(1)x x x x ---®®-==-及212101m dx x -ò收敛,知收敛;由此可见,无论正整数,m n如何取值,0ò都是收敛的,故选 (D) .(4) 2211lim()()n nn i j nn i n j ®¥===++åå (A) 12001(1)(1)x dx dy x y ++òò(B)1001(1)(1)xdx dy x y ++òò(C) 11001(1)(1)dx dyx y ++òò(D) 112001(1)(1)dx dyx y ++òò【答】 应选 (D) .【解】 记21(,)(1)(1)f x y x y =++,(){},y 01,01D x x y =££££,知(,)f x y 在D 上可积. 用直线()0,1,2,,i i x x i n n ===L 与()0,1,2,,j j y y j n n===L 将D 分成2n等份,可见22221111211()()(1)(1)n n n ni j i j n i j n i n j n n n=====×++++åååå是(,)f x y 在D 上的二重积分的一个和式,于是112222001111lim ()()(1)(1)(1)(1)nnn i j Dn dxdy dx dy n i n j x y x y ®¥====++++++ååòòòò.故选 (D) . (5)设A 为m n ´矩阵,B 为n m ´矩阵,E 为m 阶单位矩阵. 若AB E =,则(A)秩()r A m =,秩()r B m =(B)秩()r A m =,秩()r B n =(C)秩()r A n =,秩()r B m =(D)秩()r A n =,秩()r B n=【答】 应选 (A) .【解】 因A 是m n ´矩阵,故()r A m £,又()()()r A r AB r E m ³==,故()r A m =. 同理,可得()r B m =,故选 (A) .(6)设A 为4阶实对称矩阵,且2A A O +=. 若A 的秩为3,则A 相似于(A) 1110æöç÷ç÷ç÷ç÷èø(B) 1110æöç÷ç÷ç÷-ç÷èø(C) 1110æöç÷-ç÷ç÷-ç÷èø(D) 1110-æöç÷-ç÷ç÷-ç÷èø【答】 应选 (D) .【解】 设l 为A 的特征值,则由2A A O +=知2+=0l l ,即=0l 或1-. 又因A 是实对 称矩阵,故A 必相似于对角矩阵L ,其中L 的对角线上的元素为特征值1-或0. 再由()3r A =可知()3r L =,故选 (D) .(7)设随机变量X 的分布函数0,0,1(),01,21,1xx F x x e x -<ìïï=£<íï-³ïî则{1}P X ==(A)0 (B)12(C)112e --(D)11e--【答】 应选 (C) .【解】 由分布函数的用途,知{1}(1)(1)P X F F -==-1111122e e --=--=-. (8)设1()f x 为标准正态分布的概率密度,2()f x 为[1,3]-上均匀分布的概率密度,若12(),0()(0,0)(),0af x x f x a b bf x x £ì=>>í>î为概率密度,则,a b 应满足(A)234a b +=(B)324a b +=(C)1a b +=(D)2a b +=【答】 应选 (C) .【解】 由题意,有221()x f x -=,21/4,(1,3)()0x f x Î-ì=íî,其他,()1f x dx +¥-¥=ò而0120()()()f x dx af x dx bf x dx +¥+¥-¥-¥=+òòò()3201=2a b f x dx +ò13=24a b +,于是有13124a b +=,即234a b +=. 故选 (C) .二、填空题:9:14小题,每小题4分,共24分. 请将答案写在答题纸...指定位置上. (9)设20,ln(1),t tx e y u du -ì=ïí=+ïîò则220t d y dx == .【答】 应填 0.【解】 因2/ln(1)=/t dy dy dt t dx dx dt e -+=-, 22222ln(1+)12=[][ln(1)]/1t td y d t te t dx dt e dx dt t -=++-+, 故2020t d ydx==.(10)2p =ò.【答】 应填 4p -.【解】t =,则2dx tdt =,于是有2220002cos 2sin 4sin 4cos 4cos 4.t tdt t tt tdt t tdt p pppp p p ==-=-=-òòòò(11)已知曲线L 的方程为1||([1,1])y x x =-Î-,起点是(1,0)-,终点为(1,0),则曲线积分2Lxydx x dy +=ò.【答】 应填 0.【解法一】 补有向线段:0([1,1])L y x =Î-,起点为(1,0),终点为(1,0)-,设由L 与L 围成的平面区域为D ,则利用格林公式及区域D 关于y 轴的对称性,得222(2)00LDL LLxydx x dy xydx x dy xydx x dy x x dxdy ++=+-+=---=òòòòò【解法二】 记1:1([1,0])L y x x =+Î-,起点是(1,0)-,终点是(0,1);2:1([0,1])L y x x =-Î, 起点为(0,1),终点为(1,0)有12222+LL L xydx x dy xydx x dy xydx x dy+=++òòò 012210=[(1)][(1)]x x x dx x x x dx -+++--òò1212=()(02323-++-=.(12)设22{(,,)|1}x y z x y z W =+££,则W 的形心的竖坐标z = .【答】 应填23.【解】 记(){}22,y 1D x x y =+£,有221x y Ddxdydz dxdy dz +W=òòòòòò22=(1)Dx y dxdy --òò212=(1)d r rdr p q -òò=2p,2212122240011[1()]=(1)223x yDD zdxdydz dxdy zdz x y dxdy d r rdr p p q +W==-+-=òòòòòòòòòò, 从而W 的形心的竖坐标为23DDzdxdydzz dxdydz==òòòòòò. (13)设1(1,2,1,0)Ta =-,2(1,1,0,2)Ta =,3(2,1,1,)Ta a =. 若由123,,a a a 生成的向量空间的维数为2,则a = .【答】 应填 6.【解】 因由123,,a a a 生成的向量空间的维数为2,故矩阵()123,,a a a 的秩为2,而()123112112211013,,=101006020000a a a a æöæöç÷ç÷ç÷ç÷®ç÷ç÷--ç÷ç÷èøèø,故6a =.(14)设随机变量X 的概率分布为{},0,1,2,!CP X k k k ===L ,则2EX =.【答】 应填 2.【解】 由概率分布的性质,有{}01k k P X x ¥===å,即01!k Ck ¥==å,亦即1Ce =,1C e -=.由此可见,X 服从参数为1的泊松分布,于是22()112EX DX EX =+=+=.三、解答题( 15 ~ 23小题,共94分.)(15)(本题满分10分)求微分方程322xy y y xe ¢¢¢-+=的通解.解:对应齐次方程320y y y ¢¢¢-+=的两个特征根为121,2r r ==,其通解为212x x Y C e C e =+.……4分设原方程的特解形式为*()x y x ax b e =+,则*2((2))xy ax a b x b e ¢=+++,*2((4)22)x y ax a b x a b e ¢¢=++++,代入原方程解得1,2a b =-=-,……8分 故所求通解为212(2)x x xy C e C e x x e=+-+ ……10分(16)(本题满分10分)求函数2221()()x t f x x t e dt -=-ò的单调区间与极值.解: ()f x 的定义域为(,)-¥+¥,由于2222211()x x t t f x xe dt te dt --=-òò,2224423311()2222xxt x x t f x x e dt x ex ex e dt ----¢=+-=òò,所以()f x 的驻点为0,1x =± ……3分列表讨论如下:x (,1)-¥-1-(1,0)-0 (0,1) 1 (1,)+¥()f x ¢-0 +0 -0 +()f x ↘极小↗极大↘极小↗……6分因此,()f x 的单调增加区间为(1,0)-及(1,)+¥,单调减少区间为(,1)-¥-及(0,1);极小值为(1)0f ±=,极大值为21101(0)(1)2t f te dt e --==-ò……10分(17)(本题满分10分) (I)比较1|ln |[ln(1)]nt t dt +ò与1|ln |(1,2,)ntt dt n =òL 的大小,说明理由;(II)记1|ln |[ln(1)](1,2,)n n u t t dt n =+=òL ,求极限lim n n u ®¥.解:(I )当01t ££时,因为ln(1)t t +£,所以|ln |[ln(1)]|ln |n n t t t t +£,因此11|ln |[ln(1)]|ln |n n t t dt t t dt+£òò ……4分(II )由 (I) 知,110|ln |[ln(1)]|ln |n n n u t t dt t t dt £=+£òò.因为1112011|ln |ln 1(1)n n n t t dt t tdt t dt n n =-==++òòò,所以1lim|ln |0nn tt dt ®¥=ò ……8分 从而 lim 0n n u ®¥=……10分(18)(本题满分10分) 求幂级数121(1)21n nn x n -¥=--å的收敛域及和函数. 解:记12(1)()21n nn u x x n --=-, 由于221()21lim lim ()21n n n nu x n x x u x n +®¥®¥-==+,所以当21x <,即||1x <时,1()n u x ¥=å绝对收敛,当||1x >时,1()n u x ¥=å发散,因此幂级数的收敛半径1R =……3分当1x =±时,原级数为11(1)21n n n -¥=--å,由莱布尼茨判别法知此级数收敛,因此幂级数的收敛域为[1,1]-……5分设1211(1)()(11)21n n n S x x x n -¥-=-=-££-å,则122211()(1)1n n n S x x x ¥--=¢=-=+å,又(0)0S =,故201()arctan 1xS x dt x t==+óôõ, ……8分 于是121(1)()arctan ,[1,1]21n nn x xS x x x x n -¥=-==Î--å ……10分(19)(本题满分10分)设P 为椭球面222:1S x y z yz ++-=的动点,若S 在点P 处的切平面与xOy 面垂直,求点P 的轨迹C ,并计算曲面积分I S=,其中S 是椭球面S 位于曲线C 上方的部分.解: 椭球面S 上点(,,)P x y z 处的法向量是{2,2,2}n x y z z y =--r, ……2分点P 处的切平面与xOy 面垂直的充要条件是0({0,0,1})n k k ×==r r r,即20z y -=所以点P 的轨迹C 的方程为222201z y x y z yz -=ìí++-=î,即2220314z y x y -=ìïí+=ïî ……5分取223{(,)|1}4D x y x y =+£,记S 的方程为(,),(,)z z x y x y D =Î,==,所以DI =óóôôôôõõ(D x dxdy =+òò ……8分2Ddxdy p== ……10分(20)(本题满分11分) 设1101011A l l l æöç÷=-ç÷ç÷èø,11a b æöç÷=ç÷ç÷èø. 