中考数学试题分项版解析汇编:专题16+压轴题(第01期)(各省统一命题版)
- 格式:doc
- 大小:329.50 KB
- 文档页数:4
一、选择题:1. (2015.河北省,第16题,2分)图是甲,乙两张不同的矩形纸片,将它们分别沿着虚线剪开后,各自要拼一个与原来面积相等的正方形,则()A.甲、乙都可以B.甲、乙都不可以C.甲不可以,乙可以D.甲可以,乙不可以二、填空题:1.(2015.河北省,第20题,3分).如图,∠BO C=9°,点A在OB上,且OA=1.按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;……这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n=____.2. (2015.河南省,第15题,3分)如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B、C重合的一个动点,把△EBF沿EF折叠,点B落在B′处,若△CDB′恰为等腰三角形,则DB′的长为 .三、解答题:1.(2015.安徽省,第17题,8分)如图,在边长为1个单位长度的小正方形网格中,给出了△ABC (顶点是网格线的交点).(1)请画出△ABC 关于直线l 对称的△A 1B 1C 1;(2)将线段AC 向左平移3个单位,再向下平移5个单位,画出平移得到的线段A 2C 2,并以它为一边作一个格点△A 2B 2C 2,使A 2B 2=C 3B 2.2.(2015.安徽省,第23题,14分)如图1,在四边形ABCD 中,点E 、F 分别是AB 、CD 的中点,过点E 作AB 的垂线,过点F 作CD 的垂线,两垂线交于点G ,连接AG 、BG 、CG 、DG ,且∠AGD =∠BGC .(1)求证:AD =BC ;(2)求证:△AGD ∽△EGF ;(3)如图2,若AD 、BC 所在直线互相垂直,求 AD EF的值. EF C D BA第15BABC l 第17题图α(A 1 )B 1C 1C B A M3.(2015.宁夏,第26题,10分)如图,是一副学生用的三角板,在△ABC 中,∠C =90°, ∠A =60°,∠B =30°;在△111A B C 中,∠C =90°, ∠A =45°,∠B =45°,且AB 1= CB .若将边11AC 与边CA 重合,其中点1A 与点C 重合.将三角板111A B C 绕点C (1A)按逆时针方向旋转,旋转过的角为α,旋转过程中边11AC 与边AB 的交点为M , 设AC =a .(1)计算11AC 的长;(2)当α=30°时,证明:11B C ∥AB ;(3)若aα=45°时,计算两个三角板重叠部分图形的面积;(4)当α=60°时,用含a 的代数式表示两个三角板重叠部分图形的面积.A B ECDF G第23题图1 第23题图2(参考数据:sin15°= 4,cos15°= 4tan15°=2sin 75°cos 75°tan 75°=2+ 4. (2015.天津市,第24题,10分)(本小题10分)将一个直角三角形纸片ABO ,放置在平面直角坐标系中,点A 0),点B (0,1),点O (0,0). 过边OA 上的动点M (点M 不与点O ,A 重合)作MN ⊥AB 于点N ,沿着MN 折叠该纸片,得顶点A 的对应点A ′. 设OM =m ,折叠后的△A ′MN 与四边形OMNB 重叠部分的面积为S .(Ⅰ)如图①,当点A ′与顶点B 重合时,求点M 的坐标;(Ⅱ)如图②,当点A ′落在第二象限时,A ′M 与OB 相交于点C ,试用含m 的式子表示S ;(Ⅲ)当S 时,求点M 的坐标(直接写出结果即可).5. (2015.北京市,第28题,7分)在正方形ABCD 中,BD 是一条对角线.点P 在射线CD 上(与点C ,D 不重合),连接AP ,平移△ADP ,使点D 移动到点C ,得到△BCQ ,过点Q 作QH ⊥BD 于点H ,连接AH 、PH .(1)若点P 在线CD 上,如图1,①依题意补全图1;②判断AH 与PH 的数量关系与位置关系并加以证明;(2)若点P 在线CD 的延长线上,且∠AHQ =152°,正方形ABCD 的边长为1,请写出求DP 长的思路.(可以不写出计算结果.........)。
中考各省压轴之圆综合问题(9考点39题)一.圆周角定理(共3小题)1.如图,在⊙O中,将沿弦AB翻折,使恰好经过圆心O,C是劣弧AB上一点.已知AE=2,tan∠CBA=,则AB的长为( )A.B.6C.D.【答案】C【解答】解:连接EO并延长交⊙O于点H,连接AH,过点O作OF⊥AB于F,延长OF交⊙O于点G,连接OB,∵EH是⊙O的直径,∴∠EAH=90°,∴tan∠AHE=,∵∠AHE=∠CBA,tan∠CBA=,∴tan∠AHE=tan∠CBA=,∴=,∵AE=2,∴AH=4,∴EH==2,∴⊙O的半径为,∴OG=OB=,∵OG⊥AB于F,∴AB=2BF,根据折叠的性质得,OF=GF,∴OF=OG=,∴BF==,∴AB=,故选:C.2.如图,AB是半圆的直径,点C是弧AB的中点,点E是弧AC的中点,连接EB,CA交于点F,则=( )A.B.C.1﹣D.【答案】D【解答】解:方法1:连接AE、CE.作AD∥CE,交BE于D.∵点E是弧AC的中点,∴可设AE=CE=1,根据平行线的性质得∠ADE=∠CED=45°.∴△ADE是等腰直角三角形,则AD=,BD=AD=.所以BE=+1.再根据两角对应相等得△AEF∽△BEA,则EF==﹣1,BF=2.所以=.方法2:过点C作CO⊥AB于点O,∵AB是半圆的直径,点C是弧AB的中点,∴点O是圆心.连接OE,BC,OE与AC交于点M,∵E为弧AC的中点,易证OE⊥AC,∵∠ACB=90°,∠AOE=45°,∴OE∥BC,设OM=1,则AM=1,∴AC=BC=2,OA=,∴OE=,∴EM=﹣1,∵OE∥BC,∴==.故选:D.3.如图,MN是⊙O的直径,MN=2,点A在⊙O上,∠AMN=30°,B为弧AN的中点,P是直径MN上一动点,则P A+PB的最小值为.【答案】见试题解答内容【解答】解:作点B关于MN的对称点C,连接AC交MN于点P,连接OB,则P点就是所求作的点.此时P A+PB最小,且等于AC的长.连接OA,OC,∵∠AMN=30°,∴∠AON=60°,∵=∴∠AOB=∠BON=30°,∵MN⊥BC,∴=,∴∠CON=∠NOB=30°,则∠AOC=90°,又OA=OC=1,则AC=.二.切线的性质(共1小题)4.为了测量一个圆形铁环的半径,小华采用了如下方法:将铁环平放在水平桌面上,用一个锐角为30°的直角三角板和一个刻度尺,按如图所示的方法得到有关数据,进而求得铁环的半径,若测得AB=10cm,则铁环的半径是 .【答案】见试题解答内容【解答】解:如图所示:连接OB,OC,OA,∵AB为圆O的切线,∴OB⊥AB,即∠OBA=90°,又AC为圆O的切线,∴OC⊥AC,即∠OCA=90°,在Rt△ADE中,∠E=30°,∠ADE=90°,∴∠EAD=60°,∠BAC=120°,∵AC及AB为圆O的切线,∴OA为∠BOC的平分线,则∠BAO=∠OAC,可得∠BOA=∠COA,又∠OBA=∠OCA=90°,∴∠OAB=∠OAC=∠BAC=60°,在Rt△OBA中,∠OBA=90°,∠OAB=60°,AB=10cm,∴tan60°=,即=,则圆的半径OB=10cm.故答案为:10cm三.切线的判定与性质(共2小题)5.如图,点C在以AB为直径的半圆上,AB=4,∠CBA=30°,点D在线段AB上运动,点E与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F.下列结论:①∠F=30°;②CE=CF;③线段EF的最小值为2;④当AD=1时,EF与半圆相切;⑤当点D从点A运动到点B时,线段EF扫过的面积是8.其中正确的结论的序号为.【答案】②③④.【解答】解:①连接CD,如图1所示.∵点E与点D关于AC对称,∴CE=CD.∴∠E=∠CDE.∵DF⊥DE,∴∠EDF=90°.∴∠E+∠F=90°,∠CDE+∠CDF=90°.∴∠F=∠CDF.只有当CD⊥AB时,∠F=∠CDF=∠CBA=30°,故①错误;②又∵∠F=∠CDF,∴CD=CF,∴CE=CD=CF.故②正确;③当CD⊥AB时,如图2所示.∵AB是半圆的直径,∴∠ACB=90°,∵AB=4,∠CBA=30°,∴∠CAB=60°,AC=2,BC=2,∵CD⊥AB,∠CBA=30°,∴CD=BC=,根据“点到直线之间,垂线段最短”可得:点D在线段AB上运动时,CD的最小值为.∵CE=CD=CF,∴EF=2CD.∴线段EF的最小值为2.故③正确;④当AD=1时,连接OC,如图3所示,∵OA=OC,∠CAB=60°,∴△OAC是等边三角形.∴CA=CO,∠ACO=60°.∵AO=2,AD=1,∴DO=1.∴AD=DO,∴∠ACD=∠OCD=30°,∵点E与点D关于AC对称,∴∠ECA=∠DCA,∴∠ECA=30°,∴∠ECO=90°,∴OC⊥EF,∵EF经过半径OC的外端,且OC⊥EF,∴EF与半圆相切.故④正确;⑤∵点D与点E关于AC对称,点D与点F关于BC对称,∴当点D从点A运动到点B时,点E的运动路径AM与AB关于AC对称,点F的运动路径NB与AB关于BC对称.∴EF扫过的图形就是图5中阴影部分.∴S阴影=2S△ABC=2וAC•BC=4.故⑤错误.故答案为②③④.6.如图,⊙O是Rt△ABC的外接圆,AB为直径,∠ABC=30°,CD⊥OC于C,ED⊥AB 于F,(1)判断△DCE的形状;(2)设⊙O的半径为1,且OF=,求证:△DCE≌△OCB.【答案】见试题解答内容【解答】解:(1)△DCE为等腰三角形,理由为:∵∠ABC=30°,圆周角∠ABC与圆心角∠AOC都对,∴∠AOC=2∠ABC=60°,又∵OA=OC,∴△OAC为等边三角形,∴∠OAC=∠OCA=60°,∵OC⊥CD,∴∠OCD=90°,∴∠DCE=180°﹣90°﹣60°=30°,又∵EF⊥AF,∴∠AFE=90°,∴∠E=180°﹣90°﹣60°=30°,∴∠DCE=∠E,∴DC=DE,则△DCE为等腰三角形;(2)∵OA=OB=1,OF=,∴AF=AO+OF=1+=,OA=AC=OC=1,在Rt△AEF中,∠E=30°,∴AE=2AF=+1,∴CE=AE﹣AC=+1﹣1=,又∵AB为圆O的直径,∴∠ACB=90°,在Rt△ABC中,∠B=30°,∴cos30°=,即BC=AB cos30°=,∴CB=CE=,在△OBC和△DCE中,∵,∴△OBC≌△DCE(ASA).四.三角形的内切圆与内心(共1小题)7.如图,Rt△ABC中,∠C=90°,AC=8,BC=6,I为Rt△ABC的内心,若M、N分别是斜边AB和直角边AC上的动点,连接IM、MN,则IM+MN的最小值为.【答案】5.2.【解答】解:分别作ID⊥BC,IE⊥AC,IF⊥AB,垂足分别为点D、E、F,延长IF到I',使I'F=IF,作I'N⊥AC于点N,交AB于点M,延长DI,交I'N于点G,连接BI,∵IF⊥AB,I'F=IF,∴IM=I'M,∴IM+MN=I'M+MN,当I'、M、N三点共线,且I'N⊥AC时,I'N最短,即IM+MN的值最小.∵I为Rt△ABC的内心,ID⊥BC,IE⊥AC,IF⊥AB,∴ID=IE=IF,设ID=IE=IF=r,又∵ID⊥BC,IE⊥AC,∠C=90°,∴四边形CEID是正方形,∴CD=IE=CE=ID=r,∵Rt△ABC中,∠C=90°,AC=8,BC=6,∴AB=10,∴BD=6﹣r,AE=8﹣r,在Rt△BID和Rt△BIF中,,∴Rt△BID≌Rt△BIF(HL),∴BD=BF,同理AE=AF,∵AB=AF+BF,∴6﹣r+(8﹣r)=10,解得r=2,∵I'F=IF,∴II'=4,∵IF⊥AB,I'N⊥AC,∠FMI'=∠NMA,∴∠I'=∠A,又∵∠C=90°,I'N⊥AC,∴BC∥I'N,∵ID⊥BC,∴IG⊥I'N,∴四边形CDGN为矩形,△II'G∽△BAC,∴GN=CD=2,,即,∴I'G=3.2,∴I'N=I'G+GN=3.2+2=5.2,∴IM+MN的最小值为5.2.故答案为:5.2.五.圆与圆的位置关系(共1小题)8.如图,⊙O1和⊙O2的半径为1和3,连接O1O2,交⊙O2于点P,O1O2=8,若将⊙O1绕点P按顺时针方向旋转360°,则⊙O1与⊙O2共相切 次.【答案】见试题解答内容【解答】解:两圆相切时,O1O2之间的距离等于4(外切)或者2(内切)时即可,当⊙O1绕P点顺时针旋转时360°时,O1O2的变化范围从8到2再到8,其中有两次外切和一次内切.可以用尺规作图的方法来做,以P为圆心做一个半径为5的圆,再以O2为圆心,做一个半径为4的圆,两者相交即为外切,然后以O2为圆心做一个半径为2的圆,两者相交即为内切.故答案为:3.六.弧长的计算(共1小题)9.一位小朋友在粗糙不打滑的“Z”字形平面轨道上滚动一个半径为10cm的圆盘,如图所示,AB与CD是水平的,BC与水平面的夹角为60°,其中AB=60cm,CD=40cm,BC =40cm,那么该小朋友将圆盘从A点滚动到D点其圆心所经过的路线长为 cm.【答案】见试题解答内容【解答】解:A点滚动到D点其圆心所经过的路线=(60+40+40)﹣+=(cm).故答案为:().七.扇形面积的计算(共1小题)10.如图,在△ABC中,AB=8cm,BC=4cm,∠ABC=30°,把△ABC以点B为中心按逆时针方向旋转,使点C旋转到AB边的延长线上的C′′处,那么AC边扫过的图形(图中阴影部分)的面积是 cm2(结果保留π).【答案】见试题解答内容【解答】解:×(64﹣16)=20πcm2.八.圆锥的计算(共3小题)11.现有30%圆周的一个扇形彩纸片,该扇形的半径为40cm,小红同学为了在“六一”儿童节联欢晚会上表演节目,她打算剪去部分扇形纸片后,利用剩下的纸片制作成一个底面半径为10cm的圆锥形纸帽(接缝处不重叠),那么剪去的扇形纸片的圆心角为 .【答案】见试题解答内容【解答】解:20π=解得:n=90°,∵扇形彩纸片是30%圆周,因而圆心角是108°∴剪去的扇形纸片的圆心角为108°﹣90°=18°.剪去的扇形纸片的圆心角为18°.故答案为18°.12.如图,有一直径为4的圆形铁皮,要从中剪出一个最大圆心角为60°的扇形ABC.用此剪下的扇形铁皮围成一个圆锥,该圆锥的侧面积为 .【答案】见试题解答内容【解答】解:连接OA,过点O作OD⊥AB,∵∠CAB=60°,∴∠OAD=30°,∵AO=2,∴DO=1,∴AD=,∴AB=2,∴S阴影==2π.故答案为:2π.13.如图,圆锥的母线长是3,底面半径是1,A是底面圆周上一点,从A点出发绕侧面一周,再回到A点的最短的路线长是.【答案】3.【解答】解:∵图扇形的弧长是2π,根据弧长公式得到2π=,∴n=120°即扇形的圆心角是120°,∴弧所对的弦长AA′=2×3sin60°=3,故答案为3.九.圆的综合题(共26小题)14.如图,半径为4的⊙O中,CD为直径,弦AB⊥CD且过半径OD的中点,点E为⊙O 上一动点,CF⊥AE于点F.当点E从点B出发顺时针运动到点D时,点F所经过的路径长为( )A.B.C.D.【答案】C【解答】解:连接AC,AO,∵AB⊥CD,∴G为AB的中点,即AG=BG=AB,∵⊙O的半径为4,弦AB⊥CD且过半径OD的中点,∴OG=2,∴在Rt△AOG中,根据勾股定理得:AG==2,又∵CG=CO+GO=4+2=6,∴在Rt△AGC中,根据勾股定理得:AC==4,∵CF⊥AE,∴△ACF始终是直角三角形,点F的运动轨迹为以AC为直径的半圆,当E位于点B时,CG⊥AE,此时F与G重合;当E位于D时,CA⊥AE,此时F与A 重合,∴当点E从点B出发顺时针运动到点D时,点F所经过的路径长,在Rt△ACG中,tan∠ACG==,∴∠ACG=30°,∴所对圆心角的度数为60°,∵直径AC=4,∴的长为=π,则当点E从点B出发顺时针运动到点D时,点F所经过的路径长为π.故选:C.15.定义:如果一个三角形中有两个内角α,β满足α+2β=90°,那我们称这个三角形为“近直角三角形”.(1)若△ABC是“近直角三角形”,∠B>90°,∠C=50°,则∠A= 度;(2)如图1,在Rt△ABC中,∠BAC=90°,AB=3,AC=4.若BD是∠ABC的平分线,①求证:△BDC是“近直角三角形”;②在边AC上是否存在点E(异于点D),使得△BCE也是“近直角三角形”?若存在,请求出CE的长;若不存在,请说明理由.(3)如图2,在Rt△ABC中,∠BAC=90°,点D为AC边上一点,以BD为直径的圆交BC于点E,连接AE交BD于点F,若△BCD为“近直角三角形”,且AB=5,AF=3,求tan∠C的值.【答案】见试题解答内容【解答】解:(1)∠B不可能是α或β,当∠A=α时,∠C=β=50°,α+2β=90°,不成立;故∠A=β,∠C=α,α+2β=90°,则β=20°,故答案为20;(2)①如图1,设∠ABD=∠DBC=β,∠C=α,则α+2β=90°,故△BDC是“近直角三角形”;②存在,理由:在边AC上是否存在点E(异于点D),使得△BCE是“近直角三角形”,AB=3,AC=4,则BC=5,则∠ABE=∠C,则△ABC∽△AEB,即,即,解得:AE=,则CE=4﹣=;(3)①如图2所示,当∠ABD=∠DBC=β时,则AE⊥BF,则AF=FE=3,则AE=6,AB=BE=5,过点A作AH⊥BC于点H,设BH=x,则HE=5﹣x,则AH2=AE2﹣HE2=AB2﹣HB2,即52﹣x2=62﹣(5﹣x)2,解得:x=;cos∠ABE===cos2β,则tan2β=,则tanα=;②如图3所示,当∠ABD=∠C=β时,过点A作AH⊥BE交BE于点H,交BD于点G,则点G是圆的圆心(BE的中垂线与直径的交点),∵∠AEB=∠DAE+∠C=α+β=∠ABC,故AE=AB=5,则EF=AE﹣AF=5﹣3=2,∵DE⊥BC,AH⊥BC,∴ED∥AH,则AF:EF=AG:DE=3:2,则DE=2k,则AG=3k=R(圆的半径)=BG,点H是BE的中点,则GH=DE=k,在△BGH中,BH==2k,在△ABH中,AB=5,BH=2k,AH=AG+HG=4k,∵∠C+∠ABC=90°,∠ABC+∠BAH=90°,∴∠C=∠BAH,∴tan C=tan∠BAH===,综上,tan C的值为或.16.四边形ABCD内接于⊙O,AC是⊙O的直径,连结BD交AC于点G,AF⊥BD,垂足为E.(1)如图1,若AF交BC于点F.①求证:∠BAF=∠CAD;②若⊙O的直径为10,,BF:CG=3:5,求AF的长.(2)如图2,若AF交CD于点F,连结OD,若OD∥AB,,DF=2CF,求⊙O 的直径.【答案】(1)①见解析;②AF=.(2)⊙O的直径为.【解答】(1)①证明:∵AC是⊙O的直径,AF⊥BD,∴∠ABC=90°=∠AEB,∴∠ABE+∠CBD=90°,∠ABE+∠BAF=90°,∴∠CBD=∠BAF,又∵,∴∠CBD=∠CAD,∴∠BAF=∠CAD.②解:如图,过点G作GK⊥BC于点K,在Rt△ABC中,AC=10,cos∠BCA=,∴BC=8,由勾股定理得AB===6,∴sin∠BCA==,tan∠BCA==,在Rt△GKC中,sin∠KCG=sin∠BCA==,tan∠KCG=tan∠BCA==,又∵BF:CG=3:5,∴BF=GK,在△ABF和△BKG中,,∴△ABF≌△BKG(AAS),∴AB=BK=6,∴CK=BC﹣BK=8﹣6=2,∴KG=CK•tan∠KCG=2×=,即BF=KG=,∴AF===.(3)解:如图,设AF交OD于点Q,过点O作OH⊥AF于点H,链接BO并延长交AF 于点P,延长AF交⊙O于点G,连接CG,∵AF⊥BD,OH⊥AF,∴∠OHO=∠BEG=90°,∴OH∥BD,∴∠QOH=∠ODB,∠POH=∠OBD,又∵OB=OD,∴∠ODB=∠OBD,∴∠QOH=∠POH,∴QH=PH,∵AC为⊙O的直径,∴∠AGC=90°=∠OHQ=∠AEB,∴CG∥OH∥BD,∴△AOH∽△ACG⇒⇒CG=2OH,△DEF∽△CGF⇒=⇒DE=2CG⇒DE=4OH,△DEQ∽△OHQ⇒==4⇒QE=4PH,DQ=4OQ⇒EP=6PH,DQ=,△OPH∽△BPE⇒=⇒BE=6OH,∴,∵OD∥AB,∴△ABE∽△QDE,∴⇒QE=⇒AQ==,∵,OD=OC,∴∠OCD=∠ABD=∠ODC,∴∠BAE=90°﹣∠ABD=90°﹣∠ODC=∠ODA,∵OD∥AB,OA=OD,∴∠AQD=∠BAQ=∠ODA=∠OAD,∴AD=AQ=,△DAQ∽△DOA,∴,即AD2=OD•DQ,设⊙O的半径为r,则OD=r,DQ=,∴=,∴r=,∴⊙O的直径为.17.如图,在平面直角坐标系xOy中,点S(﹣1,0),T(1,0).对于一个角α(0°<α≤180°),将一个图形先绕点S顺时针旋转α,再绕点T逆时针旋转α,称为一次“α对称旋转”.(1)点R在线段ST上,则在点A(1,﹣1),B(3,﹣2),C(2,﹣2),D(0,﹣2)中,有可能是由点R经过一次“90°对称旋转”后得到的点是;(2)x轴上的一点P经过一次“α对称旋转”得到点Q.①当α=60°时,PQ= ;②当α=30°时,若QT⊥x轴,求点P的坐标;(3)以点O为圆心作半径为1的圆.若在⊙O上存在点M,使得点M经过一次“α对称旋转”后得到的点在x轴上,直接写出α的取值范围.【答案】(1)B,C;(2)①2;②P(﹣1+,0).(3)0°<α≤30°或150°≤α≤180°.【解答】解:(1)如图,当点R与点O重合时,点R绕点S顺时针旋转90°得到点R′,点R′绕点T逆时针旋转90°得到点C;当点R与点T重合时,点R绕点S顺时针旋转90°得到点R″,点R″绕点T逆时针旋转90°得到点B;故答案为:B,C;(2)①当α=60°时,如图,∵x轴上的一点P经过一次“α对称旋转”得到点Q,∴△SPP′和△TQP′均为等边三角形,∴SP′=PP′,TP′=QP′,∠SP′P=∠TP′Q=60°,∴∠SP′T+∠TP′P=∠TP′P+∠PP′Q,∴∠SP′T=∠PP′Q,∴△P′ST≌△P′PQ(SAS),∴PQ=ST=2,故答案为:2;②当α=30°时,设点P绕点S顺时针旋转30°得到点P′,则SP′=SP,如图,将x轴作一次“α对称旋转”后得到直线y=﹣1,∵QT⊥x轴,点P经过一次“α对称旋转”得到点Q,∴点Q的坐标为Q(1,﹣1),∵点P′绕点T逆时针旋转30°得到点Q,∴P′T=QT=1,∠P′TQ=30°,∴∠STP′=90°﹣∠P′TQ=60°,∵∠TSP′=30°,∴∠SP′T=180°﹣∠STP′﹣∠TSP′=90°,∵ST=2,∴SP′==,∴SP=SP′=,∴点P的坐标为P(﹣1+,0).(3)点M在⊙O上,则M绕S顺时针旋转α度以后的M′的轨迹为O绕S顺时针旋转α度以后的⊙O′上,M′关于T逆时针旋转α度以后得到点N,则N在O′关于T逆时针旋转α度以后的⊙O″上,若满足题意,只需⊙O′与x轴有交点O″在粉弧上,且O′T=O″T,如图,⊙O″与x轴相切,则O″H=1,在x轴上取点R,连接O″R,使O″R=2,″∴HR=,∴∠O″RH=30°,TR=O′S=1,O″R=ST=2,O″T=O′T,∴△O″TR≌△TO′S(SSS),∴∠TSO′=∠O″RT=30°,故0°<α≤30°;如图,⊙O″与x轴相切,则O″H=1,在x轴上取点R,连接O″R,使O″R=2,∴∠HRO″=30°,ST=O″R,∴∠TRO″=150°,∵∠SO′T+∠STO′=∠STO′+∠RTO″,∴∠SO′T=∠RTO″,∵O′T=TO″,∴△O′ST≌△TRO″(SAS),∴∠O′ST=∠TRO″=150°,∴α=150°,∴150°≤α≤180°;综上所述,0°<α≤30°或150°≤α≤180°.18.问题提出(1)如图①,已知直线a∥b,点A,B在直线a上,点C,D在直线b上,则S△ACD S(填“>”“<”或“=”);△BCD问题探究(2)如图②,⊙O的直径为20,点A,B,C都在⊙O上,AB=12,求△ABC面积的最大值;问题解决(3)如图③,在△ABC中,∠ACB=90°,AB=20,BC=10,根据设计要求,点D为∠ABC内部一点,且∠ADB=60°,过点C作CE∥AD交BD于点E,连接AE,CD,试求满足设计要求的四边形ADCE的最大面积.【答案】(1)=;(2)△ABC面积的最大值为108;(3)四边形ADCE的最大面积是75.【解答】解:(1)如图①所示,分别过A、B两点向直线b作垂线,垂足为M、N.∵a∥b,∴∠MAB=∠AMN=90°,∴四边形AMNB是矩形,∴AM=BN,∴CD•AM=CD•BN又S△ACD=CD•AM,S△BCD=CD•BN,∴S△ACD=S△BCD;故答案为:=;(2)取优弧的中点记为C1,过C1作AB的垂线,垂足为D,由垂径定理知C1D过O 且AD=BD,如图②所示.过点C作AB的平行线a,∵当直线a向上平移时,a距AB的距离增大,即△ABC的AB边上的高增大,∴当a运动到最高点C时,△ABC的AB边上的高最大,又∵AB为常数,∴当C运动到C1时,△ABC的面积最大,下面计算△ABC1的面积:连接OB,在Rt△OBD中,∵AB=12,⊙O的直径为20,∴BD=6,BO=10,OC1=10,由勾股定理得:OD===8,∴C1D=OD+OC1=8+10=18,∴△ABC1的面积为:AB•C1D=×12×18=108,∴△ABC面积的最大值为108;(3)过点C作CF∥BD交AD的延长线于F,如图③﹣1所示,∵CF∥BD,∴∠F=∠ADB=60°,∵AD∥CE,∴四边形DECF是平行四边形,∴DF=CE,FC=DE,∵DC=CD∴△DFC≌△CED(SSS),∴S△DFC=S△CED,又由(1)的结论知S△DAC=S△DAE,∴S四边形ADCE=S△DAE+S△CED=S△DAC+S△DFC=S△AFC,所以只需求得S△AFC最大值即得S四边形ADCE的最大值.以AC为边向△ABC外作等边△AGC,再作等边△AGC的外接圆,过G作GJ⊥AC于J,如图③﹣2所示,∵∠F=60°,∴点F在△AGC的外接圆上,由第(2)问的解决知,当F运动到点G时,S△AFC最大=S△ACG;在Rt△ABC中:由勾股定理得AC===10,∴AJ=AC=5,∴GJ=×10=15,∴S△ACG=AC×GJ=×10×15=75;∴四边形ADCE的最大面积是75.19.课本再现(1)在圆周角和圆心角的学习中,因为圆内接四边形的每一个角都是圆周角,所以我们可以利用圆周角定理,来研究圆内接四边形的角之间的关系.如图1,四边形ABCD为⊙O的内接四边形,AC为直径,则∠B=∠D= 度,∠BAD+∠BCD= 度.(2)如果⊙O的内接四边形ABCD的对角线AC不是⊙O的直径,如图2、图3,请选择一个图形证明:圆内接四边形的对角互补.知识运用(3)如图4,等腰三角形ABC的腰AB是⊙O的直径,底边和另一条腰分别与⊙O交于点D,E.点F是线段CE的中点,连接DF,求证:DF是⊙O的切线.【答案】(1)90,180;(2)证明见解答;(3)证明见解答.【解答】(1)解:∵四边形ABCD为⊙O的内接四边形,AC为直径,∴∠B=∠D=90°,∴∠BAD+∠BCD=360°﹣(∠B+∠D)=360°﹣180°=180°,故答案为:90,180;(2)证明:如图2,连接OB,OD,∵=,∴∠BOD=2∠C,∠1=2∠A,∵∠BOD+∠1=360°,∴2∠C+2∠A=360°,∴∠C+∠A=180°,在四边形ABCD中,∠ABC+∠ADC=360°﹣(∠A+∠C)=180°,即圆内接四边形的对角互补;如图3,连接OA,OC,∵=,∴∠AOC=2∠B,∠1=2∠D,∵∠AOC+∠1=360°,∴2∠B+2∠D=360°,∴∠B+∠D=180°,在四边形ABCD中,∠BAD+∠DCB=360°﹣(∠B+∠D)=180°,即圆内接四边形的对角互补;(3)证明:连接OD,DE,如图4,∵OB=OD,∴∠B=∠ODB,∵AB=AC,∴∠B=∠C,∴∠ODB=∠C,∴OD∥AC,∵四边形ABDE是圆内接四边形,∴∠B+∠AED=180°,∵∠DEC+∠AED=180°,∴∠B=∠DEC,∴∠C=∠DEC,∴DC=DE,∵点F是线段CE的中点,∴DF⊥AC,∴OD∥AC,∴DF⊥OD,∵OD是⊙O的半径,∴DF是⊙O的切线.20.如图,以Rt△ABC的直角边AB为直径作⊙O,交斜边AC于点D,点E是BC的中点,连接OE、DE.(1)求证:DE是⊙O的切线;(2)若sin C=,DE=5,求AD的长;(3)求证:2DE2=CD•OE.【答案】(1)证明见解答;(2)AD的长为;(3)证明见解答.【解答】(1)证明:连接OD,BD,在Rt△ABC中,∠ABC=90°,∵AB是⊙O的直径,∴∠ADB=90°,∴∠BDC=180°﹣∠ADB=90°,∵点E是BC的中点,∴DE=BE=EC,∵OB、OD是⊙O的半径,∴OB=OD,又∵OE=OE,∴△ODE≌△OBE(SSS),∴∠ODE=∠OBE=90°,∴半径OD⊥DE,∴DE是⊙O的切线;(2)解:连接BD,如图,由(1)知:DE=BE=EC,∠ADB=∠BDC=∠ABC=90°,∵DE=5,∴BC=10,∵sin C=,∴=,∴BD=8,∵∠C+∠CBD=∠ABD+∠CBD=90°,∴∠ABD=∠C,∴sin∠ABD=sin∠C=,∴=,设AD=4x,则AB=5x,∵AD2+BD2=AB2,∴(4x)2+82=(5x)2,解得:x=(负值舍去),∴AD=4x=4×=;(3)证明:连接BD,由(1)(2)得:∠BDC=∠OBE=90°,BE=DE,∵点O是AB的中点,点E是BC的中点,∴OE∥AC,BC=2BE,∴∠C=∠OEB,∴△BCD∽△OEB,∴=,即=,∴2DE2=CD•OE.21.已知在Rt△ABC中,∠ACB=90°,BC=6,AC=8,以边AC为直径作⊙O,与AB 边交于点D,点M为边BC的中点,连接DM.(1)求证:DM是⊙O的切线;(2)点P为直线BC上任意一动点,连接AP交⊙O于点Q,连接CQ.①当tan∠BAP=时,求BP的长;②求的最大值.【答案】(1)证明见解答;(2)①BP的长为或;②的最大值为.【解答】(1)证明:如图,连接OD,CD,∵AC是⊙O的直径,∴∠ADC=90°,∴∠BDC=180°﹣∠ADC=90°,∵点M为边BC的中点,∴MC=MD,∴∠MDC=∠MCD,∵OC=OD,∴∠ODC=∠OCD,∵∠ACB=90°,即∠MCD+∠OCD=90°,∴∠MDC+ODC=∠MCD+∠OCD=90°,即∠ODM=90°,∴DM⊥OD,∵OD是⊙O的半径,∴DM是⊙O的切线;(2)①当点P在线段BC上时,如图,过点P作PT⊥AB于点T,在Rt△ABC中,AB===10,设PT=x,∵tan∠BAP=,∴=,∴AT=3PT=3x,∴BT=AB﹣AT=10﹣3x,∵tan∠ABC==,∴=,解得:x=,∴PT=,∵sin∠ABC==,即=,∴BP=;当点P在CB的延长线上时,如图,过点B作BK⊥AP于点K,∵tan∠BAP=,∴=,设BK=a,则AK=3a,在Rt△ABK中,AK2+BK2=AB2,即(3a)2+a2=102,解得:a1=,a2=﹣(舍去),∴AK=3,BK=,∵S△ABP=AP•BK=BP•AC,∴==,设BP=m,则AP=m,在Rt△ACP中,AC2+CP2=AP2,即82+(m+6)2=(m)2,解得:m1=,m2=﹣(舍去),∴BP=;综上所述,BP的长为或;②设CP=n,则AP==,如图,∵AC是⊙O的直径,∴CQ⊥AP,∵CQ•AP=AC•CP,∴CQ==,∴=,∵n>0,∴(n﹣8)2≥0,∴64+n2≥16n,∴=≤=,∴的最大值为.22.如图(1),已知在Rt△ABC中,∠ACB=90°,以AC为直径的圆O交斜边AC于点E,点D为BC中点,连接DE.(1)求证:DE是圆O的切线;(2)如图(2),EH⊥AC,垂足为H,若AC=6,BC=8,求EH的长;(3)如图(3),在⊙O上取一点P,使PE=CE,连接PE,AP,试探究AP、AH、HC 之间的数量关系,并说明理由.【答案】见试题解答内容【解答】(1)连结OE,∵AC是直径,∴∠AEC=90°∴∠CEB=90°,∵D是BC的中点,∴CD=DE,∴∠DCE=∠DEC,∵∠ACB=90°,∴∠DCE+∠OCE=90°,∵OE=OC,∴∠OCE=∠OEC,∴∠OEC+∠DEC=90°,∴OE⊥DE,∵OE是圆O的半径,∴DE是圆O的切线;(2)连结CE,∵AC=6,BC=8,∴,∵∠B=∠B,∠CEB=∠ACB=90°,∴△CEB∽△ACB,∴,∴,∵HE⊥AC,∴∠EHC=90°,∴,∴,∴;(3)在AC上取点M,使CM=AP,∵PE=CE,∠P=∠MCE∴△APE≌△MCE(SAS)∴AE=ME∵EH⊥AC∴AH=MH∴CM=CH﹣MH=CH﹣AH,∴AP=CH﹣AH.23.在平面直角坐标系xOy中,⊙O的半径为1,A为任意一点,B为⊙O上任意一点.给出如下定义:记A,B两点间的距离的最小值为p(规定:点A在⊙O上时,p=0),最大值为q,那么把的值称为点A与⊙O的“关联距离”,记作d(A,⊙O).(1)如图,点D,E,F的横、纵坐标都是整数.①d(D,⊙O)= ;②若点M在线段EF上,求d(M,⊙O)的取值范围;(2)若点N在直线y=上,直接写出d(N,⊙O)的取值范围;(3)正方形的边长为m,若点P在该正方形的边上运动时,满足d(P,⊙O)的最小值为1,最大值为,直接写出m的最小值和最大值.【答案】(1)①2;②2≤d(M,⊙O)≤3;(2)d(N,⊙O)≥;(3)m的最小值为﹣,最大值为.【解答】解:(1)①∵D(0,2)到⊙O的距离的最小值p=1,最大值q=3,∴d(D,⊙O)==2,故答案为:2;②当M在点E处,d(E,⊙O)=2,当M在点F处,d(F,⊙O)==3,∴2≤d(M,⊙O)≤3;(2)设ON=d,∴p=d﹣r=d﹣1,q=d+r=d+1,∴d(N,⊙O)===d,∵点N在直线y=上,设直线交x轴于点B,交y轴于点A,如图1,则x=0时,y=2,y=0时,x=﹣2,∴A(0,2),B(﹣2,0),∴OA=2,OB=2,∴AB==4,当ON⊥AB时,d(N,⊙O)最小,∴S△AOB=OA•OB=AB•ON,即×2×2=×4ON,∴ON=,∵ON无最大值,∴d(N,⊙O)≥;(3)如图2,∵d(P,⊙O)的最小值为1,最大值为,∴两个同心圆中,小圆的半径为1,大圆的半径为,∵KL=﹣1,∴m的最小值是=﹣,在Rt△OMH中,OM=,OH=m﹣1,MH=m,∴(m﹣1)2+(m)2=()2,解得:m=﹣2(舍去)或m=;∴m的最小值为﹣,最大值为.24.