已知线性方程组Ax b =存在2个不同的解,(I )求,a l ; (II )求方程组Ax b =的通解.解:(I )设12,h h 为Ax b =的2个不同的解,则12h h -是0Ax =的一个非零解, 故2||(1)(1)0l l =-+=A ,于是1l =或1l =- ……4分当1l =时,因为()()r A r A b ¹M ,所以Ax b =无解,舍去. 当1l =-时,对Ax b =的增广矩阵施以初等行变换,有1111013/2()02010101/211110002a A b B a æ-öæ-öç÷ç÷=-=-=ç÷ç÷ç÷ç÷-+èøèøM .因为Ax b =有解,所以2a =- ……8分(II )当1l =-,2a =-时,1013/20101/20000B æ-öç÷=-ç÷ç÷èø,所以x =A b 的通解为31110201x k æöæöç÷ç÷=-+ç÷ç÷ç÷ç÷èøèø,其中k 为任意常数. ……11分(21)(本题满分11分) 已知二次型123(,,)Tf x x x x Ax =在正交变换x Qy =下的标准形为2212y y +,且Q 的第3列为,0,22T. (I )求矩阵A ;(II )证明A E +为正定矩阵,其中E 为3阶单位矩阵.解:(I )由题设,A 的特征值为1,1,0,且(1,0,1)T为A 的属于特征值0的一个特征向量.……3分 设123(,,)Tx x x 为A 的属于特征值1的一个特征向量,因为A 的属于不同特征值的特征向量正交,所以1231(,,)001x x x æöç÷=ç÷ç÷èø,即130x x +=.取,0,22T æö-ç÷ç÷èø,(0,1,0)T 为A 的属于特征值1的两个正交的单位特征向量 ……6分令022010022Q æöç÷ç÷=ç÷ç÷ç÷-ç÷èø,则有110T Q AQ æöç÷=ç÷ç÷èø,故1101112020101T -æöæöç÷ç÷==ç÷ç÷ç÷ç÷-èøèøA Q Q . ……9分评分说明:求出满足条件的一个矩阵A ,即可给9分.(II )由(I )知A 的特征值为1,1,0,于是A E +的特征值为2,2,1,又A E +为实对称矩阵,故A E +为正定矩阵.……11分(22)(本题满分11分)设二维随机变量(,)X Y 的概率密度为2222(,),,x xy y f x y Ae x y -+-=-¥<<+¥-¥<<+¥,求常数A 及条件概率密度|(|)Y X f y x .解:因2222()(,)x xy y X f x f x y dy A edy +¥+¥-+--¥-¥==òò22()y x x A e dy+¥----¥=ò222(),x y x x Aeedy x +¥-----¥==-¥<<+¥ò,……4分所以21()x X f x dx e dx A p +¥+¥--¥-¥===ò,从而 1A p=……7分当(,)x Î-¥+¥时,22222|1(,)(|)1()x xy y Y X x X ef x y f y x f x p-+--==222x xy y -+-=2(),x y y --=-¥<<+¥ ……11分(23)(本题满分11分)设总体X 的概率分布为X 1 2 3p1q-2q q -2q其中参数(0,1)q Î未知.以i N 表示来自总体X 的简单随机样本(样本容量为n )中等于i 的个数(1,2,3i =).试求常数123,,a a a ,使31i ii T a N==å为q 的无偏估计量,并求T 的方差.解: 记11p q =-,22p q q =-,23p q =. 由于(,),1,2,3i i N B n p i =:,故i iEN np = ……4分 于是22112233123[(1)()]ET a EN a EN a EN n a a a q q q q =++=-+-+ ……6分为使T 是q 的无偏估计量,必有22123[(1)()]n a a a q q q q q -+-+=,因此12132010a a a n a a =ìïï-=íï-=ïî,……8分由此得 12310,a a a n===……9分由于123N N N n ++=,故123111()()1N T N N n N n n n =+=-=-.注意到1~(,1)N B n q -,故1221(1)(1)n DT DN n n nq q q q --=== ……11分。
2010考研数一真题及解析考研数学一是众多考研学子心中的一座大山,每年的真题都备受关注。
2010 年的考研数一真题更是具有一定的代表性和研究价值。
先来看选择题部分。
第 1 题考查了函数的极限概念,这需要对极限的定义和基本运算有清晰的理解。
比如,当 x 趋近于某个值时,函数的取值情况。
第 2 题涉及到曲线的切线方程,需要掌握导数的几何意义以及相关的求导公式。
填空题部分,像第 9 题关于二重积分的计算,这要求熟练掌握积分区域的确定和积分的运算方法。
如果对积分的基本概念和技巧掌握不扎实,很容易出错。
接下来是解答题。
第 15 题是关于函数的单调性和极值问题,需要通过求导来判断函数的增减性,进而求出极值。
这道题考查了基本的导数应用,但是需要注意计算的准确性。
第 16 题是关于曲线积分的计算。
曲线积分是考研数学中的一个重点和难点,需要对曲线的参数方程、格林公式等有深入的理解和运用能力。
第 17 题是关于常微分方程的求解。
常微分方程在数学一的考试中占据重要地位,这道题可能需要运用到常见的求解方法,如分离变量法、一阶线性方程的求解公式等。
第 18 题是关于多元函数的极值问题。
要解决这类问题,需要先求出偏导数,然后令偏导数等于零,解出驻点,再通过二阶偏导数判断驻点是否为极值点。
第 19 题是关于向量的问题,涉及到向量的内积、外积以及空间解析几何的知识。
这道题对空间想象力和向量运算能力有一定要求。
第20 题是关于幂级数的展开和求和。
幂级数是一个重要的知识点,需要掌握常见函数的幂级数展开公式以及幂级数的求和方法。
第 21 题是关于矩阵的特征值和特征向量的问题。
这是线性代数中的核心内容,需要对矩阵的运算和相关定理有深刻的理解。
第 22 题是概率论与数理统计部分的题目,可能涉及到随机变量的分布、期望和方差等知识点。
总的来说,2010 年考研数学一真题涵盖了高等数学、线性代数和概率论与数理统计的多个重要知识点,题型多样,难度适中偏上。
2010年考研数学一真题一、选择题(1~8小题,每小题4分,共32分。
下列每题给出的四个选项中,只有一个选项是符合题目要求的。
)(1)极限limx→∞[x2(x−a)(x+b)]x=(A)1 (B)e (C)e a−b (D)e b−a 【考点】C。
【解析】【方法一】这是一个“1∞”型极限lim x→∞[x2(x−a)(x+b)]x=limx→∞{[1+(a−b)x+ab(x−a)(x+b)](x−a)(x+b)(a−b)x+ab}(a−b)x+ab(x−a)(x+b)x=e a−b【方法二】原式=limx→∞e xlnx2(x−a)(x+b)而limx→∞ xln x2(x−a)(x+b)=limx→∞xln(1+(a−b)x+ab(x−a)(x+b))=limx→∞x∙(a−b)x+ab(x−a)(x+b)(等价无穷小代换) =a−b则limx→∞[x2(x−a)(x+b)]x=e a−b【方法三】对于“1∞”型极限可利用基本结论:若limα(x)=0, limβ(x)=0,且limα(x)β(x)=A 则li m(1+α(x))β(x)=e A,求极限由于limx→∞α(x)β(x)=limx→∞x2−(x−a)(x+b)(x−a)(x+b)∙x=limx→∞(a−b)x2+abx(x−a)(x+b)=a−b则limx→∞[x2(x−a)(x+b)]x=e a−b【方法四】lim x→∞[x2(x−a)(x+b)]x=limx→∞[(x−a)(x+b)x2]−x=limx→∞(1−ax)−x∙limx→∞(1+bx)−x=e a∙e−b=e a−b综上所述,本题正确答案是C。
【考点】高等数学—函数、极限、连续—无穷小量的性质及无穷小量的比较,极限的四则运算,两个重要极限(2)设函数z=z(x,y)由方程F(yx ,zx)=0确定,其中F为可微函数,且f′′2≠0,则xðzðx+yðzðy=。
20XX年考研数学一真题一、选择题( 1 8 小题,每小题 4 分,共 32 分。
下列每题给出的四个选项中,只有一个选项是符合题目要求的。
)(1) 极限(A)1(B)(C)(D)【考点】 C。
【解析】【方法一】这是一个“”型极限【方法二】原式而(等价无穷小代换 )则【方法三】对于“”型极限可利用基本结论:若,,且则,求极限由于则【方法四】综上所述,本题正确答案是C。
【考点】高等数学—函数、极限、连续—无穷小量的性质及无穷小量的比较,极限的四则运算,两个重要极限(2)设函数由方程确定,其中为可微函数,且,则。
(A)(B)(C)(D)B。
【答案】【解析】因为,所以综上所述,本题正确答案是(B)。
【考点】高等数学—多元函数微分学—多元函数的偏导数和全微分(3) 设为正整数,则反常积分的收敛性(A)仅与的取值有关(B)仅与的取值有关(C)与的取值都有关(D)与的取值都无关【答案】 D。
【解析】本题主要考察反常积分的敛散性,题中的被积函数分别在和时无界在反常积分中,被积函数只在时无界。
由于,已知反常积分收敛,则也收敛。
在反常积分中,被积函数只在时无界,由于(洛必达法则 )且反常积分收敛,所以收敛综上所述,无论取任何正整数,反常积分收敛。
综上所述,本题正确答案是D。
【考点】高等数学—一元函数积分学—反常积分(4)(A)(B)(C)(D)D。
【答案】【解析】因为综上所述,本题正确答案是C。
【考点】高等数学—多元函数积分学—二重积分与三重积分的概念、性质、计算和应用(5)设为矩阵,为矩阵,为阶单位矩阵,若,则(A)秩秩(B)秩秩(C)秩秩(D)秩秩【答案】 A。
【解析】因为为阶单位矩阵,知又因,故另一方面,为矩阵,为矩阵,又有可得秩秩综上所述,本题正确答案是A。
【考点】线性代数—矩阵—矩阵的秩(6) 设为4阶实对称矩阵,且,若的秩为3,则相似于(A)(B)(C)(D)【答案】D。
【解析】由知,那么对于推出来所以的特征值只能是、再由是实对称矩阵必有,而是的特征值,那么由,可知 D正确综上所述,本题正确答案是D。
2010年全国硕士研究生入学统一考试数学一试题参考答案一、选择题(1)【答案】 (C).【解析】本题属于未定式求极限,极限为1∞型,故可以用“e 的抬起法”求解.()()2lim xx xx a x b →∞⎡⎤⎢⎥-+⎣⎦()()2lnlim x x x a x b x e ⋅-+→∞=()()2lim lnx x x x a x b e→∞⋅-+=,其中又因为()()2222()()lim ln lim ln 1()()()()lim()()()lim()()x x x x x x x a x b x x x a x b x a x b x x x a x b x a x b a b x abxx a x b a b→∞→∞→∞→∞--+⋅=+-+-+⎡⎤--+⎣⎦=-+-+=-+=-⎡⎤⎣⎦故原式极限为a b e -,所以应该选择(C). (2)【答案】 (B).【解析】122212122221x z y z y zF F F F F yF zF zx x x x x F F xF F x⎛⎫⎛⎫''''-+-⋅+⋅ ⎪ ⎪'''+∂⎝⎭⎝⎭=-=-==∂''''⋅, 112211y z F F F z x y F F F x'⋅''∂=-=-=-∂'''⋅, 1212222yF zF yF F z z z xy z x y F F F ''''+⋅∂∂+=-==∂∂'''. (3) 【答案】 (D).【解析】0x =与1x =都是瑕点.应分成=+⎰,用比较判别法的极限形式,对于,由于121012[ln (1)]lim 11mnx n mx xx+→--=.显然,当1201n m<-<,则该反常积分收敛. 当120n m -≤,1210[ln (1)]lim mx nx x+→-存在,此时实际上不是反常积分,故收敛.故不论,m n 是什么正整数,总收敛.对于,取01δ<<,不论,m n 是什么正整数,1211211[ln (1)]lim lim ln (1)(1)01(1)mnmx x x xx x x δδ--→→-=--=-,所以收敛,故选(D).(4)【答案】 (D). 【解析】()()222211111()nnn n i j i j n n n i n j n i n j =====++++∑∑∑∑22111()()n nj i n n j n i ===++∑∑ 12220211111lim lim ,11()nn n n j j n dy j n jn y n →∞→∞====+++∑∑⎰ 1011111lim lim ,11()n n n n i i n dx i n i n x n→∞→∞====+++∑∑⎰()()2222111111lim lim()()n nn nn n i j j i n n j n i n i n j →∞→∞=====++++∑∑∑∑ 221(lim )nn j n n j →∞==+∑1(lim )nn i nn i→∞=+∑1120011()()11dx dy x y =++⎰⎰()()11200111dx dy x y =++⎰⎰. (5)【答案】 (A).【解析】由于AB E =,故()()r AB r E m ==.又由于()(),()()r AB r A r AB r B ≤≤,故(),()m r A m r B ≤≤ ①由于A 为m n ⨯矩阵,B 为n m ⨯矩阵,故(),()r A m r B m ≤≤ ②由①、②可得(),()r A m r B m ==,故选A. (6)【答案】 (D).【解析】设λ为A 的特征值,由于2A A O +=,所以20λλ+=,即(1)0λλ+=,这样A 的特征值只能为-1或0. 由于A 为实对称矩阵,故A 可相似对角化,即AΛ,()()3r A r =Λ=,因此,1110-⎛⎫ ⎪- ⎪Λ= ⎪- ⎪⎝⎭,即1110A -⎛⎫⎪- ⎪Λ= ⎪- ⎪⎝⎭. (7) 【答案】 (C).【解析】离散型随机变量的分布函数是跳跃的阶梯形分段函数,连续型随机变量的分布函数是连续函数.观察本题中()F x 的形式,得到随机变量X 既不是离散型随机变量,也不是连续型随机变量,所以求随机变量在一点处的概率,只能利用分布函数的定义.根据分布函数的定义,函数在某一点的概率可以写成两个区间内概率的差,即{}{}{}()()1111111110122P X P X P X F F e e --==≤-<=--=--=-,故本题选(C).(8)【答案】 (A).【解析】根据题意知,()221x f x e-=(x -∞<<+∞),()21,1340,x f x ⎧ -≤≤⎪=⎨⎪ ⎩其它利用概率密度的性质:()1f x dx +∞-∞=⎰,故()()()()03121001312424a a f x dx af x dx bf x dx f x dxb dx b +∞+∞+∞-∞-∞-∞=+=+=+=⎰⎰⎰⎰⎰ 所以整理得到234a b +=,故本题应选(A).二、填空题 (9) 【答案】0.【解析】因为 ()()22ln 1ln 1tttdy t e dx e -+==-+-,()()()()22222ln 12ln 11tt t td te d y dt t e t e e dx dt dx t -+⎡⎤=⋅=-⋅-+⋅-⎢⎥+⎣⎦,所以220t d y dx ==. (10)【答案】 4π-.t =,2x t =,2dx tdt =,利用分部积分法, 原式220cos 22cos 2sin t t tdt t tdt t d t πππ=⋅==⎰⎰⎰20002sin 2sin 4cos t t t tdt td t πππ⎡⎤=-=⎢⎥⎣⎦⎰⎰0004cos cos 4cos 4sin 4t t tdt t ππππππ⎡⎤=-=-=-⎢⎥⎣⎦⎰. (11) 【答案】0.【解析】12222LL L xydx x dy xydx x dy xydx x dy +=+++⎰⎰⎰()()()01221011x x dx x dx x x dx x dx -=+++-+-⎰⎰()()0122122xx dx x x dx -=++-⎰⎰1322310223223x x x x -⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭211203223⎛⎫⎛⎫=--++-= ⎪ ⎪⎝⎭⎝⎭(12) 【答案】23. 【解析】 ()2221221211000211212021r rrz d rdr zdxdydz d rdr zdz dxdydz d rdr dz d r rdrππππθθθθΩΩ⎛⎫⎪⋅ ⎪⎝⎭==-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰4211222r d r dr πθπ⎛⎫-⎪⎝⎭=⎰⎰126204122r r d πθπ⎛⎫- ⎪⎝⎭=⎰20112266322d πθπππ⋅===⎰.(13)【答案】6a =.【解析】因为由123,,ααα生成的向量空间维数为2,所以123(,,)2r ααα=. 对123(,,)ααα进行初等行变换:123112112112211013013(,,)1010130060202000a a a ααα⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪=→→ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以6a =.(14) 【答案】2.【解析】利用离散型随机变量概率分布的性质,知{}001!k k CP X k Ce k ∞∞======∑∑,整理得到1C e -=,即 {}111!!k e P X k e k k --===.故X 服从参数为1的泊松分布,则()()1,1E X D X ==,根据方差的计算公式有()()()222112E X D X E X =+=+=⎡⎤⎣⎦.三、解答题(15)【解析】对应齐次方程的特征方程为2320λλ-+=,解得特征根121,2λλ==,所以对应齐次方程的通解为212x x c y C e C e =+.设原方程的一个特解为*()xy x ax b e =+,则()()*22x y axax bx b e '=+++,()()*2422x y axax bx a b e ''=++++,代入原方程,解得1,2a b =-=-,故特解为*(2)xy x x e =--. 故方程的通解为*212(2)x x x c y y y C e C e x x e =+=+-+. (16)【解析】因为22222222111()()x x x t t t f x x t e dt xe dt te dt ---=-=-⎰⎰⎰,所以2224423311()2222x x t x x t f x x e dt x ex ex e dt----'=+-=⎰⎰,令()0f x '=,则0,1x x ==±.又22421()24x t x f x e dt x e --''=+⎰,则21(0)20t f e dt -''=<⎰,所以2211111(0)(0)(1)22t t f t e dt e e ---=-=-=-⎰是极大值.而1(1)40f e-''±=>,所以(1)0f ±=为极小值.又因为当1x ≥时,()0f x '>;01x ≤<时,()0f x '<;10x -≤<时,()0f x '>;1x <-时,()0f x '<,所以()f x 的单调递减区间为(,1)(0,1)-∞-,()f x 的单调递增区间为(1,0)(1,)-+∞.(17)【解析】 (I)当01x <<时0ln(1)x x <+<,故[]ln(1)nn t t +<,所以[]ln ln(1)ln nn t t t t +<,则[]11ln ln(1)ln nn t t dt t t dt +<⎰⎰()1,2,n =.(II)()111101ln ln ln 1n n n t t dt t t dt td t n +=-⋅=-+⎰⎰⎰ ()211n =+,故由 ()1210ln 1n n u t t dt n <<=+⎰,根据夹逼定理得()210lim lim01n n n u n →∞→∞≤≤=+,所以lim 0n n u →∞=.(18)【解析】(I) (1)1222(1)1122(1)(1)2(1)121lim lim (1)(1)2121n n n n n n n n n nx x n n xx n n +-++--→∞→∞--⋅+-+=--⋅--222(21)21lim lim 2121n n n x n x x n n →∞→∞--==⋅=++, 所以,当21x <,即11x -<<时,原级数绝对收敛.当21x >时,原级数发散,因此幂级数的收敛半径1R =.当1x =±时,11211(1)(1)2121n n n n n x n n --∞∞==--⋅=--∑∑,由莱布尼兹判别法知,此级数收敛,故原级数的收敛域为[]1,1-.(II) 设1122111(1)(1)()2121n n nn n n S x x x x n n --∞∞-==⎛⎫--=⋅=⋅⋅ ⎪--⎝⎭∑∑,其中令 12111(1)()21n n n S x xn -∞-=-=⋅-∑()1,1x ∈-, 所以有 12221111()(1)()n n n n n S x xx ∞∞---=='=-⋅=-∑∑ ()1,1x ∈-,从而有 12211()1()1S x x x '==--+ ()1,1x ∈-, 故 11201()(0)arctan 1xS x dx S x x =+=+⎰,()1,1x ∈-.1()S x 在1,1x =-上是连续的,所以()S x 在收敛域[]1,1-上是连续的.所以()arctan S x x x =⋅,[]1,1x ∈-.(19)【解析】 ( I )令()222,,1F x y z x y z yz =++--,故动点(),,P x y z 的切平面的法向量为()2,2,2x y z zy --,由切平面垂直xOy ,故所求曲线C 的方程为222120x y z yz z y ⎧++-=⎨-=⎩. ( II ) 由⎩⎨⎧=-=-++,02,1222y z yz z y x 消去z ,可得曲线C 在xOy 平面上的投影曲线所围成的xOy 上的区域223:{(,)|1}4D x y x y +≤,由()()x x yz z y x '='-++1222,由 dxdy zy yzz y dxdy y z x z dS 24412222--++=⎪⎪⎭⎫⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+=,故(2DDDx y zI x dxdy xdxdy ∑-==+=+⎰⎰⎰⎰⎰⎰12Dπ==⋅=. (20)【解析】因为方程组有两个不同的解,所以可以判断方程组增广矩阵的秩小于3,进而可以通过秩的关系求解方程组中未知参数,有以下两种方法.方法1:( I )已知Ax b =有2个不同的解,故()()3r A r A =<,对增广矩阵进行初等行变换,得111110101010111111a A a λλλλλλ⎛⎫⎛⎫ ⎪ ⎪=-→- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭22111111010101010110011a a λλλλλλλλλ⎛⎫⎛⎫⎪⎪→-→- ⎪ ⎪ ⎪ ⎪-----+⎝⎭⎝⎭ 当1λ=时,11111111000100010000000A a ⎛⎫⎛⎫⎪ ⎪→→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,此时,()()r A r A ≠,故Ax b =无解(舍去).