在⊙O中=,顺次连接A、B、C.(1)如图1,若点M是的中点,且MN∥AC交BC延长线于点N,求证:MN为⊙O 的切线;(2)如图2,在(1)的条件下,连接MC,过点A作AP⊥BM于点P,若BP=a,MP =b,CM=c,则a、b、c有何数量关系?(3)如图3,当∠BAC=60°时,E是BC延长线上一点,D是线段AB上一点,且BD =CE,若BE=5,△AEF的周长为9,请求出S△AEF的值?【答案】(1)证明见解答;(2)a=b+c;(3).【解答】解:(1)如图1,连接OM,∵M是的中点,∴OM⊥AC,∵MN∥AC,∴OM⊥MN,∵OM为⊙O的半径,∴MN为⊙O的切线;(2)如图2,连接OM交AC于K,连结AM,∵M是的中点,∴=,∴AM=CM=c,∵AP⊥BM,∴∠APM=∠APB=90°,∴AP2=AM2﹣PM2=c2﹣b2,∴AB2=AP2+BP2=c2﹣b2+a2,∴AC=AB=,∵M是的中点,∴OM⊥AC,∴AK=CK=AC=,∵∠APB=∠CKM=90°,∠ABP=∠MCK,∴△ABP∽△MCK,∴=,∴BP•CM=CK•AB,∴ac=•,∴2ac=c2﹣b2+a2,∴(a﹣c)2﹣b2=0,∴(a+b﹣c)(a﹣b﹣c)=0,∵a+b﹣c>0,∴a﹣b﹣c=0,∴a=b+c;(3)过点B作BH∥AC,过点D作DH∥BC,BH与DH交于点H,连接CH,则∠BDH=∠ABC=60°,∠DBH=∠ACB=60°,∴△BDH是等边三角形,∴BH=BD,∠DBH=60°,∴BH=CE,∠CBH=∠ABC+∠DBH=60°+60°=120°,∵∠ACE=180°﹣∠ACB=120°=∠CBH,AC=BC,∴△ACE≌△CBH(SAS),∴∠CAE=∠BCH,AE=CH,∵DH∥BC,DH=CE,∴四边形CEDH是平行四边形,∴CE∥ED,CH=ED,∴∠BCH=∠BED,CH=AE,∴∠BED=∠CAE,AE=ED,过点E作ET⊥AB于点T,交AC于点L,连接DL,则AT=TD=AD,AL=DL,∵∠BAC=60°,∴△ADL是等边三角形,∴∠ALD=60°=∠ACB,∴DL∥BC,即HD与DL在同一直线上,∴四边形BCLH是平行四边形,∴CL=BH=BD=CE,LH=BC,设CE=x,则CL=x,BC=AC=5﹣x,AD=DL=AL=AC﹣CL=5﹣2x,AT=,∵DF∥CH,∴=,即=,∴LF=,∴AF=AL+LF=5﹣2x+=,在Rt△BET中,ET=BE•sin60°=,∵AE2=AT2+ET2,∴AE2=()2+()2=x2﹣5x+25,延长BH,ED交于点R,则∠RHD=∠FCE,∠R=∠CFE,DH=CE,∴△HDR≌△CEF(AAS),∴DR=EF,∴ER=ED+DR=AE+EF=9﹣AF=9﹣=,∵CH∥ED,∴=,∴CH=•ER=×=,∴AE=,∴x2﹣5x+25=()2,解得:x1=5(舍去),x2=,∴AD=5﹣2×=,AF==10﹣=2,作DM⊥AL于点M,则DM=AD•sin60°=×=,∴S△AEF=S△ADE﹣S△ADF=AD•ET﹣AF•DM=××﹣×2×=.25.在平面直角坐标系xOy中,⊙O的半径为1,AB=1,且A,B两点中至少有一点在⊙O 外.给出如下定义:平移线段AB,得到线段A′B′(A′,B′分别为点A,B的对应点),若线段A′B′上所有的点都在⊙O的内部或⊙O上,则线段AA′长度的最小值称为线段AB到⊙O的“平移距离”.(1)如图1,点A1,B1的坐标分别为(﹣3,0),(﹣2,0),线段A1B1到⊙O的“平移距离”为,点A2,B2的坐标分别为(﹣,),(,),线段A2B2到⊙O的“平移距离”为;(2)若点A,B都在直线y=x+2上,记线段AB到⊙O的“平移距离”为d,求d的最小值;(3)如图2,若点A坐标为(1,),线段AB到⊙O的“平移距离”为1,画图并说明所有满足条件的点B形成的图形(不需证明).【答案】(1)2,;(2).(3)所有满足条件的点B形成的图形是以A为圆心圆心角为120°的.【解答】解:(1)根据“平移距离”的定义可得:线段A1B1到⊙O的“平移距离”为2,如图1,设A2B2与y轴交于E,线段A2B2向下平移得到⊙O的弦A′2B′2,线段A′2B′2与y轴交于点F,则A′2F=,OA′2=1,OE=,∴OF=,∴A2A′2=EF=OE﹣OF=﹣=,∴线段A2B2到⊙O的“平移距离”为,故答案为:2,;(2)如图2中,作等边△OEF,点E在x轴上,OE=EF=OF=1,设直线y=x+2交x轴于M,交y轴于N.则M(﹣2,0),N(0,2),过点E作EH⊥MN于H,∵OM=2,ON=2,∴tan∠NMO=,∴∠NMO=60°,∴EH=EM•sin60°=,观察图象可知,线段AB到⊙O的“平移距离”为d1的最小值为.(3)如图3,连接OA,交⊙O于点A′,则OA==2,∴OA到⊙O任意一点距离的最小值为OA′=OA﹣1=1,∴点A′(,),设平移后圆上另一点为B′,由题意得:A′B′=1,有三种情况:①点B′与点O重合,则点B的坐标为(,);②点B′与点(1,0)重合,则点B的坐标为(,);③点B′与点(﹣,)重合,则点B的坐标为(0,);如图可知所有满足条件的点B形成的图形是以A为圆心圆心角为120°的.26.【了解概念】定义:在平面直角坐标系xOy中,组成图形的各点中,与点P连线段最短的点叫做点P 于这个图形的短距点,这条最短线段的长度叫做点P这个图形的短距.【理解运用】(1)已知点P(﹣3,0),以原点为圆心,1半径作⊙O,则点P于⊙O的短距点的坐标是;(2)如图,点P(3,),等边三角形OAB的顶点A的坐标为(6,0),顶点B在第一象限,判断点P于△OAB的短距点的个数,并说明理由;【拓展提升】(3)已知P(p,﹣p+6),A(6,0),B(0,6),点C在第一象限内,且∠CBO=75°,∠ACB=90°,若点P到四边形OACB的短距大于2,请直接写出p的取值范围.【答案】(1)(﹣1,0);(2)3个,理由见解答过程;(3)p<﹣或2<p<4或p>6+.【解答】解:(1)如图:根据短距点定义,点P于⊙O的短距点为A,坐标是(﹣1,0),故答案为:(﹣1,0);(2)点P关于△OAB的短距点有3个,理由如下:过P作PC⊥OA于C,PE⊥AB于E,PD⊥OB于D,如图:∵P(3,),∴OC=3,PC=,∴tan∠POC=,∴∠POC=30°,∵△OAB是等边三角形,∴∠BOC=60°,OA=6,∴∠BOP=∠POC=30°,又PC⊥OA,PD⊥OB,∴PD=PC=,∵AC=OA﹣OC=3,PC=,∴tan∠P AC=,∴∠P AC=30°,同理∠P AE=∠P AC=30°,PE=PC,∴PC=PD=PE,即点P关于△OAB的短距点有C、D、E,∴点P关于△OAB的短距点有3个;(3)∵P(p,﹣p+6),∴P在直线y=﹣x+6上,直线经过A(6,0)、B(0,6),且∠ABO=∠BAO=45°,①当p<0时,过P作PD⊥x轴于D,过B作PE⊥PD于E,如图:△PBE是等腰直角三角形,若PB=2,则BE=PE=,而DE=OB=6,∴PD=6+,∴P(﹣,6+),由图可知:此时p<﹣,点P到四边形OACB的短距大于2,②当0≤p≤6时,过P作PD⊥BC于D,设PD=2,作PE⊥OB,PF⊥OA,过P'作P'G ⊥OA,设P'G=2,如图:∵∠PBD=∠OBC﹣∠ABC=30°,PD=2,∴BP=4,∵△PBE是等腰直角三角形,∴BE=PE=2,PF=OE=OB﹣BE=6﹣2,。
《中考压轴题全揭秘》专题16 新定义和阅读理解型问题一、单选题1.已知三角形的三边长分别为a、b、c,求其面积问题,中外数学家曾经进行过深入研究,古希腊的几何学家海伦(Heron,约公元50年)给出求其面积的海伦公式S=,其中p=;我国南宋时期数学家秦九韶(约1202-1261)曾提出利用三角形的三边求其面积的秦九韶公式S=,若一个三角形的三边长分别为2,3,4,则其面积是()A. B. C. D.2.在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.从一个格点移动到与之相距5的另一个格点的运动称为一次跳马变换.例如,在4×4的正方形网格图形中(如图1),从点A经过一次跳马变换可以到达点B,C,D,E等处.现有20×20的正方形网格图形(如图2),则从该正方形的顶点M经过跳马变换到达与其相对的顶点N,最少需要跳马变换的次数是()A.13 B.14 C.15 D.163.已知点A在函数11yx=-(x>0)的图象上,点B在直线y2=kx+1+k(k为常数,且k≥0)上.若A,B 两点关于原点对称,则称点A,B为函数y1,y2图象上的一对“友好点”.请问这两个函数图象上的“友好点”对数的情况为()A.有1对或2对B.只有1对C.只有2对D.有2对或3对4.对于实数a,b,定义符号min{a,b},其意义为:当a≥b时,min{a,b}=b;当a<b时,min{a,b}=a.例如:min={2,﹣1}=﹣1,若关于x的函数y=min{2x﹣1,﹣x+3},则该函数的最大值为()A.23B.1 C.43D.535.根据如图所示的程序计算函数y 的值,若输入的x 值是4或7时,输出的y 值相等,则b 等于( )A .9B .7C .﹣9D .﹣76.已知: 表示不超过的最大整数,例: ,令关于的函数 (是正整数),例:=1,则下列结论错误..的是( ) A .B .C .D .或17.设a ,b 是实数,定义@的一种运算如下:()()22@a b a b a b =+--,则下列结论:①若@0a b =,则a =0或b =0;②()@@@a b c a b a c +=+;③不存在实数a ,b ,满足22@5a b a b =+;④设a ,b 是矩形的长和宽,若矩形的周长固定,则当a =b 时,@a b 最大.其中正确的是( )A .②③④B .①③④C .①②④D .①②③8.在△ABC 中,若O 为BC 边的中点,则必有:AB 2+AC 2=2AO 2+2BO 2成立.依据以上结论,解决如下问题:如图,在矩形DEFG 中,已知DE=4,EF=3,点P 在以DE 为直径的半圆上运动,则PF 2+PG 2的最小值为( )A .B .C .34D .109.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若a=3,b=4,则该矩形的面积为()A.20 B.24 C. D.10.阅读理解:,,,是实数,我们把符号称为阶行列式,并且规定:,例如:.二元一次方程组的解可以利用阶行列式表示为:;其中,,.问题:对于用上面的方法解二元一次方程组时,下面说法错误的是()A. B. C. D.方程组的解为11.已知二次函数y=﹣x2+x+6及一次函数y=﹣x+m,将该二次函数在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新函数(如图所示),请你在图中画出这个新图象,当直线y=﹣x+m与新图象有4个交点时,m的取值范围是()A.﹣<m<3 B.﹣<m<2 C.﹣2<m<3 D.﹣6<m<﹣212.如图,一段抛物线y=﹣x2+4(﹣2≤x≤2)为C1,与x轴交于A0,A1两点,顶点为D1;将C1绕点A1旋转180°得到C2,顶点为D2;C1与C2组成一个新的图象,垂直于y轴的直线l与新图象交于点P1(x1,y1),P2(x2,y2),与线段D1D2交于点P3(x3,y3),设x1,x2,x3均为正数,t=x1+x2+x3,则t的取值范围是()A.6<t≤8 B.6≤t≤8 C.10<t≤12 D.10≤t≤1213.如图,抛物线与x轴交于点A、B,把抛物线在x轴及其下方的部分记作,将向左平移得到,与x轴交于点B、D,若直线与、共有3个不同的交点,则m的取值范围是A. B. C. D.14.定义一种对正整数n的“F”运算:①当n为奇数时,F(n)=3n+1;②当n为偶数时,F(n)=(其中k是使F(n)为奇数的正整数)……,两种运算交替重复进行,例如,取n=24,则:若n=13,则第2018次“F”运算的结果是()A.1 B.4 C.2018 D.4201815.在求1+6+62+63+64+65+66+67+68+69的值时,小林发现:从第二个加数起每一个加数都是前一个加数的6倍,于是她设:S=1+6+62+63+64+65+66+67+68+69①然后在①式的两边都乘以6,得:6S=6+62+63+64+65+66+67+68+69+610②②﹣①得6S﹣S=610﹣1,即5S=610﹣1,所以S=,得出答案后,爱动脑筋的小林想:如果把“6”换成字母“a”(a≠0且a≠1),能否求出1+a+a2+a3+a4+…+a2014的值?你的答案是()A. B. C. D.a2014﹣1二、填空题16.对于实数a,b,定义运算“◆”:a◆b=,例如4◆3,因为4>3.所以4◆3==5.若x,y满足方程组,则x◆y=_____________.17.观察下列运算过程:S=1+3+32+33+…+32017+32018①,①×3得3S=3+32+33+…+32018+32019②,②﹣①得2S=32019﹣1,S=.运用上面计算方法计算:1+5+52+53+…+52018=____.18.对于任意实数a、b,定义:a◆b=a2+ab+b2.若方程(x◆2)﹣5=0的两根记为m、n,则m2+n2= .19.规定:,如:,若,则=__.20.对于实数a,b,定义运算“※”如下:a※b=a2﹣ab,例如,5※3=52﹣5×3=10.若(x+1)※(x﹣2)=6,则x的值为_____.21.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a,b,c,则该三角形的面积为S=.现已知△ABC的三边长分别为1,2,,则△ABC的面积为______.22.对于一个位置确定的图形,如果它的所有点都在一个水平放置的矩形内部或边上,且该图形与矩形的每条边都至少有一个公共点(如图1),那么这个矩形水平方向的边长称为该图形的宽,铅锤方向的边长称为该矩形的高.如图2,菱形ABCD的边长为1,边AB水平放置.如果该菱形的高是宽的,那么它的宽的值是_____.23.对于任意实数a、b,定义一种运算:a※b=ab﹣a+b﹣2.例如,2※5=2×5﹣2+5﹣2=ll.请根据上述的定义解决问题:若不等式3※x<2,则不等式的正整数解是_____.24.如图,把平面内一条数轴x绕原点O逆时针旋转角θ(0°<θ<90°)得到另一条数轴y,x轴和y 轴构成一个平面斜坐标系.规定:过点P作y轴的平行线,交x轴于点A,过点P作x轴的平行线,交y轴于点B,若点A在x轴上对应的实数为a,点B在y轴上对应的实数为b,则称有序实数对(a,b)为点P 的斜坐标,在某平面斜坐标系中,已知θ=60°,点M′的斜坐标为(3,2),点N与点M关于y轴对称,则点N的斜坐标为_____.25.如图1,作∠BPC平分线的反向延长线PA,现要分别以∠APB,∠APC,∠BPC为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以∠BPC为内角,可作出一个边长为1的正方形,此时∠BPC=90°,而=45是360°(多边形外角和)的,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图2所示.图2中的图案外轮廓周长是_____;在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是_____.26.若为实数,则表示不大于的最大整数,例如,,等. 是大于的最小整数,对任意的实数都满足不等式. ①,利用这个不等式①,求出满足的所有解,其所有解为__________.27.《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?”该问题的答案是______步.28.在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.以顶点都是格点的正方形ABCD的边为斜边,向内作四个全等的直角三角形,使四个直角顶点E,F,G,H都是格点,且四边形EFGH 为正方形,我们把这样的图形称为格点弦图.例如,在如图1所示的格点弦图中,正方形ABCD的边长为,此时正方形EFGH的而积为5.问:当格点弦图中的正方形ABCD的边长为时,正方形EFGH的面积的所有可能值是_____(不包括5).29.刘徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割圆术”,即用内接或外切正多边形逐步逼近圆来近似计算圆的面积,设圆O的半径为1,若用圆O的外切正六边形的面积来近似估计圆O的面积,则S=_____.(结果保留根号)30.定义新运算:a※b=a2+b,例如3※2=32+2=11,已知4※x=20,则x=_____.31.设双曲线与直线交于,两点(点在第三象限),将双曲线在第一象限的一支沿射线的方向平移,使其经过点,将双曲线在第三象限的一支沿射线的方向平移,使其经过点,平移后的两条曲线相交于点,两点,此时我们称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,为双曲线的“眸径”.当双曲线的眸径为6时,的值为__________.32.如图,若△ABC内一点P满足∠PAC=∠PCB=∠PBA,则称点P为△ABC的布罗卡尔点,三角形的布罗卡尔点是法国数学家和数学教育家克雷尔首次发现,后来被数学爱好者法国军官布罗卡尔重新发现,并用他的名字命名,布罗卡尔点的再次发现,引发了研究“三角形几何”的热潮.已知△ABC中,CA=CB,∠ACB=120°,P为△ABC的布罗卡尔点,若PA=,则PB+PC=_____.三、解答题33.综合与实践折纸是一项有趣的活动,同学们小时候都玩过折纸,可能折过小动物、小花、飞机、小船等,折纸活动也伴随着我们初中数学的学习.在折纸过程中,我们可以通过研究图形的性质和运动、确定图形位置等,进一步发展空间观念,在经历借助图形思考问题的过程中,我们会初步建立几何直观,折纸往往从矩形纸片开始,今天,就让我们带着数学的眼光来玩一玩折纸,看看折叠矩形的对角线之后能得到哪些数学结论.实践操作如图1,将矩形纸片ABCD沿对角线AC翻折,使点B′落在矩形ABCD所在平面内,B′C和AD相交于点E,连接B′D.解决问题(1)在图1中,①B′D和AC的位置关系为;②将△AEC剪下后展开,得到的图形是;(2)若图1中的矩形变为平行四边形时(AB≠BC),如图2所示,结论①和结论②是否成立,若成立,请挑选其中的一个结论加以证明,若不成立,请说明理由;(3)小红沿对角线折叠一张矩形纸片,发现所得图形是轴对称图形,沿对称轴再次折叠后,得到的仍是轴对称图形,则小红折叠的矩形纸片的长宽之比为;拓展应用(4)在图2中,若∠B=30°,AB=4,当△AB′D恰好为直角三角形时,BC的长度为.34.如图①,在Rt△ABC中,以下是小亮探究与之间关系的方法:∵sinA=,sinB=,∴c=,c=,∴=,根据你掌握的三角函数知识.在图②的锐角△ABC中,探究、、之间的关系,并写出探究过程.35.如图,在平面直角坐标系中,矩形ABCD的对称中心为坐标原点O,AD⊥y轴于点E(点A在点D的左侧),经过E、D两点的函数y=﹣x2+mx+1(x≥0)的图象记为G1,函数y=﹣x2﹣mx﹣1(x<0)的图象记为G2,其中m是常数,图象G1、G2合起来得到的图象记为G.设矩形ABCD的周长为L.(1)当点A的横坐标为﹣1时,求m的值;(2)求L与m之间的函数关系式;(3)当G2与矩形ABCD恰好有两个公共点时,求L的值;(4)设G在﹣4≤x≤2上最高点的纵坐标为y0,当≤y0≤9时,直接写出L的取值范围.36.我们不妨约定:对角线互相垂直的凸四边形叫做“十字形”.(1)①在“平行四边形,矩形,菱形,正方形”中,一定是“十字形”的有;②在凸四边形ABCD中,AB=AD且CB≠CD,则该四边形“十字形”.(填“是”或“不是”)(2)如图1,A,B,C,D是半径为1的⊙O上按逆时针方向排列的四个动点,AC与BD交于点E,∠ADB﹣∠CDB=∠ABD﹣∠CBD,当6≤AC2+BD2≤7时,求OE的取值范围;(3)如图2,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a,b,c为常数,a>0,c<0)与x轴交于A,C两点(点A在点C的左侧),B是抛物线与y轴的交点,点D的坐标为(0,﹣ac),记“十字形”ABCD的面积为S,记△AOB,△COD,△AOD,△BOC的面积分别为S1,S2,S3,S4.求同时满足下列三个条件的抛物线的解析式;①=;②=;③“十字形”ABCD的周长为12.37.若一个三角形一条边的平方等于另两条边的乘积,我们把这个三角形叫做比例三角形.已知是比例三角形,,,请直接写出所有满足条件的AC的长;如图1,在四边形ABCD中,,对角线BD平分,求证:是比例三角形.如图2,在的条件下,当时,求的值.38.定义:我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等),我们就把这条对角线叫做这个四边形的“相似对角线”.理解:(1)如图1,已知Rt△ABC在正方形网格中,请你只用无刻度的直尺在网格中找到一点D,使四边形ABCD 是以AC为“相似对角线”的四边形(保留画图痕迹,找出3个即可);(2)如图2,在四边形ABCD中,∠ABC=80°,∠ADC=140°,对角线BD平分∠ABC.求证:BD是四边形ABCD的“相似对角线”;(3)如图3,已知FH是四边形EFCH的“相似对角线”,∠EFH=∠HFG=30°,连接EG,若△EFG的面积为2,求FH的长.39.对于三个数a,b,c,用M{a,b,c}表示这三个数的中位数,用max{a,b,c}表示这三个数中最大数,例如:M{﹣2,﹣1,0}=﹣1,max{﹣2,﹣1,0}=0,max{﹣2,﹣1,a}=解决问题:(1)填空:M{sin45°,cos60°,tan60°}=__________,如果max{3,5﹣3x,2x﹣6}=3,则x的取值范围为__________;(2)如果2•M{2,x+2,x+4}=max{2,x+2,x+4},求x的值;(3)如果M{9,x2,3x﹣2}=max{9,x2,3x﹣2},求x的值.40.阅读短文,解决问题如果一个三角形和一个菱形满足条件:三角形的一个角与菱形的一个角重合,且菱形的这个角的对角顶点在三角形的这个角的对边上,则称这个菱形为该三角形的“亲密菱形”.如图1,菱形AEFD为△ABC的“亲密菱形”.如图2,在△ABC中,以点A为圆心,以任意长为半径作弧,交AB、AC于点M、N,再分别以M、N为圆心,以大于MN的长为半径作弧,两弧交于点P,作射线AP,交BC于点F,过点F作FD//AC,FE//AB.(1)求证:四边形AEFD是△ABC的“亲密菱形”;(2)当AB=6,AC=12,∠BAC=45°时,求菱形AEFD的面积.41.小贤与小杰在探究某类二次函数问题时,经历了如下过程:求解体验(1)已知抛物线经过点(-1,0),则= ,顶点坐标为,该抛物线关于点(0,1)成中心对称的抛物线的表达式是 .抽象感悟我们定义:对于抛物线,以轴上的点为中心,作该抛物线关于点对称的抛物线 ,则我们又称抛物线为抛物线的“衍生抛物线”,点为“衍生中心”.(2)已知抛物线关于点的衍生抛物线为,若这两条抛物线有交点,求的取值范围.问题解决(3) 已知抛物线①若抛物线的衍生抛物线为,两抛物线有两个交点,且恰好是它们的顶点,求的值及衍生中心的坐标;②若抛物线关于点的衍生抛物线为 ,其顶点为;关于点的衍生抛物线为,其顶点为;…;关于点的衍生抛物线为,其顶点为;…(为正整数).求的长(用含的式子表示).42.结果如此巧合!下面是小颖对一道题目的解答.题目:如图,的内切圆与斜边相切于点,,,求的面积.解:设的内切圆分别与、相切于点、,的长为.根据切线长定理,得,,.根据勾股定理,得.整理,得.所以.小颖发现恰好就是,即的面积等于与的积.这仅仅是巧合吗?请你帮她完成下面的探索.已知:的内切圆与相切于点,,.可以一般化吗?(1)若,求证:的面积等于.倒过来思考呢?(2)若,求证.改变一下条件……(3)若,用、表示的面积.43.我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”。
2021年中考数学真题分项汇编【全国通用】(第01期)专题14二次函数解答压轴题(共32题)姓名:__________________班级:______________得分:_________________一、解答题1.(2021·北京中考真题)在平面直角坐标系xOy 中,点()1,m 和点()3n ,在抛物线()20y ax bx a =+>上.(1)若3,15m n ==,求该抛物线的对称轴;(2)已知点()()()1231,,2,,4,y y y -在该抛物线上.若0mn <,比较123,,y y y 的大小,并说明理由.【答案】(1)1x =-;(2)213y y y <<,理由见解析【分析】(1)由题意易得点()1,3和点()3,15,然后代入抛物线解析式进行求解,最后根据对称轴公式进行求解即可;(2)由题意可分当0,0m n <>时和当0,0m n ><时,然后根据二次函数的性质进行分类求解即可.【详解】解:(1)当3,15m n ==时,则有点()1,3和点()3,15,代入二次函数()20y ax bx a =+>得:39315a b a b +=⎧⎨+=⎩,解得:12a b =⎧⎨=⎩,∴抛物线解析式为22y x x =+,∴抛物线的对称轴为12b x a=-=-;(2)由题意得:抛物线()20y ax bx a =+>始终过定点()0,0,则由0mn <可得:①当0,0m n ><时,由抛物线()20y ax bx a =+>始终过定点()0,0可得此时的抛物线开口向下,即0a <,与0a >矛盾;②当0,0m n <>时,∵抛物线()20y ax bx a =+>始终过定点()0,0,∴此时抛物线的对称轴的范围为1322x <<,∵点()()()1231,,2,,4,y y y -在该抛物线上,∴它们离抛物线对称轴的距离的范围分别为()3513571,2,4222222x x x <--<<-<<-<,∵0a >,开口向上,∴由抛物线的性质可知离对称轴越近越小,∴213y y y <<.【点睛】本题主要考查二次函数的综合,熟练掌握二次函数的图象与性质是解题的关键.2.(2021·江苏南京市·中考真题)已知二次函数2y ax bx c =++的图像经过()()2,1,2,3--两点.(1)求b 的值.(2)当1c >-时,该函数的图像的顶点的纵坐标的最小值是________.(3)设()0m ,是该函数的图像与x 轴的一个公共点,当13m -<<时,结合函数的图像,直接写出a 的取值范围.【答案】(1)1b =-;(2)1;(3)0a <或45a >.【分析】(1)将点()()2,1,2,3--代入求解即可得;(2)先求出二次函数的顶点的纵坐标,再利用完全平方公式、不等式的性质求解即可得;(3)分0a <和0a >两种情况,再画出函数图象,结合图象建立不等式组,解不等式组即可得.【详解】解:(1)将点()()2,1,2,3--代入2y ax bx c =++得:421423a b c a b c -+=⎧⎨++=-⎩,两式相减得:44b -=,解得1b =-;(2)由题意得:0a ≠,由(1)得:2211()24y ax x c a x c a a=-+=-+-,则此函数的顶点的纵坐标为14c a -,将点()2,3-代入2y ax x c =-+得:423a c -+=-,解得41a c -=+,则1141c c a c -=++,下面证明对于任意的两个正数00,x y ,都有00x y +≥2000x y =+- ,00x y ∴+≥(当且仅当00x y =时,等号成立),当1c >-时,10c +>,则11111111c c c c +=++-≥-=++(当且仅当111c c +=+,即0c =时,等号成立),即114c a-≥,故当1c >-时,该函数的图像的顶点的纵坐标的最小值是1;(3)由423a c -+=-得:41c a =--,则二次函数的解析式为241(0)y ax x a a =---≠,由题意,分以下两种情况:①如图,当0a <时,则当1x =-时,0y >;当3x =时,0y <,即141093410a a a a +-->⎧⎨---<⎩,解得0a <;②如图,当0a >时,当1x =-时,14130y a a a =+--=-<,∴当3x =时,93410y a a =--->,解得45a >,综上,a 的取值范围为0a <或45a >.【点睛】本题考查了二次函数的图象与性质等知识点,较难的是题(3),熟练掌握函数图象法是解题关键.3.(2021·安徽中考真题)已知抛物线221(0)y ax x a =-+≠的对称轴为直线1x =.(1)求a 的值;(2)若点M (x 1,y 1),N (x 2,y 2)都在此抛物线上,且110x -<<,212x <<.比较y 1与y 2的大小,并说明理由;(3)设直线(0)y m m =>与抛物线221y ax x =-+交于点A 、B ,与抛物线23(1)y x =-交于点C ,D ,求线段AB 与线段CD 的长度之比.【答案】(1)1a =;(2)12y y >,见解析;(3【分析】(1)根据对称轴2b x a=-,代值计算即可(2)根据二次函数的增减性分析即可得出结果(3)先根据求根公式计算出1x =±再表示出1(1)|AB =+-,12CD x x =-=3=,即可得出结论【详解】解:(1)由题意得:212x a-=-=1a \=(2) 抛物线对称轴为直线1x =,且10a =>∴当1x <时,y 随x 的增大而减小,当1x >时,y 随x 的增大而增大.∴当111x -<<时,y 1随x 1的增大而减小,1x =-时,4y =,0x =时,1y =114y ∴<<同理:212x <<时,y 2随x 2的增大而增大1x = 时,0y =.2x =时,1y =201y ∴<<12y y ∴>(3)令221x x m-+=22(1)0x x m -+-=2(2)41(1)m ∆=--⋅⋅-4m=2121x ∴==⋅11x ∴=+21x =|1(1)|AB ∴=-=令23(1)x m-=2(1)3m x ∴-=113x ∴=+213x =-+12CD x x ∴=-233=3AB CD ∴==∴AB 与CD【点睛】本题考查二次函数的图像性质、二次函数的解析式、对称轴、函数的交点、正确理解二次函数的性质是关键,利用交点的特点解题是重点4.(2021·浙江绍兴市·中考真题)小聪设计奖杯,从抛物线形状上获得灵感,在平面直角坐标系中画出截面示意图,如图1,杯体ACB 是抛物线的一部分,抛物线的顶点C 在y 轴上,杯口直径4AB =,且点A ,B 关于y 轴对称,杯脚高4CO =,杯高8DO =,杯底MN 在x 轴上.(1)求杯体ACB 所在抛物线的函数表达式(不必写出x 的取值范围).(2)为使奖杯更加美观,小敏提出了改进方案,如图2,杯体A CB ''所在抛物线形状不变,杯口直径//A B AB '',杯脚高CO 不变,杯深CD '与杯高OD '之比为0.6,求A B ''的长.【答案】(1)24y x =+;(2)【分析】(1)确定B 点坐标后,设出抛物线解析式,利用待定系数法求解即可;(2)利用杯深CD ′与杯高OD ′之比为0.6,求出OD ′,接着利用抛物线解析式求出B '或A '横坐标即可完成求解.【详解】解:(1)设24y ax =+,∵杯口直径AB =4,杯高DO =8,∴()2,8B 将2x =,8y =代入,得1a =,24y x ∴=+.(2)0.6CD OD ''= ,0.64CD CD '∴=+',6CD ∴'=,10OD '=,当10y =时,2104x =+,1x =或2x =,A B ∴''=,即杯口直径A B ''的长为【点睛】本题考查了抛物线的应用,涉及到待定系数法求抛物线解析式、求抛物线上的点的坐标等内容,解决本题的关键是读懂题意,找出相等关系列出等式等.5.(2021·湖北恩施土家族苗族自治州·中考真题)如图,在平面直角坐标系中,四边形ABCD 为正方形,点A ,B 在x 轴上,抛物线2y x bx c =++经过点B ,()4,5D -两点,且与直线DC 交于另一点E .(1)求抛物线的解析式;(2)F 为抛物线对称轴上一点,Q 为平面直角坐标系中的一点,是否存在以点Q ,F ,E ,B 为顶点的四边形是以BE 为边的菱形.若存在,请求出点F 的坐标;若不存在,请说明理由;(3)P 为y 轴上一点,过点P 作抛物线对称轴的垂线,垂足为M ,连接ME ,BP .探究EM MP PB ++是否存在最小值.若存在,请求出这个最小值及点M 的坐标;若不存在,请说明理由.【答案】(1)223y x x =+-;(2)存在以点Q ,F ,E ,B 为顶点的四边形是以BE 为边的菱形,点F的坐标为(-或(1,-或(1,5--或(1,5-+;(3)EM MP PB ++存在最小值,1+,此时点M 的坐标为51,4⎛⎫- ⎪⎝⎭.【分析】(1)由题意易得5AD AB ==,进而可得()4,0A -,则有()10B ,,然后把点B 、D 代入求解即可;(2)设点()1,F a -,当以点Q ,F ,E ,B 为顶点的四边形是以BE 为边的菱形时,则根据菱形的性质可分①当BF BE =时,②当EF BE =时,然后根据两点距离公式可进行分类求解即可;(3)由题意可得如图所示的图象,连接OM 、DM ,由题意易得DM =EM ,四边形BOMP 是平行四边形,进而可得OM =BP ,则有1EM MP PB DM MO ++=++,若使EM MP PB ++的值为最小,即1DM MO ++为最小,则有当点D 、M 、O 三点共线时,1DM MO ++的值为最小,然后问题可求解.