当1λ=-时,111102010002A a -⎛⎫ ⎪→- ⎪ ⎪+⎝⎭,由于()()3r A r A =<,所以2a =-,故1λ=- ,2a =-.方法2:已知Ax b =有2个不同的解,故()()3r A r A =<,因此0A =,即211010(1)(1)011A λλλλλ=-=-+=,知1λ=或-1.当1λ=时,()1()2r A r A =≠=,此时,Ax b =无解,因此1λ=-.由()()r A r A =,得2a =-.( II ) 对增广矩阵做初等行变换31012111211121020102010102111100000000A ⎛⎫- ⎪----⎛⎫⎛⎫ ⎪⎪ ⎪⎪=-→-→- ⎪ ⎪ ⎪ ⎪ ⎪- ⎪⎝⎭⎝⎭ ⎪ ⎪⎝⎭可知原方程组等价为1323212x x x ⎧-=⎪⎪⎨⎪=-⎪⎩,写成向量的形式,即123332110210x x x x ⎛⎫⎪⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪=+- ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪ ⎪⎝⎭.因此Ax b =的通解为32110210x k ⎛⎫ ⎪⎛⎫ ⎪⎪⎪=+- ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪⎝⎭,其中k 为任意常数.(21)【解析】 ( I )由于二次型在正交变换x Qy =下的标准形为2212y y +,所以A 的特征值为1231,0λλλ===.由于Q 的第3列为22T ⎛ ⎝⎭,所以A 对应于30λ=的特征向量为22T⎛ ⎝⎭,记为3α. 由于A 是实对称矩阵,所以对应于不同特征值的特征向量是相互正交的,设属于121λλ==的特征向量为()123,,Tx x x α=,则30T αα=,即13022x x +=. 求得该方程组的基础解系为()()120,1,0,1,0,1TTαα==-,因此12,αα为属于特征值1λ=的两个线性无关的特征向量.由于12,αα是相互正交的,所以只需单位化:())1212120,1,0,1,0,1T Tααββαα====-. 取()12302,,10002Q ββα⎛⎪⎪==⎝⎭,则110T Q AQ ⎛⎫ ⎪=Λ= ⎪ ⎪⎝⎭,且1T Q Q -=, 故 1102201011022TA Q Q ⎛⎫- ⎪ ⎪=Λ= ⎪ ⎪- ⎪⎝⎭. ( II )A E +也是实对称矩阵,A 的特征值为1,1,0,所以A E +的特征值为2,2,1,由于A E +的特征值全大于零,故A E +是正定矩阵.(22)【解析】当给出二维正态随机变量的的概率密度(),f x y 后,要求条件概率密度|(|)Y X f y x ,可以根据条件概率公式|(,)(|)()Y X X f x y f y x f x =来进行计算.本题中还有待定参数,A 要根据概率密度的性质求解,具体方法如下.()()22222222()(),xxy y y x x xy x X f x f x y dy A e dy A e dy Ae e dy +∞+∞+∞+∞-+--------∞-∞-∞-∞====⎰⎰⎰⎰2,x x -=-∞<<+∞.根据概率密度性质有()21x X f x dx edx A π+∞+∞--∞-∞===⎰,即1A π-=,故()2x X f x -=,x -∞<<+∞.当x -∞<<+∞时,有条件概率密度()()()22222222(),,,x xy y x xy y x y Y X X f x y f y x x y f x -+--+---==-∞<<+∞-∞<<+∞.(23)【解析】()()()22123~,1,~,,~,N B n N B n N B n θθθθ--()()()()31122331i i i E T E a N a E N a E N a E N =⎛⎫==++ ⎪⎝⎭∑()()221231a n a n a n θθθθ=-+-+()()212132na n a a n a a θθ=+-+-.因为T 是θ的无偏估计量,所以()E T θ=,即得()()12132010na n a a n a a =⎧⎪-=⎨⎪-=⎩,整理得到10a =,21,a n =31a n=.所以统计量 ()()12323111110T N N N N N n N n n n n=⨯+⨯+⨯=⨯+=⨯-.注意到1(,1)N B n θ-,故()()()11211D T D n N D N n n⎡⎤=⨯-=⨯⎢⎥⎣⎦()11n θθ=-.。
2010考研数学(一)真题及参考答案一、选择题(1)、极限2lim ()()x x x x a x b ®¥æö=ç÷-+èø( C ) A 、1 B 、e C 、a be - D 、b ae-【详解】【详解】()()2222ln 1()()()()()()()()lim lim lim ()()lim lim xx x x x x a x b x a x b x x x a b x ab a b x abxx x a x b x a x b x x a bx e e x a x b ee eæöæö-ç÷ç÷ç÷ç÷-+-+èøèø®¥®¥®¥-+æö-+ç÷ç÷-+-+èø®¥®¥-æö==ç÷-+èø===(2)、设函数(,)z z x y =,由方程(,)0y z F x x =确定,其中F 为可微函数,且20F ¢¹,则z zx y u y¶¶+=¶¶( B )A 、xB 、zC 、x -D z -【详解】【详解】 等式两边求全微分得:121212()()()0x x y y z z Fu F v dx Fu F v dy Fu F v dz ¢¢¢¢¢¢+++++=, 所以有,1212x x z z F u F v z x F u F v ¢¢+¶=-¢¢¶+,1212yy z z Fu F v z y Fu F v ¢¢+¶=-¢¢¶+, 其中,2x y u x =-,1y u x =,0z u =,2x z v x =-,0yv =,1z v x=,代入即可。
2010考研数一真题及解析考研数学一是众多考研学子面临的一项重要挑战,2010 年的考研数一真题具有一定的代表性和难度。
接下来,我们将对这套真题进行详细的解析。
首先是选择题部分。
第 1 题考查了函数的基本性质。
给出了几个函数,要求判断其奇偶性。
这需要我们熟练掌握奇偶函数的定义和常见函数的性质,通过代入和计算来得出结论。
第 2 题是关于极限的计算。
这种类型的题目通常需要运用极限的运算法则和常见的极限公式,对式子进行变形和化简,从而求出极限值。
第 3 题涉及到导数的定义和应用。
需要准确理解导数的概念,通过给定的条件判断函数在某一点处的导数情况。
第 4 题考查了曲线的凹凸性和拐点。
要根据函数的二阶导数来判断曲线的凹凸性,并找出拐点。
第 5 题是关于矩阵的特征值和特征向量。
需要掌握矩阵特征值和特征向量的定义和计算方法,通过求解特征方程来得出答案。
第 6 题是线性方程组的相关问题。
要判断线性方程组解的情况,需要运用矩阵的秩等知识。
接下来是填空题部分。
第 7 题是求不定积分。
这需要熟练掌握积分的基本公式和方法,如换元积分法、分部积分法等。
第 8 题考查了向量的运算。
需要对向量的点积、叉积等运算规则熟悉掌握。
第 9 题是关于曲线积分。
要根据曲线积分的计算公式和相关定理进行计算。
第 10 题是概率论中的问题,涉及到概率密度函数和期望的计算。
然后是解答题部分。
第 11 题是求函数的极值和最值。
这需要先求出函数的导数,找出驻点和不可导点,然后判断函数在这些点处的单调性,从而得出极值和最值。
第 12 题是计算二重积分。
要根据积分区域的特点选择合适的积分顺序,然后进行计算。
第 13 题是关于幂级数的收敛域和和函数。
需要运用幂级数的收敛半径和收敛区间的求法,以及求和函数的常见方法。
第 14 题是求解常微分方程。
要根据方程的类型选择合适的解法,如分离变量法、一阶线性方程的解法等。
第 15 题是关于矩阵的相似对角化。
需要求出矩阵的特征值和特征向量,判断是否可相似对角化,并求出相似对角矩阵。
您所下载的资料来源于弘毅考研资料下载中心获取更多考研资料,请访问
2010年考研数学一真题及答案
您所下载的资料来源于弘毅考研资料下载中心
获取更多考研资料,请访问
您所下载的资料来源于弘毅考研资料下载中心
获取更多考研资料,请访问
您所下载的资料来源于弘毅考研资料下载中心
获取更多考研资料,请访问
您所下载的资料来源于弘毅考研资料下载中心
获取更多考研资料,请访问
您所下载的资料来源于弘毅考研资料下载中心
获取更多考研资料,请访问
您所下载的资料来源于弘毅考研资料下载中心
获取更多考研资料,请访问
您所下载的资料来源于弘毅考研资料下载中心
获取更多考研资料,请访问
您所下载的资料来源于弘毅考研资料下载中心
获取更多考研资料,请访问
您所下载的资料来源于弘毅考研资料下载中心
获取更多考研资料,请访问
您所下载的资料来源于弘毅考研资料下载中心
获取更多考研资料,请访问
您所下载的资料来源于弘毅考研资料下载中心
获取更多考研资料,请访问
您所下载的资料来源于弘毅考研资料下载中心
获取更多考研资料,请访问
您所下载的资料来源于弘毅考研资料下载中心
获取更多考研资料,请访问
您所下载的资料来源于弘毅考研资料下载中心
获取更多考研资料,请访问
您所下载的资料来源于弘毅考研资料下载中心
获取更多考研资料,请访问。
2010考研数学(一)真题和参考答案一、选择题 (1)、极限2lim ()()xx xx a x b →∞⎛⎫=⎪-+⎝⎭( C ) A 、1 B 、e C 、a be - D 、b ae-【详解】()()2222ln 1()()()()()()()()lim lim lim ()()lim lim xx x xx x a x b x a x b x x x a b x ab a b x abxx x a x b x a x b x x a bxe ex a x b ee e ⎛⎫⎛⎫-⎪ ⎪ ⎪ ⎪-+-+⎝⎭⎝⎭→∞→∞→∞-+⎛⎫-+ ⎪ ⎪-+-+⎝⎭→∞→∞-⎛⎫== ⎪-+⎝⎭===(2)、设函数(,)z z x y =,由方程(,)0y z F x x =确定,其中F 为可微函数,且20F '≠,则z z xy u y∂∂+=∂∂( B )A 、xB 、zC 、x -D z -【详解】 等式两边求全微分得:121212()()()0x x y y z z Fu F v dx Fu F v dy Fu F v dz ''''''+++++=,所以有,1212xx z z Fu F v z x Fu F v ''+∂=-''∂+,1212y yz zFu F v z y Fu F v ''+∂=-''∂+, 其中,2x y u x =-,1y u x =,0z u =,2x z v x =-,0yv =,1z v x =,代入即可。