【详解】解:(1)∵四边形ABCD 为正方形,()4,5D -,∴5AD AB ==,()4,0A -,∴4AO =,∴OB =1,∴()10B ,,把点B 、D 坐标代入得:164510b c b c -+=⎧⎨++=⎩,解得:23b c =⎧⎨=-⎩,∴抛物线的解析式为223y x x =+-;(2)由(1)可得()10B ,,抛物线解析式为223y x x =+-,则有抛物线的对称轴为直线1x =-,∵点D 与点E 关于抛物线的对称轴对称,∴()2,5E ,∴由两点距离公式可得()()222120526BE =-+-=,设点()1,F a -,当以点Q ,F ,E ,B 为顶点的四边形是以BE 为边的菱形时,则根据菱形的性质可分:①当BF BE =时,如图所示:∴由两点距离公式可得22BF BE =,即()()2211026a ++-=,解得:a =∴点F 的坐标为(-或(1,-;②当EF BE =时,如图所示:∴由两点距离公式可得22EF BE =,即()()2221526a ++-=,解得:5a =±∴点F 的坐标为(1,5--或(1,5-+;综上所述:当以点Q ,F ,E ,B 为顶点的四边形是以BE 为边的菱形,点F 的坐标为(-或(1,-或(1,5--或(1,5-+;(3)由题意可得如图所示:连接OM 、DM ,由(2)可知点D 与点E 关于抛物线的对称轴对称,()10B ,,∴1OB =,DM =EM ,∵过点P 作抛物线对称轴的垂线,垂足为M ,∴1,//PM OB PM OB ==,∴四边形BOMP 是平行四边形,∴OM =BP ,∴1EM MP PB DM MO ++=++,若使EM MP PB ++的值为最小,即1DM MO ++为最小,∴当点D 、M 、O 三点共线时,1DM MO ++的值为最小,此时OD 与抛物线对称轴的交点为M ,如图所示:∵()4,5D -,∴OD ==∴1DM MO ++1+,即EM MP PB ++1+,设线段OD 的解析式为y kx =,代入点D 的坐标得:54k =-,∴线段OD 的解析式为54y x =-,∴51,4M ⎛⎫- ⎪⎝⎭.【点睛】本题主要考查二次函数的综合、菱形的性质及轴对称的性质,熟练掌握二次函数的综合、菱形的性质及轴对称的性质是解题的关键.6.(2021·四川南充市·中考真题)如图,已知抛物线2()40y ax bx a =++≠与x 轴交于点A (1,0)和B ,与y 轴交于点C ,对称轴为52x =.(1)求抛物线的解析式;(2)如图1,若点P 是线段BC 上的一个动点(不与点B ,C 重合),过点P 作y 轴的平行线交抛物线于点Q ,连接OQ .当线段PQ 长度最大时,判断四边形OCPQ 的形状并说明理由.(3)如图2,在(2)的条件下,D 是OC 的中点,过点Q 的直线与抛物线交于点E ,且2DQE ODQ ∠=∠.在y 轴上是否存在点F ,使得BEF 为等腰三角形?若存在,求点F 的坐标;若不存在,请说明理由.【答案】(1)254y x x =-+;(2)四边形OCPQ 是平行四边形,理由见详解;(3)(0,258)或(0,1)或(0,-1)【分析】(1)设抛物线(1)(4)y a x x =--,根据待定系数法,即可求解;(2)先求出直线BC 的解析式为:y =-x +4,设P (x ,-x +4),则Q (x ,254x x -+),(0≤x ≤4),得到PQ =()224x --+,从而求出线段PQ 长度最大值,进而即可得到结论;(3)过点Q 作QM ⊥y 轴,过点Q 作QN ∥y 轴,过点E 作EN ∥x 轴,交于点N ,推出MDQ DQN EQN ∠=∠=∠,从而得MQ NE MD NQ=,进而求出E (5,4),设F (0,y ),分三种情况讨论,【详解】解:(1)∵抛物线2()40y ax bx a =++≠与x 轴交于点A (1,0)和B ,与y 轴交于点C ,对称轴为直线52x =,∴B (4,0),C (0,4),设抛物线(1)(4)y a x x =--,把C (0,4)代入得:)40(0)1(4a ⨯-=-,解得:a =1,∴抛物线的解析式为:254y x x =-+;(2)∵B (4,0),C (0,4),∴直线BC 的解析式为:y =-x +4,设P (x ,-x +4),则Q (x ,254x x -+),(0≤x ≤4),∴PQ =-x +4-(254x x -+)=24x x -+=()224x --+,∴当x =2时,线段PQ 长度最大=4,∴此时,PQ =CO ,又∵PQ ∥CO ,∴四边形OCPQ 是平行四边形;(3)过点Q 作QM ⊥y 轴,过点Q 作QN ∥y 轴,过点E 作EN ∥x 轴,交于点N ,由(2)得:Q (2,-2),∵D 是OC 的中点,∴D (0,2),∵QN ∥y 轴,∴ODQ DQN ∠=∠,又∵2DQE ODQ ∠=∠,∴2DQE DQN ∠=∠,∴MDQ DQN EQN ∠=∠=∠,∴tan tan MDQ EQN ∠=∠,即:MQ NE MD NQ=,设E (x ,254x x -+),则222454(2)x x x -=-+--,解得:15=x ,22x =(舍去),设F (0,y ),则()()222240016BF y y =-+-=+,()()()2222504254EF y y =-+-=+-,()()222544017BE =-+-=,①当BF =EF 时,()2216254y y +=+-,解得:258y =,②当BF =BE 时,21617y +=,解得:1y =或1y =-,③当EF =BE 时,()225417y +-=,无解,综上所述:点F 的坐标为:(0,258)或(0,1)或(0,-1)..【点睛】本题主要考查二次函数与平面几何的综合,掌握二次函数的性质以及图像上点的坐标特征,添加辅助线,构造直角三角形,是解题的关键.7.(2021·四川广元市·中考真题)如图1,在平面直角坐标系xOy 中,抛物线2y ax bx c =++与x 轴分别相交于A 、B 两点,与y 轴相交于点C ,下表给出了这条抛物线上部分点(,)x y 的坐标值:x…1-0123…y …03430…(1)求出这条抛物线的解析式及顶点M 的坐标;(2)PQ 是抛物线对称轴上长为1的一条动线段(点P 在点Q 上方),求AQ QP PC ++的最小值;(3)如图2,点D 是第四象限内抛物线上一动点,过点D 作DF x ⊥轴,垂足为F ,ABD △的外接圆与DF 相交于点E .试问:线段EF 的长是否为定值?如果是,请求出这个定值;如果不是,请说明理由.【答案】(1)()214y x =--+;()1,4M ;(2)1;(3)是,1.【分析】(1)依据表格数据,设出抛物线的顶点式,利用待定系数法求解即可;(2)利用平移和找对称点的方式,将AQ QP PC ++的长转化为1PE PC ++,再利用两点之间线段最短确定PE PC +的最小值等于CE 的长,加1后即能确定1PE PC ++的最小值;(3)设出圆心和D 点的坐标,接着表示出E 点的坐标,利用圆心到B 点的距离等于圆心到D 点的距离,求出q 和e 的关系,得到E 点的纵坐标,进而确定EF 的长为定值.【详解】解:(1)由表格数据可知,顶点坐标为(1,4)设抛物线解析式为:()214y a x =-+,将点(0,3)代入解析式得:3=a +4,∴1a =-,∴抛物线解析式为:()214y x =--+,顶点坐标()1,4M .(2)由表格可知,抛物线经过点A (-1,0),C (0,3),如图3,将A 点向上平移一个单位,得到()'1,1A -,则'//'=AA PQ AA PQ ,,∴四边形'AA PQ 是平行四边形,∴'=PA QA ,作'A 关于MQ 的对称点E ,则()3,1,E ∴'=PA PE ,∴=1AQ QP PC PE PC ++++,当P 、E 、C 三点共线时,PE PC +最短,设直线CE 的解析式为:y mx n =+,将C 、E 两点坐标代入解析式可得:331n m n =⎧⎨+=⎩,∴323n m =⎧⎪⎨=-⎪⎩,∴直线CE 的解析式为:233y x =-+,令1x =,则73y =,∴当713P ⎛⎫ ⎪⎝⎭,时,P 、E 、C 三点共线,此时=PE PC EC +最短,∴AQ QPPC ++1.(3)是;理由:设,D p q (),因为A 、B 两点关于直线x =1对称,所以圆心位于该直线上,所以可设ABD △的外接圆的圆心为()'1,O e ,作'O N DF ⊥,垂足为点N ,则,N p e (),由DF x ⊥轴,∴,2E p e q -(),∵'='O D O B ,且由表格数据可知()3,0B ∴()()()()2222310=1e p q e -+--+-,化简得:()()22241e p q e +=-+-,∵点D 是第四象限内抛物线上一动点,且抛物线解析式为()214y x =--+,∴()214q p =--+,∴()214p q -=-,∴()2244e q q e +=-+-,∵0q ≠,∴21e q -=-,∴,1E p -(),∴1EF =,即EF 的长不变,为1.【点睛】本题涉及到了动点问题,综合考查了用待定系数法求抛物线解析式、点的平移、勾股定理、平行四边形的判定与性质、最短路径问题、圆的性质等内容,解决本题的关键是理解并掌握相关概念与公式,能将题干信息与图形相结合,挖掘图中隐含信息,本题有一定的计算量,对学生的综合分析与计算能力都有较高的要求,本题蕴含了数形结合的思想方法等.8.(2021·湖北荆州市·中考真题)已知:直线1y x =-+与x 轴、y 轴分别交于A 、B 两点,点C 为直线AB 上一动点,连接OC ,AOC ∠为锐角,在OC 上方以OC 为边作正方形OCDE ,连接BE ,设BE t =.(1)如图1,当点C 在线段AB 上时,判断BE 与AB 的位置关系,并说明理由;(2)真接写出点E 的坐标(用含t 的式子表示);(3)若tan AOC k ∠=,经过点A 的抛物线()20y ax bx c a =++>顶点为P ,且有6320a b c ++=,POA 的面积为12k .当2t =时,求抛物线的解析式.【答案】(1)BE ⊥AB ,理由见解析;(2)(,122t t --);(3)243y x x =-+【分析】(1)先求出点A 、B 的坐标,则可判断△AOB 是等腰直角三角形,然后结合正方形的旋转可证明△AOC ≌△BOE (SAS ),可得∠OBE =∠OAC =45°,进而可得结论;(2)作辅助线如图1(见解析),根据正方形的性质可证△MOC ≌△NEO ,可得CM =ON ,OM =EN ,由(1)的结论可得AC =BE =t ,然后解等腰直角△ACM ,可求出22AM CM t ==,进而可得答案;(3)由抛物线过点A 结合已知条件可求出抛物线的对称轴是直线x =2,然后由(2)可求出当2t =时k =1,进一步即可求出点P 的纵坐标,从而可得顶点P 的坐标,于是问题可求解.【详解】解:(1)BE ⊥AB ,理由如下:对于直线y =-x +1,当x =0时,y =1,当y =0时,x =1,∴B (0,1),A (1,0),∴OA =OB =1,∴∠OBA =∠OAB =45°,∵四边形OCDE 是正方形,∴OC =OE ,∠COE =90°,∵∠AOB =90°,∴∠AOC =∠BOE ,∴△AOC ≌△BOE (SAS ),∴∠OBE =∠OAC =45°,∴∠EBC =∠EBO +∠OBA =45°+45°=90°,即BE ⊥AB ;(2)作CM ⊥OA 于点M ,作EN ⊥x 轴于点N ,如图1,则∠CMO =∠ENO =90°,∵∠EON +∠NEO =∠EON +∠COM =90°,∴∠NEO =∠COM ,又∵OC =OE ,∴△MOC ≌△NEO ,∴CM =ON ,OM =EN ,在△ACM 中,∠CMA =90°,∠MAC =45°,AC =BE =t ,∴2AM CM t ==,∴212OM t =-,∵点E 在第二象限,∴点E 的坐标是(,122t t --);(3)∵抛物线过点A (1,0),∴a +b +c =0,∵6320a b c ++=,∴消去c 可得b =-4a ,∴抛物线的对称轴是直线x =2,如图1,当2t =时,由(2)可得2AC =,∴12AM CM ==,∴11122OM CM =-==,∴tan 1AOC ∠=,即k =1,∴△POA 的面积为12,即11122P y ⨯⨯=,解得1P y =,∵a >0,∴顶点P 的纵坐标是-1,∴点P (2,-1),设()221y a x =--,把点A (1,0)代入,可求得a =1,∴抛物线的解析式是()222143y x x x =--=-+.【点睛】本题主要考查了待定系数法求二次函数的解析式、正方形的性质、全等三角形的判定和性质、一次函数的性质以及等腰直角三角形的判定和性质等知识,具有一定的难度,熟练掌握相关知识、灵活应用数形结合的思想是解题的关键.9.(2021·四川资阳市·中考真题)抛物线2y x bx c =-++与x 轴交于A 、B 两点,与y 轴交于点C ,且()()1,0,0,3B C -.(1)求抛物线的解析式;(2)如图1,点P 是抛物线上位于直线AC 上方的一点,BP 与AC 相交于点E ,当:1:2PE BE =时,求点P 的坐标;(3)如图2,点D 是抛物线的顶点,将抛物线沿CD 方向平移,使点D 落在点D ¢处,且2DD CD '=,点M 是平移后所得抛物线上位于D ¢左侧的一点,//MN y 轴交直线OD '于点N ,连结CN .当55D N CN '+的值最小时,求MN 的长.【答案】(1)2y x 2x 3=-++;(2)(1,4)P 或(2,3)P ;(3)34.【分析】(1)利用待定系数法即可得;(2)设点P 的坐标为2(,23)P a a a -++,先利用待定系数法求出直线AC 的解析式,再根据:1:2PE BE =可得点E 的坐标,代入直线AC 的解析式求解即可得;(3)先根据2DD CD '=求出点D ¢的坐标,再根据二次函数图象的平移规律得出平移后的函数解析式,设点M 的坐标,从而可得点N 的坐标,然后根据两点之间的距离公式可得55D N CN '+,最后根据两点之间线段最短、垂线段最短求解即可得.【详解】解:(1)由题意,将点()()1,0,0,3B C -代入2y x bx c =-++得:103b c c --+=⎧⎨=⎩,解得23b c =⎧⎨=⎩,则抛物线的解析式为2y x 2x 3=-++;(2)对于二次函数2y x 2x 3=-++,当0y =时,2230x x -++=,解得1x =-或3x =,(3,0)A ∴,设点P 的坐标为2(,23)(03)P a a a a -++<<,点E 的坐标为11(,)E x y ,:1:2,(1,0)PE BE B =- ,1121111223102a x x a a y y -⎧=⎪+⎪∴⎨-++-⎪=⎪-⎩,解得121213324233x a y a a ⎧=-⎪⎪⎨⎪=-++⎪⎩,22124(,2)3333E a a a ∴--++,设直线AC 的解析式为y kx t =+,将点(3,0),(0,3)A C 代入得:303k t t +=⎧⎨=⎩,解得13k t =-⎧⎨=⎩,则直线AC 的解析式为3y x =-+,将点22124(,2)3333E a a a --++代入得:22124323333a a a -++=-++,解得1a =或2a =,当1a =时,2231234a a -++=-++=,此时(1,4)P ,当2a =时,22342233a a -++=-+⨯+=,此时(2,3)P ,综上,点P 的坐标为(1,4)P 或(2,3)P ;(3)二次函数2223(1)4y x x x =-++=--+的顶点D 坐标为(1,4)D ,设点D ¢的坐标为22(,)D x y ',2,(0,3),(1,4)DD C D D C '= ,2212104243x y -⎧=⎪⎪-∴⎨-⎪=⎪-⎩,解得2236x y =⎧⎨=⎩,(3,6)D '∴,则平移后的二次函数的解析式为22(3)663y x x x =--+=-+-,设直线OD '的解析式为0y k x =,将点(3,6)D '代入得:036k =,解得02k =,则直线OD '的解析式为2y x =,设点M 的坐标为2(,63)(3)M m m m m -+-<,则点N 的坐标为(,2)N m m ,如图,连接AD ',过点N 作NF AD '⊥于点F ,过点C 作CG AD '⊥于点G ,交OD '于点N ',连接CF ,(3,0),(3,6)D A ' ,AD x '∴⊥轴,3FN m ∴=-,35D N CN CN m CN FN CN '+==-+=+,由两点之间线段最短得:FN CN +的最小值为CF ,由垂线段最短得:当点F 与点G 重合时,CF 取得最小值CG ,此时点N 与点N '重合,则点N '的纵坐标与点C 的纵坐标相等,即23m =,解得32m =,则2263243MN m m m m m =-+--=-+-,233()4322=-+⨯-,34=.【点睛】本题考查了利用待定系数法求二次函数的解析式、二次函数图象的平移规律、垂线段最短等知识点,较难的是题(3),正确求出平移后的抛物线的解析式是解题关键.10.(2021·四川南充市·中考真题)超市购进某种苹果,如果进价增加2元/千克要用300元;如果进价减少2元/千克,同样数量的苹果只用200元.(1)求苹果的进价.(2)如果购进这种苹果不超过100千克,就按原价购进;如果购进苹果超过100千克,超过部分购进价格减少2元/千克.写出购进苹果的支出y (元)与购进数量x (千克)之间的函数关系式.(3)超市一天购进苹果数量不超过300千克,且购进苹果当天全部销售完.据统计,销售单价z (元/千克)与一天销售数量x (千克)的关系为112100z x =-+.在(2)的条件下,要使超市销售苹果利润w (元)最大,求一天购进苹果数量.(利润=销售收入-购进支出)【答案】(1)苹果的进价为10元/千克;(2)10(100)8200(100)x x y x x ≤⎧=⎨+>⎩;(3)要使超市销售苹果利润w 最大,一天购进苹果数量为200千克.【分析】(1)设苹果的进价为x 元/千克,根据等量关系,列出分式方程,即可求解;(2)分两种情况:当x ≤100时,当x >100时,分别列出函数解析式,即可;(3)分两种情况:若x ≤100时,若x >100时,分别求出w 关于x 的函数解析式,根据二次函数的性质,即可求解.【详解】解:(1)设苹果的进价为x 元/千克,由题意得:30020022x x =+-,解得:x =10,经检验:x =10是方程的解,且符合题意,答:苹果的进价为10元/千克;(2)当x ≤100时,y =10x ,当x >100时,y =10×100+(10-2)×(x -100)=8x +200,∴10(100)8200(100)x x y x x ≤⎧=⎨+>⎩;(3)若x ≤100时,w =zx-y =21112102100100x x x x x ⎛⎫-+-=-+ ⎪⎝⎭=()21100100100x --+,∴当x =100时,w 最大=100,若x >100时,w =zx-y =()2111282004200100100x x x x x ⎛⎫-+-+=-+- ⎪⎝⎭=()21200200100x --+,∴当x =200时,w 最大=200,综上所述:当x =200时,超市销售苹果利润w 最大,答:要使超市销售苹果利润w 最大,一天购进苹果数量为200千克.【点睛】本题主要考查分式方程、一次函数、二次函数的实际应用,根据数量关系,列出函数解析式和分式方程,是解题的关键.11.(2021·湖北十堰市·中考真题)已知抛物线25y ax bx =+-与x 轴交于点()1,0A -和()5,0B -,与y 轴交于点C ,顶点为P ,点N 在抛物线对称轴上且位于x 轴下方,连AN 交抛物线于M ,连AC 、CM .(1)求抛物线的解析式;(2)如图1,当tan 2ACM ∠=时,求M 点的横坐标;(3)如图2,过点P 作x 轴的平行线l ,过M 作MD l ⊥于D,若MD =,求N 点的坐标.【答案】(1)265y x x =---;(2)6311-;(3)(3,2N ---【分析】(1)将点()1,0A -和点()5,0B -代入解析式,即可求解;(2)由tan 2ACM ∠=想到将ACM ∠放到直角三角形中,即过点A 作AE AC ⊥交CM 的延长线于点E ,即可知2AE AC=,再由90AOC EAC ∠=∠=︒想到过点E 作EF x ⊥轴,即可得到AOC EFC ∆∆∽,故点E 的坐标可求,结合点C 坐标可求直线CE 解析式,点M 是直线CE 与抛物线交点,联立解析式即可求解;(3)过点M 作L 的垂线交于点D ,故设点M 的横坐标为m ,则点M 的纵坐标可表示,且MD 的长度也可表示,由//HM NQ 可得AHM AQN ∆∆∽即可结合两点间距离公式表示出MN,最后由MD =即可求解【详解】解:(1)将点()1,0A -和点()5,0B -代入25y ax bx =+-得5025550a b a b --=⎧⎨--=⎩,解得:16a b =-⎧⎨=-⎩265y x x ∴=---(2)点A 作AE AC ⊥交CM 的延长线于点E ,过E 作EF x ⊥轴于,E 如下图EF x ⊥ 轴,AE AC⊥90EFA EAC ∴∠=∠=︒90FAE OAC ∴∠+∠=︒又90ACO OAC ∴∠+∠=︒EAF ACO∴∠=∠AOC EFA∴∆∆∽AC AO CO EA EF AF∴==tan 2ACM ∠= 即2AE AC =12AC AO CO EA EF AF ∴===当0x =时,5y =-()0,5C ∴-即5OC =2,10EF AF ∴==即()11,2E --∴设直线CE 的解析式为()0y kx b k =+≠,并将C 、E 两点代入得1125k b b -+=-⎧⎨=-⎩解得3115k b ⎧=-⎪⎨⎪=-⎩3511y x ∴=--点M 是直线CE 与抛物线交点2351165y x y x x ⎧=--⎪∴⎨⎪=---⎩解得1263,011x x =-=(不合题意,舍去)∴点M 的横坐标为6311-(3)设过点M 垂直于L 的直线交x 轴于点H ,对称轴交x 轴于点Q ,M 的横坐标为m则OH m=-1AH m∴=--265y x x =--- ∴对称轴32b x a=-=-∴P 、Q 、N 的横坐标为3-,即3OQ =2AQ OQ OA ∴=-=∴当3x =-时,()()233654y =----⨯-=()3,4P ∴-∴点D 的纵坐标为4∴()()222465693MD m m m m m =----=++=+ //HM NQ∴AHM AQN ∆∆∽AH HM AQ QN ∴=即21652m m m QN--++=210QN m ∴=--()3,210N m ∴-+()()()2222223652103351MN m m m m m m ⎡⎤⎡⎤∴=-+-----=+++⎣⎦⎣⎦MD = 223MD MN ∴=,即()()()42233351m m m ⎡⎤+=+++⎣⎦,30,3m m +==- 不符合题意,舍去,当30m+≠时,2224690,m m∴++=解得1262m-±=,由题意知1262m--=()3,26N∴---【点睛】本题考察二次函数的综合运用、相似三角形、锐角三角函数的运用、交点坐标的求法和两点间的距离公式,属于综合运用题,难度偏大.解题的关键是由锐角三角函数做出辅助线和设坐标的方程思想.12.(2021·湖北十堰市·中考真题)某商贸公司购进某种商品的成本为20元/kg ,经过市场调研发现,这种商品在未来40天的销售单价y (元/kg )与时间x (天)之间的函数关系式为:0.2530(120)35(2040)x x y x +≤≤⎧=⎨<≤⎩且x 为整数,且日销量()kg m 与时间x (天)之间的变化规律符合一次函数关系,如下表:时间x (天)13610…日销量()kg m 142138132124…填空:(1)m 与x 的函数关系为___________;(2)哪一天的销售利润最大?最大日销售利润是多少?(3)在实际销售的前20天中,公司决定每销售1kg 商品就捐赠n 元利润(4n <)给当地福利院,后发现:在前20天中,每天扣除捐赠后的日销售利润随时间x 的增大而增大,求n 的取值范围.【答案】(1)2144m x =-+;(2)第16天销售利润最大,最大为1568元;(3)02n <≤【分析】(1)设m kx b =+,将()1142,,()3138,代入,利用待定系数法即可求解;(2)分别写出当120x ≤≤时与当2040x <≤时的销售利润表达式,利用二次函数和一次函数的性质即可求解;(3)写出在前20天中,每天扣除捐赠后的日销售利润表达式,根据二次函数的性质可得对称轴16220n +≤,求解即可.【详解】解:(1)设m kx b =+,将()1142,,()3138,代入可得:1421383k b k b =+⎧⎨=+⎩,解得2144k b =-⎧⎨=⎩,∴2144m x =-+;(2)当120x ≤≤时,销售利润()()()212021440.2530201615682W my m x x x =-=-++-=--+,当16x =时,销售利润最大为1568元;当2040x <≤时,销售利润20302160W my m x =-=-+,当21x =时,销售利润最大为1530元;综上所述,第16天销售利润最大,最大为1568元;(3)在前20天中,每天扣除捐赠后的日销售利润为:()()()21'200.2510214416214401442W my m nm x n x x n x n =--=+--+=-+++-,∵120x ≤≤时,'W 随x 的增大而增大,∴对称轴16220n +≤,解得02n <≤.【点睛】本题考查二次函数与一次函数的实际应用,掌握二次函数与一次函数的性质是解题的关键.13.(2021·四川达州市·中考真题)渠县是全国优质黄花主产地,某加工厂加工黄花的成本为30元/千克,根据市场调查发现,批发价定为48元/千克时,每天可销售500千克.为增大市场占有率,在保证盈利的情况下,工厂采取降价措施.批发价每千克降低1元,每天销量可增加50千克.(1)写出工厂每天的利润W 元与降价x 元之间的函数关系.当降价2元时,工厂每天的利润为多少元?(2)当降价多少元时,工厂每天的利润最大,最大为多少元?(3)若工厂每天的利润要达到9750元,并让利于民,则定价应为多少元?【答案】(1)2504009000W x x =-++,9600;(2)降价4元,最大利润为9800元;(3)43【分析】(1)若降价x 元,则每天销量可增加50x 千克,根据利润公式求解并整理即可得到解析式,然后代入2x =求出对应函数值即可;(2)将(1)中的解析式整理为顶点式,然后利用二次函数的性质求解即可;(3)令9750W =可解出对应的x 的值,然后根据“让利于民”的原则选择合适的x 的值即可.【详解】(1)若降价x 元,则每天销量可增加50x 千克,∴()()500504830W x x =+--,整理得:2504009000W x x =-++,当2x =时,2502400290009600W =-⨯+⨯+=,∴每天的利润为9600元;(2)()225040090005049800W x x x =-++=--+,∵500-<,∴当4x =时,W 取得最大值,最大值为9800,∴降价4元,利润最大,最大利润为9800元;(3)令9750W =,得:()297505049800x =--+,解得:15=x ,23x =,∵要让利于民,∴5x =,48543-=(元)∴定价为43元.【点睛】本题考查二次函数的实际应用,弄清数量关系,准确求出函数解析式并熟练掌握二次函数的性质是解题关键.14.(2021·湖南怀化市·中考真题)某超市从厂家购进A 、B 两种型号的水杯,两次购进水杯的情况如下表:进货批次A 型水杯(个)B 型水杯(个)总费用(元)一1002008000二20030013000(1)求A 、B 两种型号的水杯进价各是多少元?(2)在销售过程中,A 型水杯因为物美价廉而更受消费者喜欢.为了增大B 型水杯的销售量,超市决定对B 型水杯进行降价销售,当销售价为44元时,每天可以售出20个,每降价1元,每天将多售出5个,请问超市应将B 型水杯降价多少元时,每天售出B 型水杯的利润达到最大?最大利润是多少?(3)第三次进货用10000元钱购进这两种水杯,如果每销售出一个A 型水杯可获利10元,售出一个B 型水杯可获利9元,超市决定每售出一个A 型水杯就为当地“新冠疫情防控”捐b 元用于购买防控物资.若A 、B 两种型号的水杯在全部售出的情况下,捐款后所得的利润始终不变,此时b 为多少?利润为多少?【答案】(1)A 型号水杯进价为20元,B 型号水杯进价为30元;(2)超市应将B 型水杯降价5元后,每天售出B 型水杯的利润达到最大,最大利润为405元;(3)A ,B 两种杯子全部售出,捐款后利润不变,此时b 为4元,利润为3000元.【分析】(1)主要运用二元一次方程组,设A 型号水杯为x 元,B 型号水杯为y 元,根据表格即可得出方程组,解出二元一次方程组即可得A 、B 型号水杯的单价;(2)主要运用二次函数,由题意可设:超市应将B 型水杯降价z 元后,每天售出B 型水杯的利润达到最大,最大利润为w ,每个水杯的利润为()4430z --元;每降价1元,多售出5个,可得售出的数量为()205z +个,根据:利润=(售价-进价)×数量,可确定函数关系式,依据二次函数的基本性质,开口向下,在对称轴处取得最大值,即可得出答案;(3)根据(1)A 型号水杯为20元,B 型号水杯为30元.设10000元购买A 型水杯m 个,B 型水杯n 个,所得利润为W 元,可列出方程组,利用代入消元法化简得到利润W 的函数关系式,由于利润不变,所以令未知项的系数为0,即可求出b ,W .【详解】(1)解:设A 型号水杯进价为x 元,B 型号水杯进价为y 元,根据题意可得:100200800020030013000x y x y +=⎧⎨+=⎩,解得:2030x y =⎧⎨=⎩,∴A 型号水杯进价为20元,B 型号水杯进价为30元.(2)设:超市应将B 型水杯降价z 元后,每天售出B 型水杯的利润达到最大,最大利润为w ,根据题意可得:()()4430205w z z =--+,化简得:2550280w z z =-++,当()505225b z a =-=-=⨯-时,255505280405max w =-⨯+⨯+=,∴超市应将B 型水杯降价5元后,每天售出B 型水杯的利润达到最大,最大利润为405元.(3)设购买A 型水杯m 个,B 型水杯n 个,所得利润为W 元,根据题意可得:()203010000109m n W b m n +=⎧⎨=-+⎩①②将①代入②可得:()100002010930m W b m -=-+⨯,化简得:()()106300043000W b m b m =--+=-+,。
专题01 实数【中考考向导航】目录【直击中考】 (1)【考向一 正数和负数】 .................................................................................................................................... 1 【考向二 与数轴上的有关问题】 .................................................................................................................... 2 【考向三 相反数、绝对值】 ............................................................................................................................ 3 【考向四 科学计数法】 .................................................................................................................................... 4 【考向五 平方根、立方根】 ............................................................................................................................ 4 【考向六 无理数的概念理解】 ........................................................................................................................ 5 【考向七 无理数的估算】 ................................................................................................................................ 5 【考向八 实数的运算】 (6)【直击中考】【考向一 正数和负数】例题1.(2022·江苏扬州·校考模拟预测)下列各数3-,()1--,12⎛⎫+- ⎪⎝⎭,0,23,2--中,是正数的有( )A .1个B .2个C .3个D .4个例题2.(2022·四川绵阳·校考模拟预测)在跳远测验中,合格标准是4米,张丰跳出了4.25米,记为0.25+米,李敏跳出了3.95米,记作( ) A .0.25+米B .0.05-米C . 3.95+米D . 3.95-米1.(2022·福建厦门·统考模拟预测)下列四个数中,是负数的是( ) A .3-B .()3--C .()23-D .3-2.(2022·四川巴中·统考中考真题)下列各数是负数的是( ) A .2(1)-B .|3|-C .(5)--D .38-3.(2022·江苏南通·统考中考真题)若气温零上2℃记作2+℃,则气温零下3℃记作( ) A .3-℃B .1-℃C .1+℃D .5+℃4.(2022·广西河池·统考中考真题)如果将“收入50元”记作“+50元”,那么“支出20元”记作( ) A .+20元B .﹣20元C .+30元D .﹣30元5.(2022·广西柳州·统考中考真题)如果水位升高2m 时水位变化记作+2m ,那么水位下降2m 时水位变化记作 _____.6.(2022·广西·中考真题)负数的概念最早出现在中国古代著名的数学专著《九章算术》中,负数与对应的正数“数量相等,意义相反”,如果向东走了5米,记作+5米,那么向西走5米,可记作______米. 7.(2022·江苏镇江·统考中考真题)“五月天山雪,无花只有寒”,反映出地形对气温的影响.