(3)、设,m n 是正整数,则反常积分210ln (1)mnx dx x-⎰的收敛性( D )(A)仅与m 的取值有关 (B)仅与n 有关(C)与,m n 都有关 (D)都无关 【详解】:显然0,1x x ==是两个瑕点,有222111212ln (1)ln (1)ln (1)mmmnnnx x x dx dx dx xxx---=+⎰⎰⎰对于2120ln (1)m nx dx x-⎰的瑕点0x =,当0x +→时212ln (1)ln (1)mmn nx x x x--=-等价于221(1)m m nx--,而21120m nxdx -⎰收敛(因,m n 是正整数211m n ⇒->-),故2120ln (1)mn x dx x -⎰收敛;对于2112ln (1)m n x dx x -⎰的瑕点1x =,当1(1,1)(0)2x δδ∈-<<时12122ln (1)2ln (1)2(1)m n m n m n x x x x -<-<-,而2112(1)m x d x -⎰显然收敛,故2112ln (1)mnx dx x-⎰收敛。
20XX年考研数学一真题一、选择题( 1 8 小题,每小题 4 分,共 32 分。
下列每题给出的四个选项中,只有一个选项是符合题目要求的。
)(1) 极限(A)1(B)(C)(D)【考点】 C。
【解析】【方法一】这是一个“”型极限【方法二】原式而(等价无穷小代换 )则【方法三】对于“”型极限可利用基本结论:若,,且则,求极限由于则【方法四】综上所述,本题正确答案是C。
【考点】高等数学—函数、极限、连续—无穷小量的性质及无穷小量的比较,极限的四则运算,两个重要极限(2)设函数由方程确定,其中为可微函数,且,则。
(A)(B)(C)(D)B。
【答案】【解析】因为,所以综上所述,本题正确答案是(B)。
【考点】高等数学—多元函数微分学—多元函数的偏导数和全微分(3) 设为正整数,则反常积分的收敛性(A)仅与的取值有关(B)仅与的取值有关(C)与的取值都有关(D)与的取值都无关【答案】 D。
【解析】本题主要考察反常积分的敛散性,题中的被积函数分别在和时无界在反常积分中,被积函数只在时无界。
由于,已知反常积分收敛,则也收敛。
在反常积分中,被积函数只在时无界,由于(洛必达法则 )且反常积分收敛,所以收敛综上所述,无论取任何正整数,反常积分收敛。
综上所述,本题正确答案是D。
【考点】高等数学—一元函数积分学—反常积分(4)(A)(B)(C)(D)D。
【答案】【解析】因为综上所述,本题正确答案是C。
【考点】高等数学—多元函数积分学—二重积分与三重积分的概念、性质、计算和应用(5)设为矩阵,为矩阵,为阶单位矩阵,若,则(A)秩秩(B)秩秩(C)秩秩(D)秩秩【答案】 A。
【解析】因为为阶单位矩阵,知又因,故另一方面,为矩阵,为矩阵,又有可得秩秩综上所述,本题正确答案是A。
【考点】线性代数—矩阵—矩阵的秩(6) 设为4阶实对称矩阵,且,若的秩为3,则相似于(A)(B)(C)(D)【答案】D。
【解析】由知,那么对于推出来所以的特征值只能是、再由是实对称矩阵必有,而是的特征值,那么由,可知 D正确综上所述,本题正确答案是D。
2010年全国硕士研究生入学统一考试数学(一)试卷一、选择题(1-8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1)极限2lim ()()xx x x a x b →∞⎡⎤⎢⎥-+⎣⎦= (A)1 (B)e (C)e a b - (D)e b a -(2)设函数(,)z z x y =由方程(,)0y zF x x=确定,其中F 为可微函数,且20,F '≠则z z xy x y∂∂+∂∂= (A)x (B)z (C)x - (D)z - (3)设,m n 为正整数,则反常积分210ln (1)mnx dx x-⎰的收敛性(A)仅与m 取值有关 (B)仅与n 取值有关(C)与,m n 取值都有关 (D)与,m n 取值都无关 (4)2211lim ()()nnx i j nn i n j →∞==++∑∑= (A)12001(1)(1)xdx dy x y ++⎰⎰ (B)1001(1)(1)xdx dy x y ++⎰⎰(C)11001(1)(1)dx dy x y ++⎰⎰ (D)112001(1)(1)dx dy x y ++⎰⎰(5)设A 为m n ⨯型矩阵,B 为n m ⨯型矩阵,若,=AB E 则(A)秩(),m =A 秩()m =B (B)秩(),m =A 秩()n =B(C)秩(),n =A 秩()m =B (D)秩(),n =A 秩()n =B (6)设A 为4阶对称矩阵,且20,+=A A 若A 的秩为3,则A 相似于(A)1110⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭(B)1110⎛⎫⎪⎪ ⎪- ⎪⎝⎭(C)1110⎛⎫⎪- ⎪ ⎪- ⎪⎝⎭(D)1110-⎛⎫⎪- ⎪ ⎪- ⎪⎝⎭ (7)设随机变量X 的分布函数()F x = 00101,21e 2x x x x -<≤≤->则{1}P X ==(A)0 (B)1 (C)11e 2-- (D)11e --(8)设1()f x 为标准正态分布的概率密度2,()f x 为[1,3]-上均匀分布的概率密度,()f x =12()()af x bf xx x ≤> (0,0)a b >>为概率密度,则,a b 应满足(A)234a b += (B)324a b +=(C)1a b += (D)2a b +=二、填空题(9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.)(9)设20e ,ln(1),ttx y u du -==+⎰求220t d ydx == .(10)2cos x xdy π⎰= .(11)已知曲线L 的方程为1{[1,1]},y x x =-∈-起点是(1,0),-终点是(1,0),则曲线积分2L xydx x dy +⎰= .(12)设22{(,,)|1},x y z x y z Ω=+≤≤则Ω的形心的竖坐标z = .(13)设123(1,2,1,0),(1,1,0,2),(2,1,1,),T T T α=-==ααα若由123,,ααα形成的向量空间的维数是2,则α= . (14)设随机变量X 概率分布为{}(0,1,2,),!CP X k k k ===则2EX = .三、解答题(15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.) (15)(本题满分10分)求微分方程322e x y y y x '''-+=的通解.(16)(本题满分10分)求函数221()()e xt f x x t dt -=-⎰的单调区间与极值.(17)(本题满分10分)(1)比较10ln [ln(1)]n t t dt +⎰与10ln (1,2,)n t t dt n =⎰的大小,说明理由 (1) 记10ln [ln(1)](1,2,),n n u t t dt n =+=⎰求极限lim .n x u →∞(18)(本题满分10分)求幂级数121(1)21n nn x n -∞=--∑的收敛域及和函数.(19)(本题满分10分)设P 为椭球面222:1S x y z yz ++-=上的动点,若S 在点P 的切平面与xoy 面垂直,求P 点的轨迹,C 并计算曲面积分22(3)2,44x y z I dS y z yz∑+-=++-⎰⎰其中∑是椭球面S 位于曲线C 上方的部分.(20)(本题满分11分)设11010,1,111aλλλ⎛⎫⎛⎫⎪ ⎪=-=⎪ ⎪⎪ ⎪⎝⎭⎝⎭A b已知线性方程组=A x b存在两个不同的解.(1)求,.aλ(2)求方程组=A x b的通解.(21)(本题满分11分)设二次型123(,,)T f x x x =A x x 在正交变换x y =Q 下的标准形为2212,y y +且Q 的第三列为22(,0,).22T(1)求.A(2)证明+A E 为正定矩阵,其中E 为3阶单位矩阵.(22)(本题满分11分) 设二维随机变量()X Y +的概率密度为2222(,)e ,,,x xy y f x y A x y -+-=-∞<<∞-∞<<∞求常数及A 条件概率密度|(|).Y X f y x(23)(本题满分11 分) 设总体X 的概率分布为X 123P1θ-2θθ-2θ其中(0,1)θ∈未知,以i N 来表示来自总体X 的简单随机样本(样本容量为n )中等于i 的个数(1,2,3),i =试求常数123,,,a a a 使31i i i T a N ==∑为θ的无偏估计量,并求T 的方差.2010年考研数学一真题及答案。
2010年全国硕士研究生入学统一考试数学一试题一、选择题(1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上.) (1) 极限2lim ()()xx x x a x b →∞⎡⎤=⎢⎥-+⎣⎦( ) (A) 1. (B) e . (C) a be -. (D) b ae-.(2) 设函数(,)z z x y =,由方程,0y z F x x ⎛⎫=⎪⎝⎭确定,其中F 为可微函数,且20F '≠,则z zxy x y∂∂+=∂∂( ) (A) x . (B) z . (C) x -. (D) z -.(3) 设,m n 是正整数,则反常积分⎰的收敛性 ( )(A) 仅与m 的取值有关. (B)仅与n 的取值有关. (C) 与,m n 取值都有关. (D) 与,m n 取值都无关. (4) ()()2211limn nn i j nn i n j →∞===++∑∑ ( ) (A)()()120111xdx dy x y ++⎰⎰. (B) ()()100111x dx dy x y ++⎰⎰. (C)()()11111dx dy x y ++⎰⎰. (D) ()()1120111dx dy x y ++⎰⎰. (5) 设A 为m n ⨯矩阵,B 为n m ⨯矩阵,E 为m 阶单位矩阵,若AB E =,则 ( )(A) 秩()r A m =,秩()r B m =. (B) 秩()r A m =,秩()r B n =. (C) 秩()r A n =,秩()r B m =. (D) 秩()r A n =,秩()r B n =. (6) 设A 为4阶实对称矩阵,且2A A O +=,若A 的秩为3,则A 相似于 ( )(A) 1110⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭. (B) 1110⎛⎫ ⎪⎪ ⎪- ⎪⎝⎭.(C) 1110⎛⎫ ⎪- ⎪ ⎪- ⎪⎝⎭. (D) 1110-⎛⎫ ⎪- ⎪ ⎪- ⎪⎝⎭. (7) 设随机变量X 的分布函数0,1(),0121,1x x F x x e x -<⎧⎪⎪=≤<⎨⎪-≥⎪⎩,则{}1P X == ( ) (A) 0. (B)12. (C) 112e --. (D) 11e --. (8) 设1()f x 为标准正态分布的概率密度,2()f x 为[]1,3-上均匀分布的概率密度,若12(),0()(),0af x x f x bf x x ≤⎧=⎨>⎩,(0,0)a b >>为概率密度,则,a b 应满足 ( ) (A) 234a b +=. (B) 324a b +=. (C) 1a b +=. (D) 2a b +=.二、填空题(9 14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上.) (9) 设()20,ln 1,t tx e y u du -⎧=⎪⎨=+⎪⎩⎰ 求220t d y dx == .(10)2π=⎰.(11) 已知曲线L 的方程为[]{}11,1y x x =- ∈-,起点是()1.0-,终点是()1,0,则曲线积分2Lxydx x dy +=⎰.(12) 设(){}22,,1x y z xy z Ω=+≤≤,则Ω的形心的竖坐标z = .(13) 设()()()1231,2,1,0,1,1,0,2,2,1,1,TTTa ααα=-==,若由123,,ααα生成的向量空间的维数是2,则a = .(14) 设随机变量X 的概率分布为{}!C P X k k ==,0,1,2,k = ,则()2E X = .三、解答题(15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.)求微分方程322x y y y xe '''-+=的通解. (16)(本题满分10分)求函数()()2221x t f x xt e dt -=-⎰的单调区间与极值.(17)(本题满分10分)(I)比较()1ln ln 1n t t dt +⎡⎤⎣⎦⎰与10ln nt t dt ⎰()1,2,n = 的大小,说明理由;(II)记()1ln ln 1nn u t t dt =+⎡⎤⎣⎦⎰()1,2,n = ,求极限lim n n u →∞. (18)(本题满分10分)求幂级数()121121n n n x n -∞=--∑的收敛域及和函数.(19)(本题满分10分)设P 为椭球面222:1S x y z yz ++-=上的动点,若S 在点P 处的切平面与xOy 面垂直,求点P 的轨迹C ,并计算曲面积分2x y zI ∑-=,其中∑是椭球面S 位于曲线C 上方的部分.(20)(本题满分11分)设110111a A b λλλ ⎛⎫⎛⎫ ⎪ ⎪= - 0= ⎪ ⎪ ⎪ ⎪1 1 ⎝⎭⎝⎭,,已知线性方程组Ax b =存在两个不同的解.( I ) 求λ,a ;( II ) 求方程组Ax b =的通解. (21)(本题满分11 分)已知二次型123(,,)T f x x x x Ax =在正交变换x Qy =下的标准形为2212y y +,且Q 的第三列为T. ( I ) 求矩阵A ;( II ) 证明A E +为正定矩阵,其中E 为3阶单位矩阵. (22)(本题满分11分)设二维随机变量(,)X Y 的概率密度为2222(,)x xy y f x y Ae -+-=,x -∞<<+∞,y -∞<<+∞,求常数A 及条件概率密度|(|)Y X f y x .设总体X其中参数()0,1θ∈未知,以i N 表示来自总体X 的简单随机样本(样本容量为n )中等于i 的个数(1,2,3i =).试求常数123,,a a a ,使31iii T a N ==∑为θ的无偏估计量,并求T 的方差.2010年全国硕士研究生入学统一考试数学一试题参考答案一、选择题(1)【答案】 (C).【解析】本题属于未定式求极限,极限为1∞型,故可以用“e 的抬起法”求解.()()2lim xx x x a x b →∞⎡⎤⎢⎥-+⎣⎦()()2ln lim x x x a x b x e ⋅-+→∞=()()2lim ln x x x x a x b e →∞⋅-+=, 其中又因为()()2222()()lim ln lim ln 1()()()()lim()()()lim()()x x x x x x x a x b x x x a x b x a x b x x x a x b x a x b a b x abxx a x b a b→∞→∞→∞→∞--+⋅=+-+-+⎡⎤--+⎣⎦=-+-+=-+=-⎡⎤⎣⎦故原式极限为a be-,所以应该选择(C).(2)【答案】 (B).【解析】12221212222x z y z y zF F F F F yF zF zx x x x x F F xF F x⎛⎫⎛⎫''''-+-⋅+⋅ ⎪ ⎪'''+∂⎝⎭⎝⎭=-=-==∂''''⋅, 112211y z F F F z x y F F F x'⋅''∂=-=-=-∂'''⋅, 1212222yF zF yF F z z z x y z x y F F F ''''+⋅∂∂+=-==∂∂'''. (3) 【答案】 (D).【解析】0x =与1x =都是瑕点.应分成dx dx =+⎰,用比较判别法的极限形式,对于,由于121012[ln (1)]lim 11mnx n mx xx+→--=.显然,当1201n m<-<,则该反常积分收敛. 当120n m -≤,1210[ln (1)]lim mx nx x+→-存在,此时实际上不是反常积分,故收敛.故不论,m n 是什么正整数,总收敛.对于,取01δ<<,不论,m n 是什么正整数,1211211[ln (1)]lim lim ln (1)(1)01(1)mnmx x x xx x x δδ--→→-=--=-,所以收敛,故选(D).(4)【答案】 (D). 【解析】()()222211111()nnnn i j i j n nn i n j n i n j =====++++∑∑∑∑22111()()n n j i n n j n i ===++∑∑ 12220211111lim lim ,11()nn n n j j n dy j n jn y n→∞→∞====+++∑∑⎰ 1011111lim lim ,11()nn n n i i n dx i n i n x n→∞→∞====+++∑∑⎰()()2222111111lim lim()()n nn nn n i j j i n n j n i n i n j →∞→∞=====++++∑∑∑∑ 221(lim )nn j n n j→∞==+∑1(lim )nn i nn i →∞=+∑ 1120011()()11dx dy x y =++⎰⎰()()11200111dx dy x y =++⎰⎰. (5)【答案】 (A).【解析】由于AB E =,故()()r AB r E m ==.又由于()(),()()r AB r A r AB r B ≤≤,故(),()m r A m r B ≤≤ ①由于A 为m n ⨯矩阵,B 为n m ⨯矩阵,故(),()r A m r B m ≤≤ ②由①、②可得(),()r A m r B m ==,故选A. (6)【答案】 (D).【解析】设λ为A 的特征值,由于2A A O +=,所以20λλ+=,即(1)0λλ+=,这样A 的特征值只能为-1或0. 由于A 为实对称矩阵,故A 可相似对角化,即A Λ ,()()3r A r =Λ=,因此,1110-⎛⎫ ⎪- ⎪Λ= ⎪- ⎪⎝⎭,即1110A -⎛⎫ ⎪- ⎪Λ= ⎪- ⎪⎝⎭. (7) 【答案】 (C).【解析】离散型随机变量的分布函数是跳跃的阶梯形分段函数,连续型随机变量的分布函数是连续函数.观察本题中()F x 的形式,得到随机变量X 既不是离散型随机变量,也不是连续型随机变量,所以求随机变量在一点处的概率,只能利用分布函数的定义.根据分布函数的定义,函数在某一点的概率可以写成两个区间内概率的差,即{}{}{}()()1111111110122P X P X P X F F e e --==≤-<=--=--=-,故本题选(C).(8)【答案】 (A).【解析】根据题意知,()221x f x -=(x -∞<<+∞),()21,1340,x f x ⎧ -≤≤⎪=⎨⎪ ⎩其它利用概率密度的性质:()1f x dx +∞-∞=⎰,故()()()()03121001312424a a f x dx af x dx bf x dx f x dxb dx b +∞+∞+∞-∞-∞-∞=+=+=+=⎰⎰⎰⎰⎰所以整理得到234a b +=,故本题应选(A).二、填空题 (9) 【答案】0.【解析】因为 ()()22ln 1ln 1ttt dy t e dx e-+==-+-, ()()()()22222ln 12ln 11tt t td te d y dt t e t e e dx dt dx t -+⎡⎤=⋅=-⋅-+⋅-⎢⎥+⎣⎦,所以220t d y dx ==. (10)【答案】 4π-.t =,2x t =,2dx tdt =,利用分部积分法, 原式220cos 22cos 2sin t t tdt t tdt t d t πππ=⋅==⎰⎰⎰20002sin 2sin 4cos t t t tdt td t πππ⎡⎤=-=⎢⎥⎣⎦⎰⎰0004cos cos 4cos 4sin 4t t tdt t ππππππ⎡⎤=-=-=-⎢⎥⎣⎦⎰.(11) 【答案】0.【解析】12222LL L xydx x dy xydx x dy xydx x dy +=+++⎰⎰⎰()()()0122111x x dx x dx x x dx x dx -=+++-+-⎰⎰()()0122122xx dx x x dx -=++-⎰⎰1322310223223x x x x -⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭211203223⎛⎫⎛⎫=--++-= ⎪ ⎪⎝⎭⎝⎭(12) 【答案】23. 【解析】 ()2221221211000211212021r rrz d rdr zdxdydz d rdr zdz dxdydz d rdr dz d r rdrππππθθθθΩΩ⎛⎫⎪⋅ ⎪⎝⎭==-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰4211222r d r dr πθπ⎛⎫-⎪⎝⎭=⎰⎰126204122r r d πθ⎛⎫- ⎪⎝⎭=⎰20112266322d πθπππ⋅===⎰. (13)【答案】6a =.【解析】因为由123,,ααα生成的向量空间维数为2,所以123(,,)2r ααα=. 对123(,,)ααα进行初等行变换:123112112112211013013(,,)1010130060202000a a a ααα⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪--⎪ ⎪ ⎪=→→⎪ ⎪ ⎪-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以6a =.(14) 【答案】2.【解析】利用离散型随机变量概率分布的性质,知{}001!k k CP X k Ce k ∞∞======∑∑,整理得到1C e -=,即 {}111!!k e P X k e k k --===.故X 服从参数为1的泊松分布,则()()1,1E X D X ==,根据方差的计算公式有()()()222112E X D X E X =+=+=⎡⎤⎣⎦. 三、解答题(15)【解析】对应齐次方程的特征方程为2320λλ-+=,解得特征根121,2λλ==,所以对应齐次方程的通解为212x x c y C e C e =+.设原方程的一个特解为*()x y x ax b e =+,则()()*22x y axax bx b e '=+++,()()*2422x y axax bx a b e ''=++++,代入原方程,解得1,2a b =-=-,故特解为*(2)xy x x e =--. 故方程的通解为*212(2)x x x c y y y C e C e x x e =+=+-+. (16)【解析】因为22222222111()()x x x t t t f x x t e dt xe dt te dt ---=-=-⎰⎰⎰,所以2224423311()2222x x t x x t f x x e dt x ex ex e dt----'=+-=⎰⎰,令()0f x '=,则0,1x x ==±.又22421()24x t x f x e dt x e --''=+⎰,则21(0)20t f e dt -''=<⎰,所以2211111(0)(0)(1)22t t f t e dt e e ---=-=-=-⎰是极大值.而1(1)40f e -''±=>,所以(1)0f ±=为极小值.又因为当1x ≥时,()0f x '>;01x ≤<时,()0f x '<;10x -≤<时,()0f x '>;1x <-时,()0f x '<,所以()f x 的单调递减区间为(,1)(0,1)-∞- ,()f x 的单调递增区间为(1,0)(1,)-+∞ .(17)【解析】 (I)当01x <<时0ln(1)x x <+<,故[]ln(1)nnt t +<,所以[]ln ln(1)ln nn t t t t +<,则[]11ln ln(1)ln nn t t dt t t dt +<⎰⎰()1,2,n = .