大致海拔每升高100米,气温约下降0.6C ︒.有一座海拔为2350米的山,在这座山上海拔为350米的地方测得气温是6C ︒,则此时山顶的气温约为_________C ︒.【考向二 与数轴上的有关问题】例题1.(2022·江苏镇江·统考中考真题)如图,数轴上的点A 和点B 分别在原点的左侧和右侧,点A 、B 对应的实数分别是a 、b ,下列结论一定成立的是( )A .0a b +<B .0b a -<C .22a b >D .22a b +<+例题2.(2022·四川德阳·模拟预测)实数a ,b 在数轴上的位置如图所示,化简a b a b --+的结果为( )A .2aB .0C .2bD .22a b -1.(2022·四川攀枝花·统考中考真题)实数a 、b 在数轴.上的对应点位置如图所示,下列结论中正确的是( )A .2b >-B .||b a >C .0a b +>D .0a b -<2.(2022·内蒙古·中考真题)实数a 在数轴上的对应位置如图所示,则21|1|a a ++-的化简结果是( )A .1B .2C .2aD .1﹣2a3.(2022·宁夏·中考真题)已知实数a ,b 在数轴上的位置如图所示,则a ba b+的值是( )A .2-B .1-C .0D .24.(2022·江苏常州·统考中考真题)如图,数轴上的点A 、B 分别表示实数a 、b ,则1a ______1b.(填“>”、“=”或“<”)5.(2022·浙江金华·一模)如图所示,数轴上表示1,3的点分别为A ,B ,且2CA AB =(C 在A 的左侧),则点C 所表示的数是________.6.(2022·四川遂宁·模拟预测)实数a ,b 在数轴上对应点的位置如图所示,则化简()()2222a b ++-的结果是 _____.7.(2022·河北廊坊·统考二模)如图,在数轴上点A ,B 表示的数分别为-2,1,P 为A 点左侧上的一点,它表示的数为x .(1)用含x 的代数式表示2PB PA+的值. (2)若以PO ,PA ,AB 的长为边长能构成等腰三角形,请求出符合条件的x 的值.例题1.(2022·浙江宁波·统考中考真题)-2022的相反数是( ) A .2022B .-2022C .12022D .-12022例题2.(2022·辽宁锦州·统考中考真题)有理数﹣2022的绝对值为( ) A .﹣2022B .12022C .2022D .﹣120221.(2022·河南洛阳·统考一模)实数3-的相反数是( ) A .3B .3C .3-D .33-2.(2022·吉林长春·模拟预测)下列各组数中,互为相反数的是( ) A .1+与1-B .()1--与1C .()3--与3--D .2-+与()2+-3.(2022·青海西宁·统考中考真题)6-的绝对值是________.4.(2022·河南郑州·郑州外国语中学校考模拟预测)计算:32-+=______.5.(2022·浙江嘉兴·一模)计算:0|2|(3)-+-=____________. 6.(2022·西藏·统考中考真题)已知a ,b 都是实数,若2120220a b ,则b a =_____.【考向四 科学计数法】例题:(2022·辽宁鞍山·统考中考真题)教育部2022年5月17日召开第二场“教育这十年”“1+1”系列新闻发布会,会上介绍我国已建成世界最大规模高等教育体系,在学总人数超过44300000人.将数据44300000用科学记数法表示为_________.【变式训练】1.(2022·山东德州·德州市同济中学校考模拟预测)人的大脑每天能记录大约8600万条信息,8600万用科学计数法表示为( ) A .38.610⨯B .80.8610⨯C .68610⨯D .78.610⨯2.(2022·河南郑州·郑州外国语中学校考模拟预测)年初,某官网发布了2021年通信运营业统计公报,数据显示,2021年,4G .5G 用户数呈爆发式增长,全年新增3.4亿户,总数达到770000000亿户,将770000000用科学记数法表示应为( ) A .90.7710⨯B .77.710⨯C .87.710⨯D .97.710⨯3.(2022·吉林长春·校考二模)第24届冬季奥林匹克运动会,于2022年2月4日在我国首都北京开幕,据统计,北京冬奥会开幕式电视直播观众规模达3.16亿,是历史上收视率最高的一届冬奥会,数据3.16亿用科学记数法可以表示为( ) A .93.1610⨯B .90.31610⨯C .731.610⨯D .83.1610⨯4.(2022·贵州黔西·校考一模)2022年我市地区生产总值逼近14000亿元,用科学记数法表示14000是______. 5.(2022·江苏徐州·统考中考真题)我国2021年粮食产量约为13700亿斤,创历史新高,其中13700亿斤用科学记数法表示为________亿斤.6.(2022·辽宁丹东·校考二模)截止到2021年1月22日9时30分,天问一号探测器已经在轨飞行182天,距离火星约4200000公里,4200000用科学记数法表示应为________.7.(2022·山东东营·统考中考真题)2022年2月20日,北京冬奥会圆满落幕,赛事获得了数十亿次数字平台互动,在中国仅电视收视人数就超6亿.6亿用科学记数法表示为____________.8.(2022·湖北黄石·统考中考真题)据新华社2022年1月26日报道,2021年全年新增减税降费约1.1万亿元,有力支持国民经济持续稳定恢复用科学记数法表示1.1万亿元,可以表示为__________元. 【考向五 平方根、立方根】例题:(2022·广东东莞·东莞市万江第三中学校考三模)计算下列各题:(1)4的平方根是______;(2)25的算术平方根是______;(3)8-的立方根是______;【变式训练】1.(2022·浙江衢州·统考中考真题)计算:22=____. 2.(2022·吉林·统考一模)计算:251-=______.3.(2022·浙江杭州·统考中考真题)计算:4=_________;()22-=_________. 4.(2022·内蒙古鄂尔多斯·统考一模)()13127122-⎛⎫---+-= ⎪⎝⎭______. 5.(2022·广西贺州·统考中考真题)若实数m ,n 满足5240m n m n --++-=∣∣,则3m n +=__________.例题:(2022·甘肃武威·统考模拟预测)下列各数:π3,sin30︒,3-,4.其中是无理数的有______个1.(2022·广西玉林·统考中考真题)下列各数中为无理数的是( ) A .2B .1.5C .0D .1-2.(2022·四川遂宁·校联考一模)下面四个数中的无理数是( ) A .0.7B .227C .9D .7π 3.(2022·江苏无锡·校考模拟预测)下列各数中:4-、12π、39、0.010010001、37、0是无理数的有( )A .1个B .2个C .3个D .4个4.(2022·湖南湘潭·统考中考真题)四个数-1,0,12,3中,为无理数的是_________.5.(2022·陕西西安·校考三模)在3π+,6,9,47,3.121231234⋯,35-中,无理数的个数是______.6.(2022·江苏苏州·苏州中学校考二模)下列各数:3.14、9、381、-127、2π、22、0、3.12112111211112……中,无理数有______个. 【考向七 无理数的估算】例题:(2022·湖北荆州·统考中考真题)若32-的整数部分为a ,小数部分为b ,则代数式()22a b +⋅的值是______.1.(2022·湖南株洲·统考一模)下列实数中,在3和4之间的是( ) A .π+1B .2+1C .22D .232.(2022·四川资阳·中考真题)如图,M 、N 、P 、Q 是数轴上的点,那么3在数轴上对应的点可能是( )A .点AB .点NC .点PD .点Q3.(2022·福建南平·统考模拟预测)若a ,b 分别是65-的整数部分和小数部分,则23a b -的值为( ) A .565-+B .935-C .535-+D .965-+4.(2022·湖南永州·统考中考真题)请写出一个比5大且比10小的无理数:______. 5.(2022·海南·统考中考真题)写出一个比3大且比10小的整数是___________.6.(2022·云南昆明·云大附中校考模拟预测)若26的整数部分为a ,小数部分为b ,则a b -的值为______. 7.(2022·湖北随州·统考中考真题)已知m 为正整数,若189m 是整数,则根据1893337337m m m =⨯⨯⨯=⨯可知m 有最小值3721⨯=.设n 为正整数,若300n是大于1的整数,则n 的最小值为______,最大值为______. 【考向八 实数的运算】例题:(2022·湖南株洲·统考一模)计算:1312(82022)2sin 306-⎛⎫-+--︒ ⎪ ⎪⎝⎭.【变式训练】1.(2022·山东济南·统考模拟预测)计算:01112(2022)2cos30()2π----⨯︒+-.2.(2022·四川乐山·统考二模)计算: ()2038323tan 60+3(2022)π+--︒+-3.(2022·江苏盐城·校考三模)计算:13164sin 45tan 452-⎛⎫+︒-︒+- ⎪⎝⎭.4.(2022·湖南长沙·长沙市南雅中学校联考一模)计算:()01332cos 60820222π-+︒-⨯--.5.(2022·北京西城·校考模拟预测)计算:011(2019)31()2tan302π--+-+--︒.6.(2022春·九年级单元测试)计算:()301236020222tan -︒⎛⎫+-+- ⎪⎝⎭.7.(2022春·九年级单元测试)计算:()20120222sin 6032123π-⎛⎫+-+︒+-- ⎪⎝⎭.8.(2022·广东佛山·校考三模)计算:101|3|tan 60()12( 3.14)3π---︒-----.9.(2022·广东韶关·校考二模)计算:01|32|(3)()2cos30π2-+-+--︒.。
2022年中考数学核心考点精讲:《01数与式——分式》压轴题——带答案解析(全国通用)一、选择题1. (2021·安徽省·单元测试)方程(x 2+x −1)x+2020=1的整数解的个数是( )A. 2B. 3C. 4D. 52. (2021·浙江省宁波市·期中考试)有下列说法:①在同一平面内,过直线外一点有且只有一条直线与已知直线平行; ②无论k 取任何实数,多项式x 2−ky 2总能分解成两个一次因式积的形式; ③若(t −3)3−2t =1,则t 可以取的值有3个;④关于x ,y 的方程组为{ax +2y =−5−x +ay =2a ,将此方程组的两个方程左右两边分别对应相加,得到一个新的方程,当a 每取一个值时,就有一个确定的方程,而这些方程总有一个公共解,则这个公共解是{x =3y =−1.其中正确的说法是( )A. ①④B. ①③④C. ②③D. ①②3. (2020·山东省青岛市·单元测试)已知分式−6x+nx+m (m,n 为常数)满足下列表格中的信息:则下列结论中错误的是( )A. m =1B. n =8C. p =43D. q =−14. (2021·安徽省·单元测试)若5x−3x 2−9=Mx+3+Nx−3,则M,N 分别为( )A. M =3,N =2B. M =2,N =3C. M =−3,N =2D. M =−2,N =−35. (2020·江苏省盐城市·单元测试)已知A ÷(1+1x−1)=1x+1,则A =( )A. x−1x 2+xB. xx 2−1C. 1x 2−1D. x 2−16.(2021·河南省新乡市·月考试卷)式子√a+2a+3有意义的条件是()A. a≥−2且a≠−3B. a≥−2C. a≤−2且a≠−3D. a>−27.(2019·河南省漯河市·月考试卷)甲、乙两人分两次在同一粮店内买粮食,两次的单价不同,甲每次购粮100千克,乙每次购粮100元.若规定:谁两次购粮的平均单价低,谁的购粮方式就合算.那么这两次购粮()A. 甲合算B. 乙合算C. 甲、乙一样D. 要看两次的价格情况8.(2020·浙江省杭州市·单元测试)将公式1f =1u+1v(v≠f)变形成“已知f,u,求v的形式”,则下列变形正确的是()A. v=fuf−u B. v=fuu−fC. v=u−ffuD. v=f−ufu9.(2020·浙江省杭州市·单元测试)下列有四个结论:①若(x−1)x+1=1,则x只能是2;②若(x−1)(x2+ax+1)的运算结果中不含x2项,则a=1;③若a+b=10,ab=24,则a−b=2;④若4x=a,8y=b,则22x−3y可表示为ab.其中正确的是A. ①②③④B. ②③④C. ①③④D. ②④10.(2020·浙江省杭州市·期中考试)如果a、b、c是非零实数,且a+b+c=0,那么a|a|+b |b|+c|c|+abc|abc|的所有可能的值为()A. 0B. 1或−1C. 2或−2D. 0或−2二、填空题11.(2018·浙江省·期末考试)已知m为整数,且分式−3m+3m2−1的值为整数,则m可取的值为.12.(2020·山东省潍坊市·期中考试)已知:y1=1x−1,y2=11−y1,y3=11−y2,y4=11−y3,⋅⋅⋅,y n=11−y n−1,请计算y2021=________(用含x的代数式表示)13. (2020·浙江省绍兴市·月考试卷)已知x ,y ,z ,a ,b 均为非零实数,且满足xyx+y =1a 3−b 3,yz y+z =1a 3,xz x+z =1a 3+b 3,xyz xy+yz+zx =281,则a 的值为______.14. (2019·四川省凉山彝族自治州·期末考试)对实数a 、b ,定义运算☆如下:a ☆b ={a b (a >b,a ≠0)a −b (a ≤b,a ≠0),例如:2☆3=2−3=18,则计算:[2☆(−4)]☆1=______. 三、解答题15. (2019·全国·模拟题)先观察下列等式,然后用你发现的规律解答下列问题. 11×2=1−12 12×3=12−13 13×4=13−14……(1)计算11×2+12×3+13×4+14×5+15×6=____;(2)探究11×2+12×3+13×4+···+1n (n+1)=____;(用含有n 的式子表示) (3)若11×3+13×5+15×7+···+1(2n−1)(2n+1)的值为1735,求n 的值.16. (2021·福建省·月考试卷)阅读材料:若a ,b 都是非负实数,则a +b ≥2√ab.当且仅当a =b 时,“=”成立. 证明∵(√a −√b)2≥0, ∴a −2√ab +b ≥0.∴a+b≥2√ab.当且仅当a=b时,“=”成立.(1)已知x>0,求5x+5的最小值;x(2)求代数式:m2−2m+5(m>1)的最小值;m−1(3)问题解决:如图,某房地产开发公司计划在一楼区内建造一个长方形公园ABCD,公园由长方形的休闲区A1B1C1D1(阴影部分)和环公园人行道组成.已知休闲区A1B1C1D1的面积为4000平方米,人行道的宽分别为2米和5米.要使公园所占面积最小,则休闲区A1B1C1D1的长和宽该如何设计?17.(2021·广东省·单元测试)课堂上老师出了这么一道题:(2x−3)x+3−1=0,求x的值.小明同学解答如下:∵(2x−3)x+3−1=0,∴(2x−3)x+3=1∵(2x−3)0=1∴x+3=0∴x=−3。