(II)()111101ln ln ln 1n n n t t dt t t dt td t n +=-⋅=-+⎰⎰⎰ ()211n =+,故由 ()1210ln 1n n u t t dt n <<=+⎰,根据夹逼定理得()210lim lim01n n n u n →∞→∞≤≤=+,所以lim 0n n u →∞=.(18)【解析】(I) (1)1222(1)1122(1)(1)2(1)121lim lim (1)(1)2121n n n n n n n n n nx x n n xx n n +-++--→∞→∞--⋅+-+=--⋅--222(21)21lim lim 2121n n n x n x x n n →∞→∞--==⋅=++, 所以,当21x <,即11x -<<时,原级数绝对收敛.当21x >时,原级数发散,因此幂级数的收敛半径1R =.当1x =±时,11211(1)(1)2121n n n n n x n n --∞∞==--⋅=--∑∑,由莱布尼兹判别法知,此级数收敛,故原级数的收敛域为[]1,1-.(II) 设1122111(1)(1)()2121n n nn n n S x x x x n n --∞∞-==⎛⎫--=⋅=⋅⋅ ⎪--⎝⎭∑∑,其中令12111(1)()21n n n S x x n -∞-=-=⋅-∑()1,1x ∈-,所以有 12221111()(1)()n n n n n S x xx ∞∞---=='=-⋅=-∑∑ ()1,1x ∈-,从而有 12211()1()1S x x x '==--+ ()1,1x ∈-, 故 11201()(0)arctan 1xS x dx S x x =+=+⎰,()1,1x ∈-.1()S x 在1,1x =-上是连续的,所以()S x 在收敛域[]1,1-上是连续的.所以()arctan S x x x =⋅,[]1,1x ∈-.(19)【解析】 ( I )令()222,,1F x y z x y z yz =++--,故动点(),,P x y z 的切平面的法向量为()2,2,2x y z zy --,由切平面垂直xOy ,故所求曲线C 的方程为222120x y z yz z y ⎧++-=⎨-=⎩. ( II ) 由⎩⎨⎧=-=-++,02,1222y z yz z y x 消去z ,可得曲线C 在xOy 平面上的投影曲线所围成的xOy 上的区域223:{(,)|1}4D x y x y +≤,由()()x x yz z y x '='-++1222,由dxdy zy yzz y dxdy y z x z dS 24412222--++=⎪⎪⎭⎫⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+=,故(2DDDx y zI x dxdy xdxdy ∑-==+=+⎰⎰⎰⎰⎰⎰12Dπ==⋅=. (20)【解析】因为方程组有两个不同的解,所以可以判断方程组增广矩阵的秩小于3,进而可以通过秩的关系求解方程组中未知参数,有以下两种方法.方法1:( I )已知Ax b =有2个不同的解,故()()3r A r A =<,对增广矩阵进行初等行变换,得111110101010111111a A a λλλλλλ⎛⎫⎛⎫⎪⎪=-→- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭22111111010101010110011a a λλλλλλλλλ⎛⎫⎛⎫⎪⎪→-→- ⎪ ⎪ ⎪ ⎪-----+⎝⎭⎝⎭当1λ=时,11111111000100010000000A a ⎛⎫⎛⎫⎪ ⎪→→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,此时,()()r A r A ≠,故Ax b =无解(舍去).当1λ=-时,111102010002A a -⎛⎫ ⎪→- ⎪ ⎪+⎝⎭,由于()()3r A r A =<,所以2a =-,故1λ=- ,2a =-. 方法2:已知Ax b =有2个不同的解,故()()3r A r A =<,因此0A =,即211010(1)(1)011A λλλλλ=-=-+=,知1λ=或-1.当1λ=时,()1()2r A r A =≠=,此时,Ax b =无解,因此1λ=-.由()()r A r A =,得2a =-.( II ) 对增广矩阵做初等行变换31012111211121020102010102111100000000A ⎛⎫- ⎪----⎛⎫⎛⎫ ⎪⎪ ⎪⎪=-→-→-⎪ ⎪ ⎪ ⎪ ⎪- ⎪⎝⎭⎝⎭ ⎪ ⎪⎝⎭可知原方程组等价为1323212x x x ⎧-=⎪⎪⎨⎪=-⎪⎩,写成向量的形式,即123332110210x x x x ⎛⎫⎪⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=+- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪ ⎪⎝⎭.因此Ax b =的通解为32110210x k ⎛⎫⎪⎛⎫ ⎪ ⎪ ⎪=+- ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪⎝⎭,其中k 为任意常数.(21)【解析】 ( I )由于二次型在正交变换x Qy =下的标准形为2212y y +,所以A 的特征值为1231,0λλλ===.由于Q 的第3列为,0,22T ⎛ ⎝⎭,所以A 对应于30λ=的特征向量为22T⎛ ⎝⎭,记为3α. 由于A 是实对称矩阵,所以对应于不同特征值的特征向量是相互正交的,设属于121λλ==的特征向量为()123,,Tx x x α=,则30T αα=,130x =. 求得该方程组的基础解系为()()120,1,0,1,0,1TTαα==-,因此12,αα为属于特征值1λ=的两个线性无关的特征向量.由于12,αα是相互正交的,所以只需单位化:())1212120,1,0,1,0,1T Tααββαα====-. 取()1230,,10002Q ββα⎛⎪⎪==⎝⎭,则110T Q AQ ⎛⎫ ⎪=Λ= ⎪ ⎪⎝⎭,且1T Q Q -=, 故 1102201011022TA Q Q ⎛⎫- ⎪ ⎪=Λ= ⎪ ⎪- ⎪⎝⎭. ( II )A E +也是实对称矩阵,A 的特征值为1,1,0,所以A E +的特征值为2,2,1,由于A E +的特征值全大于零,故A E +是正定矩阵.(22)【解析】当给出二维正态随机变量的的概率密度(),f x y 后,要求条件概率密度|(|)Y X f y x ,可以根据条件概率公式|(,)(|)()Y X X f x y f y x f x =来进行计算.本题中还有待定参数,A 要根据概率密度的性质求解,具体方法如下.()()22222222()(),xxy y y x x xy x X f x f x y dy A e dy A e dy Ae e dy +∞+∞+∞+∞-+--------∞-∞-∞-∞====⎰⎰⎰⎰2,x x -=-∞<<+∞.根据概率密度性质有()21x X f x dx e dx A π+∞+∞--∞-∞===⎰,即1A π-=,故()2x X f x -=,x -∞<<+∞.当x -∞<<+∞时,有条件概率密度()()()22222222(),,,x xy y x xy y x y Y X X f x y f y x x y f x -+--+---==-∞<<+∞-∞<<+∞.(23)【解析】()()()22123~,1,~,,~,N B n N B n N B n θθθθ--()()()()31122331i i i E T E a N a E N a E N a E N =⎛⎫==++ ⎪⎝⎭∑()()221231a n a n a n θθθθ=-+-+()()212132na n a a n a a θθ=+-+-.因为T 是θ的无偏估计量,所以()E T θ=,即得()()12132010na n a a n a a =⎧⎪-=⎨⎪-=⎩,整理得到10a =,21,a n = 31a n=.所以统计量()()12323111110T N N N N N n N n n n n=⨯+⨯+⨯=⨯+=⨯-.注意到1(,1)N B n θ- ,故()()()11211D T D n N D N n n⎡⎤=⨯-=⨯⎢⎥⎣⎦()11n θθ=-.。
2010年全国硕士研究生入学统一考试数学一试题一、选择题:1~8小题,每小题4分,共32分,下列每题给出的四个选项中,只有一个选项符合题目要求,请将所选项前的字母填在答题纸...指定位置上. (1)极限2lim ( )()()xx x x a x b →∞⎡⎤=⎢⎥-+⎣⎦(A)1 (B)e(C)a be-(D)b ae-答案:C 详解:2lim ()()xx x x a x b →∞⎡⎤⎢⎥-+⎣⎦=2233221ln ()()()()lim lim lim xxx x bx abxx x x a x b a bx a x b x ax bx abx x x e e ee⎛⎫-+-- ⎪⋅ ⎪-+--+⎝⎭-+-→∞→∞→∞===(2)设函数(),z z x y =,由方程(,)0y zF x x=确定,其中F 为可微函数,且20F '=,则x z x y u y ∂∂+∂∂=( ) (A)x (B)z (C)x - (D)z -答案:B详解:12221222,1x z y z y zF F F F F z x x x x x F F F x⎛⎫⎛⎫''-+-''⋅+⋅⎪ ⎪'∂⎝⎭⎝⎭=-=-=''∂'⋅112211y x F F F z x xF F F x'⋅''∂=-=-=-''∂'⋅1212222yF zF yF F z z z xyz xxF F F ''''+⋅∂∂+=-=='''∂∂(3)设,m n是正整数,则反常积分0⎰的收敛性(A)仅与m 的取值有关 (B)仅与n 取值有关 (C)与,m n 取值都有关 (D)与,m n 取值都无关 答案:C 详解:11222111111111ln 1(ln (1))1111mmn mm np p p nnx p p m dx p x p np -∞∞∞⋅⋅⋅⎛⎫⎛⎫⎛⎫- ⎪⎪ ⎪-⎛⎫⎝⎭⎝⎭⎝⎭==-= ⎪⎛⎫⎝⎭⎛⎫ ⎪ ⎪⎝⎭⎝⎭∑∑∑⎰⎰2121121n mm np n m m nn m p m n -∞--⎧>⎪⎛⎫⎪=⎨⎪-⎝⎭⎪≤⎪⎩∑收敛,发散, (4)()()2211limnnx i j nn i n j→∞--=++∑∑(A)()()12111x dx dy x y++⎰⎰(B)()()10111x dx dy x y ++⎰⎰(C)()()1100111dx dy x y ++⎰⎰(D)()()112111dx dy x y++⎰⎰答案:D详解:()()22211112limlim11nnnnx x i j i j nnn i nji j n n n n →∞→∞----=⎛⎫++⎛⎫⎛⎫+⋅⋅+ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑∑2211111lim11n nx i j inj n n →∞--=⋅⋅⎛⎫++ ⎪⎝⎭∑∑()()112111dx dy x y=++⎰⎰(5)设A 为m n ⨯型矩阵,B 为n m ⨯型矩阵,E 为m 阶单位矩阵,若AB =E ,则( ) (A)秩(),r A m =秩()r B m =(B)秩(),r A m =秩()r B n = (C)秩(),r A n =秩()r B m = (D)秩(),r A n =秩()r B n =答案:A解析:由于A B E =,故()()r A B r E m ==,又由于()(),()()r A B r A r A B r B ≤≤,故(),()m r A m r B ≤≤ ①由于A 为m n ⨯矩阵,B 为n m ⨯矩阵,故(),()r A m r B m ≤≤ ②由①、②可得(),()r A m r B m ==,故选A 。
2010考研数学答案解析【篇一:2010考研数学一(真题解析分开版)】ss=txt>数学(一)试卷一、选择题(1-8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.) 222y?(x?1)(x?2)(x?3)(x?4)1. 曲线拐点a(1,0)b(2,0) c(3,0)d(4,0) 2. 设数列?an?单调递减,liman??n无界,则幂级数?0,sn??ak(n?1,2,?)k?1n?a(x?1)kk?1nn的收敛域a(-1,1] b[-1,1) c[0,2) d(0,2]3.设函数f(x)具有二阶连续导数,且f(x)?0,f?(0)?0,则函数z?f(x)lnf(y)在点(0,0)处取得极小值的一个充分条件af(0)?1,f??(0)?0 bf(0)?1,f??(0)?0cf(0)?1,f??(0)?0df(0)?1,f??(0)?04.设i??0lnsinxdx,j??0lncotxdx,k??0lncosxdx则i、j、k的大小关系是???a ijkb ikjc jikd kji5.设a为3阶矩阵,将a的第二列加到第一列得矩阵b,再交换b ?100??100?????p1??111?,p2??001?,???000???010??的第二行与第一行得单位矩阵。
记a=?1?1ap1p2bp2p1 dp1p2 cp2p1则6.设a?(?1,?2,?3,?4)是4阶矩阵,a*是a的伴随矩阵,若(1,0,1,0)t 是方程组ax?0的一个基础解系,则a*x?0的基础解系可为a?1,?3 b?1,?2 c?1,?2,?3 d?2,?3,?47.设f1(x),f2(x)为两个分布函数,其相应的概率密度f1(x),f2(x)是连续函数,则必为概率密度的是af1(x)f2(x) b2f2(x)f2(x) cf1(x)f2(x) df1(x)f2(x)?f2(x)f1(x)8.设随机变量x与y相互独立,且ex与ey存在,记u=max{x,y},v={x,y},则e(uv)=a euevb exeyc eueyd exev二、填空题(9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.)9.曲线y??0tantdt(0?x?)的弧长s=____________4x?10.微分方程y??y?e?xcosx满足条件y(0)=0的解为y=____________ 11.设函数f(x,y)??0xy?2fsintdt,则221?t?xx?0?__________12.设l是柱面方程为x2?y2?1与平面z=x+y的交线,从z轴正向往zy2_ 轴负向看去为逆时针方向,则曲线积分xzdx?xdy?dz?__________213.若二次曲面的方程为x2?3y2?z2?2axy?2xz?2yz?4,经正交变换化为y12?4z12?4,则a?_______________三、解答题(15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.)ln(1?x)ex?115求极限lim( )x?0x116设z?f(xy,yg(x)),其中函数f具有二阶连续偏导数,函数g(x)可导,?2z且在x=1处取得极值g(1)=1,求?x?yx?1,y?117求方程karctanx?x?0不同实根的个数,其中k为参数。
2010年考研数学一真题一、选择题(1~8小题,每小题4分,共32分。
下列每题给出的四个选项中,只有一个选项是符合题目要求的。
)(1)极限limx→∞[x2(x−a)(x+b)]x=(A)1 (B)e (C)e a−b(D)e b−a 【考点】C。
【解析】【方法一】这是一个“1∞”型极限lim x→∞[x2(x−a)(x+b)]x=limx→∞{[1+(a−b)x+ab(x−a)(x+b)](x−a)(x+b)(a−b)x+ab}(a−b)x+ab(x−a)(x+b)x=e a−b【方法二】原式=limx→∞e xlnx2(x−a)(x+b)而limx→∞ xln x2(x−a)(x+b)=limx→∞xln(1+(a−b)x+ab(x−a)(x+b))=limx→∞x∙(a−b)x+ab(x−a)(x+b)(等价无穷小代换) =a−b则limx→∞[x2(x−a)(x+b)]x=e a−b【方法三】对于“1∞”型极限可利用基本结论:若limα(x)=0, limβ(x)=0,且limα(x)β(x)=A 则li m(1+α(x))β(x)=e A,求极限由于limx→∞α(x)β(x)=limx→∞x2−(x−a)(x+b)(x−a)(x+b)∙x=limx→∞(a−b)x2+abx(x−a)(x+b)=a−b则limx→∞[x2(x−a)(x+b)]x=e a−b【方法四】lim x→∞[x2(x−a)(x+b)]x=limx→∞[(x−a)(x+b)x2]−x=limx→∞(1−ax)−x∙limx→∞(1+bx)−x=e a∙e−b=e a−b综上所述,本题正确答案是C。
【考点】高等数学—函数、极限、连续—无穷小量的性质及无穷小量的比较,极限的四则运算,两个重要极限(2)设函数z=z(x,y)由方程F(yx ,zx)=0确定,其中F为可微函数,且f′′2≠0,则xðzðx +yðzðy=。
精心整理
2010年考研数学一真题
一、选择题(18小题,每小题4分,共32分。
下列每题给出的四个选项中,只有一个选项是符合题目要求的。
)
(1)极限
(C)
这是一个“”型极限
【方法二】
原式
而
(等价无穷小代换)
则
【方法三】
对于“”型极限可利用基本结论:若,,且
则,求极限
由于
则
【方法四】
综上所述,本题正确答案是C。
设函数由方程确定,其中,则。
(A)(B)
(C)(D)
【答案】B。
【解析】
因为,
所以
设为正整数,则反常积分的收敛性仅与(B)仅与的取值有关与的取值都有关与的取值都无关
和时无界
在反常积分中,被积函数只在时无界。
由于,
已知反常积分收敛,则也收敛。
在反常积分中,被积函数只在时无界,由于
(洛必达法则)
取任何正整数,反常积分收敛。
综上所述,本题正确答案是
(4)
(A)
(C)(D)
【答案】D。
综上所述,本题正确答案是C。
【考点】高等数学—多元函数积分学—二重积分与三重积分的概念、性质、计算和应用
(5)设为矩阵,为矩阵,为阶单位矩阵,若
,则
(A)秩秩(B)秩秩
(C)秩秩(D)秩秩
【答案】A。
因为为阶单位矩阵,知
另一方面,为矩阵,为矩阵,又有
可得秩秩
设为且若则
(A)
(C)(D)
【答案】D。
【解析】
由知,那么对于推出来
所以的特征值只能是
再由是实对称矩阵必有,而是的特征值,那么由,可知D正确
设随机变量的分布函数,则
(B)
(C)(D)
【答案】C
综上所述,本题正确答案是C。
【考点】概率论与数理统计—随机变量及其分布—随机变量分布函数的概念及其性质
(8)设为标准正太分布的概率密度,为上均匀分布得
概率密度,若
为概率密度,则应满足
(A)(B)
(C)(D)
【答案】A。
【解析】
为标准正态分布的概率密度,其对称中心在处,故
为上均匀分布的概率密度函数,即
所以,可得
综上所述,本题正确答案是A。
【考点】概率论与数理统计—随机变量及其分布—连续型随机变量的概率密度,常见随机变量的分布
二、填空题(914小题,每小题4分,共24分。
)
(9)设,则。
【答案】。
【解析】
【方法一】
则,
【方法二】
代入上式可得。
【方法三】
由得,,则
当时,则
综上所述,本题正确答案是。
【考点】高等数学—一元函数微分学—基本初等函数的导数,复
(10)
【答案】。
令,则
综上所述,本题正确答案是。
,则曲线积分。
【答案】。
【解析】
如图所示,其中
,
所以
综上所述,本题正确答案是。
【考点】高等数学—多元函数积分学—两类曲线积分的概念、性
设
,则的形心坐标
【答案】。
【解析】
综上所述,本题正确答案是。
【考点】高等数学—多元函数积分学—二重积分与三重积分的概念、性质、计算和应用
-1 O 1
(13)设,若由
生成的向量空间的维数为,则。
【答案】6。
【解析】
生成的向量空间的维数为,所以可知,
所以可得
综上所述,本题正确答案是。
设随机变量的概率分布为,则
【答案】。
泊松分布的概率分布为,
的概率分布为
对比可以看出
所以而
综上所述,本题正确答案是。
【考点】概率论与数理统计—随机变量及其分布—常见随机变量的分布;
概率论与数理统计—随机变量的数字特征—随机变量的数学期望(均值)、方差、标准差及其性质
三、解答题:小题,共94分。
解答应写出文字说明、证明过程或演算步骤。
(15)求微分方程的通解
由齐次微分方程
所以,齐次微分方程的通解为
设微分方程的特解为
则
代入原方程,解得
故特解为
所以原方程的通解为
【考点】高等数学—常微分方程—二阶常系数齐次线性微分方程,简单的二阶常系数非齐次线性微分方程
(16)求函数的单调区间与极值
【解析】
函数的定义域为,
令,得
由上可知,的单调增区间为和;
区间为和,
极小值为
极大值为
【考点】高等数学—一元函数微分学—基本初等函数的导数,函数单调性的判别函数的极值
高等数学—一元函数积分学—基本积分公式,积分上限的函数及其导数
(I)比较与的大小,说
明理由;
(II)记,求极限。
【解析】
(I)当时,因,所以
所以有
【方法一】
所以
由夹逼定理可得
由于为单增函数,则当时,,
又,由夹逼定理知
【方法三】
已知
因为,且在上连续,则在上
有界,从而存在使得
由及夹逼定理知
【考点】高等数学—函数、极限、连续—极限存在的两个准则:求幂级数的收敛域及和函数。
即时,原幂级数绝对收敛
时,级数为
原幂级数的收敛域为。
又
令
则
所以
由于,所以
所以
所以幂级数的收敛域为,和函数为。
【考点】高等数学—无穷级数—幂级数及其收敛半径、收敛区间(指开区间)和收敛域,幂级数的和函数,简单幂级数的和函数的求
设为椭球面上的动点,若在点处的切线平面与面垂直,求点的轨迹
其中是椭圆球面位于曲线上方的部分。
求轨迹
令,故动点的切平面的法向由切平面垂直面,得
为的轨迹
再计算曲面积分
因为曲线在面的投影为
又对方程两边分别对求导可得
解之得
【考点】高等数学—多元函数积分学—两类曲面积分的概念、性
设.已知线性方程组存在
同的解
求;
求方程组的通解。
因为已知线性方程组
故
知
当时,
,
显然,此时方程组无解,舍去,
当时,
因为有解,所以
即,,
(II),
所以的通解为
其中为任意常数。
【考点】线性代数—线性方程组—非齐次线性方程组有解的充分必要条件,非齐次线性方程组的通解
(21)已知二次型在正交变换下的标准形为
,且的第三列为
(I)求矩阵;
(II)证明为正定矩阵,其中为3阶单位矩阵。
【解析】
(I)二次型在正交变换下的标准形为
,可知二次型矩阵的特征值是。
是矩阵在特征值的特征向量。
根据实对称矩阵,特征值不同特征向量相互正交,设关于
的特征向量为,
则,即
取
(II)由于矩阵的特征值是,那么的特征值为
为的特征值全大于,所以正定。
【考点】线性代数—二次型—二次型及其矩阵表示,二次型的秩,二次型的标准形和规范形,二次型及其矩阵的正定性
(22)设二维随机变量的概率密度为
求常数及条件概率密度。
【解析】
即
当等价于
设总体的概率分布为
其中参数未知,以表示来自总体的简单随机样本(样本容量为)中等于的个数,试求常数使
为的无偏估计量,并求的方差。
【解析】
记,则
精心整理
故
要令为的无偏估计量,则有
,此时为的无偏估计量此时,由于故
因为,,所以
【考点】概率论与数理统计—参数估计—估计量的评选标准,区。