专题16 必考抛物线有关的压轴题要多练 (共8道小题)1. (2020湖北黄石)在平面直角坐标系中,抛物线22y x kx k =-+-的顶点为N . (1)若此抛物线过点()3,1A -,求抛物线的解析式;(2)在(1)的条件下,若抛物线与y 轴交于点B ,连接AB ,C 为抛物线上一点,且位于线段AB 的上方,过C 作CD 垂直x 轴于点D ,CD 交AB 于点E ,若CE ED =,求点C 坐标;(3)已知点2M ⎛⎫-⎪⎝⎭,且无论k 取何值,抛物线都经过定点H ,当60MHN ∠=︒时,求抛物线的解析式.【答案】(1)224y x x =--+(2)C (-2,4)(3)2(4(8y x x =-++-+. 【解析】(1)把()3,1A -代入22y x kx k =-+-得-9-3k-2k=1 解得k=-2∴抛物线的解析式为224y x x =--+;(2)设C (t, 224t t --+),则E (t, 222t t --+),设直线AB 的解析式为y=kx+b ,把A (-3,1),(0,4)代入得134k b b =-+⎧⎨=⎩ 解得14k b =⎧⎨=⎩∴直线AB 的解析式为y=x+4∵E (t, 222t t --+)在直线AB 上∴222t t --+=t+4解得t=-2(舍去正值), ∴C (-2,4);(3)由22y x kx k =-+-=k (x-2)-x 2, 当x-2=0即x=2时,y=-4故无论k 取何值,抛物线都经过定点H (2,-4)二次函数的顶点为N (2,224k k k -)1°如图,过H 点做HI ⊥x 轴,若2k>2时,则k >4∵23M ⎛⎫-⎪⎝⎭,H (2,-4) ∴∵HI=4∴tan ∠MHI= 34=∴∠MHI=30° ∵60MHN ∠=︒ ∴∠NHI=30° 即∠GNH=30°由图可知tan ∠GNH=222244k GH k GN k -==-+解得k=4(舍)2°如图,若2k<2,则k <4 同理可得∠MHI=30° ∵60MHN ∠=︒∴HN ⊥IH ,即2244k k -=-解得k=4不符合题意; 3°若2k=2,N 、H 重合,舍去. ∴∴抛物线解析式为2(4(8y x x =-++-+.2.(2020贵州黔西南)已知抛物线y =ax 2+bx +6(a ≠0)交x 轴于点A(6,0)和点B(-1,0),交y 轴于点C .(1)求抛物线的解析式和顶点坐标;(2)如图(1),点P 是抛物线上位于直线AC 上方的动点,过点P 分别作x 轴,y 轴的平行线,交直线AC 于点D ,E ,当PD +PE 取最大值时,求点P 的坐标;(3)如图(2),点M 为抛物线对称轴l 上一点,点N 为抛物线上一点,当直线AC 垂直平分△AMN 的边MN 时,求点N 的坐标.的【答案】(1)y=-x2+5x+6,顶点坐标为(52,494);(2)P(3,12);(3),72)或72)【解析】(1)将点A,B坐标代入抛物线解析式中,解方程组即可得出结论;(2)先求出OA=OC=6,进而得出∠OAC=45°,进而判断出PD=PE,即可得出当PE的长度最大时,PE+PD取最大值,设出点E坐标,表示出点P坐标,建立PE=-t2+6t=-(t-3)2+9,即可得出结论;(3)先判断出NF∥x轴,进而求出点N的纵坐标,即可建立方程求解得出结论.【详解】解:(1)∵抛物线y=ax2+bx+6经过点A(6,0),B(-1,0),∴06 03666a ba b=-+⎧⎨=++⎩,,解得a=-1,b=5,∴抛物线的解析式为y=-x2+5x+6.∵y=-x2+5x+6=-(x52-)2+494,∴抛物线的解析式为y=-x2+5x+6,顶点坐标为(52,494).(2)由(1)知,抛物线的解析式为y=-x2+5x+6,∴C(0,6),∴OC=6.∵A(6,0),∴OA=6,∴OA=OC,∴∠OAC=45°.∵PD平行于x轴,PE平行于y轴,∴∠DPE=90°,∠PDE=∠DAO=45°,∴∠PED=45°,∴∠PDE=∠PED,∴PD=PE,∴PD+PE=2PE,∴当PE的长度最大时,PE+PD取最大值.设直线AC的函数关系式为y=kx+d,把A(6,0),C(0,6)代入得066k dd=+⎧⎨=⎩,,解得k=-1,d=6,∴直线AC的解析式为y=-x+6.设E(t,-t+6)(0<t<6),则P(t,-t2+5t+6),∴PE=-t2+5t+6-(-t+6)=-t2+6t=-(t-3)2+9.∵-1<0,∴当t=3时,PE最大,此时-t2+5t+6=12,∴P(3,12).(3)如答图,设直线AC与抛物线的对称轴l的交点为F,连接NF.∵点F在线段MN的垂直平分线AC上,∴FM=FN,∠NFC=∠MFC.∵l∥y轴,∴∠MFC=∠OCA=45°,∴∠MFN=∠NFC+∠MFC=90°,∴NF∥x轴.由(2)知直线AC的解析式为y=-x+6,当x=52时,y=72,∴F(52,72),∴点N的纵坐标为72.∵点N在抛物线上,∴-x2+5x+6=72,解得,x1x2,∴点N72,72).【点拨】此题是二次函数综合题,主要考查了待定系数法,解一元二次方程,(2)中判断出PD=PE ,(3)中NF ∥x 轴是解本题的关键.3.(2020甘肃威武)如图,在平面直角坐标系中,抛物线22y ax bx =+-交x 轴于A ,B 两点,交y 轴于点C ,且28OA OC OB ==,点P 是第三象限内抛物线上的一动点. (1)求此抛物线的表达式; (2)若//PC AB ,求点P 的坐标; (3)连接AC ,求PAC ∆面积最大值及此时点P 的坐标.【答案】(1)2722y x x =+-;(2)(72-,2-);(3)PAC ∆面积的最大值是8;点P 的坐标为(2-,5-). 【解析】(1)由二次函数的性质,求出点C 的坐标,然后得到点A 、点B 的坐标,再求出解析式即可; (2)由//PC AB ,则点P 的纵坐标为2-,代入解析式,即可求出点P 的坐标; (3)先求出直线AC 的解析式,过点P 作PD ∥y 轴,交AC 于点D ,则12PAC S PD OA ∆=•,设点P 为(x ,2722x x +-),则点D 为(x ,122x --),求出PD 的长度,利用二次函数的性质,即可得到面积的最大值,再求出点P 的坐标即可.解:(1)在抛物线22y ax bx =+-中,的令0x =,则2y =-, ∴点C 的坐标为(0,2-), ∴OC=2,∵28OA OC OB ==, ∴4OA =,12OB =, ∴点A 为(4-,0),点B 为(12,0), 则把点A 、B 代入解析式,得16420112042a b a b --=⎧⎪⎨+-=⎪⎩,解得:172a b =⎧⎪⎨=⎪⎩,∴2722y x x =+-; (2)由题意,∵//PC AB ,点C 为(0,2-), ∴点P 的纵坐标为2-, 令2y =-,则27222x x +-=-, 解得:172x ,20x =, ∴点P 的坐标为(72-,2-);(3)设直线AC 的解析式为y mx n =+,则把点A 、C 代入,得402m n n -+=⎧⎨=-⎩,解得:122m n ⎧=-⎪⎨⎪=-⎩, ∴直线AC 的解析式为122y x =--; 过点P 作PD ∥y 轴,交AC 于点D ,如图:设点P 为(x ,2722x x +-),则点D 为(x ,122x --), ∴22172(2)422PD x x x x x =---+-=--,∵OA=4, ∴2211(4)42822APC S PD OA x x x x ∆=•=⨯--⨯=--, ∴22(2)8APC S x ∆=-++,∴当2x =-时,APC S ∆取最大值8; ∴22772(2)(2)2522x x +-=-+⨯--=-, ∴点P 的坐标为(2-,5-).【点睛】本题考查了二次函数的综合问题,二次函数的性质,一次函数的性质,解题的关键是熟练掌握二次函数和一次函数的性质进行解题,注意利用数形结合的思想进行解题.4.(2021海南模拟)已知抛物线y =ax 2+bx +c (a ≠0)与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C (0,﹣3),顶点D 的坐标为(1,﹣4). (1)求抛物线的解析式.(2)在y 轴上找一点E ,使得△EAC 为等腰三角形,请直接写出点E 的坐标. (3)点P 是x 轴上动点,点Q 是抛物线上的动点,是否存在点P 、Q ,使得以点P 、Q 、B 、D 为顶点,BD 为一边的四边形是平行四边形?若存在,请求出点P 、Q 坐标;若不存在,请说明理由.【答案】(1)yx2﹣2x﹣3;(2)满足条件的点E的坐标为(0,3)、(0,﹣)、(0,﹣3)、(0,﹣43);(3)存在,P(﹣,0)、Q(,4)或P(﹣1﹣,0)、Q(1﹣,4).【解析】(1)根据抛物线的顶点坐标设出抛物线的解析式,再将点C坐标代入求解,即可得出结论;(2)先求出点A,C坐标,设出点E坐标,表示出AE,CE,AC,再分三种情况建立方程求解即可;(3)利用平移先确定出点Q的纵坐标,代入抛物线解析式求出点Q的横坐标,即可得出结论.解:(1)∵抛物线的顶点为(1,﹣4),∴设抛物线的解析式为y=a(x﹣1)2﹣4,将点C(0,﹣3)代入抛物线y=a(x﹣1)2﹣4中,得a﹣4=﹣3,∴a=1,∴抛物线解析式为y=a(x﹣1)2﹣4=x2﹣2x﹣3;(2)由(1)知,抛物线的解析式为y=x2﹣2x﹣3,令y=0,则x2﹣2x﹣3=0,∴x=﹣1或x=3,∴B(3,0),A(﹣1,0),令x=0,则y=﹣3,∴C(0,﹣3),∴AC,设点E(0,m),则AECE=|m+3|,∵△ACE是等腰三角形,∴①当AC=AE∴m=3或m=﹣3(点C的纵坐标,舍去),∴E(3,0),②当AC=CE=|m+3|,∴m=﹣3,∴E(0,﹣)或(0,﹣3),③当AE=CE|m+3|,∴m=﹣43,∴E(0,﹣43),即满足条件的点E的坐标为(0,3)、(0,﹣)、(0,﹣3)、(0,﹣43);(3)如图,存在,∵D(1,﹣4),∴将线段BD向上平移4个单位,再向右(或向左)平移适当的距离,使点B的对应点落在抛物线上,这样便存在点Q,此时点D的对应点就是点P,∴点Q的纵坐标为4,设Q(t,4),将点Q的坐标代入抛物线y=x2﹣2x﹣3中得,t2﹣2t﹣3=4,∴t=或t=1﹣∴Q(,4)或(1﹣4),分别过点D,Q作x轴的垂线,垂足分别为F,G,∵抛物线y=x2﹣2x﹣3与x轴的右边的交点B的坐标为(3,0),且D(1,﹣4),∴FB=PG=3﹣1=2,∴点P的横坐标为()﹣2=﹣1﹣2=﹣1﹣,即P(﹣,0)、Q(,4)或P(﹣1﹣,0)、Q(1﹣,4).【点睛】此题主要考查待定系数法求二次函数解析式、二次函数与几何综合,熟练掌握二次函数的图象和性质是解题关键.5.(2021福建模拟)已知抛物y=ax2+bx+c(b<0)与x轴只有一个公共点.(1)若抛物线与x轴的公共点坐标为(2,0),求a、c满足的关系式;(2)设A为抛物线上的一定点,直线l:y=kx+1﹣k与抛物线交于点B、C,直线BD垂直于直线y=﹣1,垂足为点D.当k=0时,直线l与抛物线的一个交点在y轴上,且△ABC为等腰直角三角形.①求点A的坐标和抛物线的解析式;②证明:对于每个给定的实数k,都有A、D、C三点共线.【答案】见解析。
专题16 压轴题一、选择题1.(2017四川省达州市)已知函数()()12030x xy x x⎧->⎪⎪=⎨⎪<⎪⎩的图象如图所示,点P 是y 轴负半轴上一动点,过点P作y 轴的垂线交图象于A ,B 两点,连接OA 、OB .下列结论: ①若点M 1(x 1,y 1),M 2(x 2,y 2)在图象上,且x 1<x 2<0,则y 1<y 2; ②当点P 坐标为(0,﹣3)时,△AOB 是等腰三角形; ③无论点P 在什么位置,始终有S △AOB =7.5,AP =4BP ;④当点P 移动到使∠AOB =90°时,点A的坐标为(). 其中正确的结论个数为( )A .1B .2C .3D .4 【答案】C . 【解析】试题分析:①错误.∵x 1<x 2<0,函数y 随x 是增大而减小,∴y 1>y 2,故①错误.②正确.∵P (0,﹣3),∴B (﹣1,﹣3),A (4,﹣3),∴AB =5,OA,∴AB =AO ,∴△AOB 是等腰三角形,故②正确.④正确.设P (0,m ),则B (3m ,m ),A (﹣12m ,m ),∴PB =﹣3m,PA =﹣12m ,OP =﹣m ,∵∠AOB =90°,∠OPB =∠OPA =90°,∴∠BOP +∠AOP =90°,∠AOP +∠OPA =90°,∴∠BOP =∠OAP ,∴△OPB ∽△APO ,∴OP PB AP OP =,∴OP 2=PB •PA ,∴m 2=﹣3m•(﹣12m ),∴m 4=36,∵m <0,∴m =,∴A(),故④正确,∴②③④正确,故选C . 考点:1.反比例函数综合题;2.综合题. 二、填空题2.(2017浙江省丽水市)如图,在平面直角坐标系xOy 中,直线y =﹣x +m 分别交x 轴,y 轴于A ,B 两点,已知点C (2,0).(1)当直线AB 经过点C 时,点O 到直线AB 的距离是 ;(2)设点P 为线段OB 的中点,连结PA ,PC ,若∠CPA =∠ABO ,则m 的值是 .【答案】(1;(2)12. 【解析】试题分析:(1)当直线AB 经过点C 时,点A 与点C 重合,当x =2时,y =﹣2+m =0,即m =2,所以直线AB 的解析式为y =﹣x +2,则B (0,2),∴OB =OA =2,AB= 设点O 到直线AB 的距离为d ,由S △OAB =12OA 2=12AB •d ,得:4=,则d. (2)作OD =OC =2,连接CD .则∠PDC =45°,如图,由y =﹣x +m 可得A (m ,0),B (0,m ). 所以OA =OB ,则∠OBA =∠OAB =45°.当m <0时,∠APC >∠OBA =45°,所以,此时∠CPA >45°,故不合题意. 所以m >0.因为∠CPA =∠ABO =45°,所以∠BPA +∠OPC =∠BAP +∠BPA =135°,即∠OPC =∠BAP ,则△PCD ∽△APB ,所以PD CD AB PB =1212m m +=,解得m =12.故答案为:12.考点:1.一次函数综合题;2.分类讨论;3.综合题.3.(2017浙江省绍兴市)如图,∠AOB=45°,点M、N在边OA上,OM=x,ON=x+4,点P是边OB上的点.若使点P、M、N构成等腰三角形的点P恰好有三个,则x的值是.<<.【答案】x=0或x=4或4x【解析】试题分析:以MN为底边时,可作MN的垂直平分线,与OB的必有一个交点P1,且MN=4,以M为圆心MN 为半径画圆,以N为圆心MN为半径画圆,①如下图,当M与点O重合时,即x=0时,除了P1,当MN=MP,即为P3;当NP=MN时,即为P2;只有3个点P;②当0<x<4时,如下图,圆N与OB相切时,NP2=MN=4,且NP2⊥OB,此时MP3=4,则OM=ON-MN NP2-4=4.③因为MN=4,所以当x>0时,MN<ON,则MN=NP不存在,除了P1外,当MP=MN=4时,过点M作MD⊥OB于D,当OM=MP=4时,圆M与OB刚好交OB两点P2和P3;当MD=MN=4时,圆M与OB只有一个交点,此时OM MD=4≤x<与OB有两个交点P2和P3,故答案为:x=0或x=4或4≤x<考点:1.相交两圆的性质;2.分类讨论;3.综合题.4.(2017湖北省襄阳市)在半径为1的⊙O中,弦AB、AC的长分别为1和,则∠BAC的度数为.【答案】15°或105°.【解析】考点:1.垂径定理;2.解直角三角形;3.分类讨论. 三、解答题5.(2017四川省南充市)如图1,已知二次函数2y ax bx c =++(a 、b 、c 为常数,a ≠0)的图象过点O (0,0)和点A (4,0),函数图象最低点M 的纵坐标为38-,直线l 的解析式为y =x .(1)求二次函数的解析式;(2)直线l 沿x 轴向右平移,得直线l ′,l ′与线段OA 相交于点B ,与x 轴下方的抛物线相交于点C ,过点C 作CE ⊥x 轴于点E ,把△BCE 沿直线l ′折叠,当点E 恰好落在抛物线上点E ′时(图2),求直线l ′的解析式;(3)在(2)的条件下,l ′与y 轴交于点N ,把△BON 绕点O 逆时针旋转135°得到△B ′ON ′,P 为l ′上的动点,当△PB ′N ′为等腰三角形时,求符合条件的点P 的坐标.【答案】(1)22833y x x =-;(2)y =x ﹣3;(3)P 坐标为(0,﹣3)).【解析】试题分析:(1)由题意抛物线的顶点坐标为(2,38-),设抛物线的解析式为2(2)3y a x 8=--,把(0,0)代入得到a =23,即可解决问题;(3)分两种情形求解即可①当P 1与N 重合时,△P 1B ′N ′是等腰三角形,此时P 1(0,﹣3).②当N ′=N ′B ′时,设P (m ,m ﹣3),列出方程解方程即可;试题解析:(1)由题意抛物线的顶点坐标为(2,38-),设抛物线的解析式为2(2)3y a x 8=--,把(0,0)代入得到a =23,∴抛物线的解析式为22(2)33y x 8=--,即22833y x x =-.(2)如图1中,设E (m ,0),则C (m ,22833m m -),B (221133m m -+,0),∵E ′在抛物线上,∴E 、B 关于对称轴对称,∴2211()332m m m +-+ =2,解得m =1或6(舍弃),∴B (3,0),C (1,﹣2),∴直线l ′的解析式为y =x ﹣3.(3)如图2中,①当P 1与N 重合时,△P 1B ′N ′是等腰三角形,此时P 1(0,﹣3). ②当N ′=N ′B ′时,设P (m ,m ﹣3),则有222((322m m -+--=,解得m=32-P 2),P 3.综上所述,满足条件的点P 坐标为(0,﹣3)或(32-,32-)或(332+,.考点:1.二次函数综合题;2.几何变换综合题;3.分类讨论;4.压轴题.6.(2017四川省广安市)某班级45名同学自发筹集到1700元资金,用于初中毕业时各项活动的经费.通过商议,决定拿出不少于544元但不超过560元的资金用于请专业人士拍照,其余资金用于给每名同学购买一件文化衫或一本制作精美的相册作为纪念品.已知每件文化衫28元,每本相册20元.(1)适用于购买文化衫和相册的总费用为W 元,求总费用W (元)与购买的文化衫件数t (件)的函数关系式.(2)购买文化衫和相册有哪几种方案?为了使拍照的资金更充足,应选择哪种方案,并说明理由. 【答案】(1)W =8t +900;(2)有三种购买方案.为了使拍照的资金更充足,应选择方案:购买30件文化衫、15本相册. 【解析】试题分析:(1)设购买的文化衫t 件,则购买相册(45﹣t )件,根据总价=单价×数量,即可得出W 关于t 的函数关系式;(2)由购买纪念品的总价范围,即可得出关于t 的一元一次不等式组,解之即可得出t 值,从而得出各购买方案,再根据一次函数的性质即可得出W 的最小值,选取该方案即可.试题解析:(1)设购买的文化衫t 件,则购买相册(45﹣t )件,根据题意得:W =28t +20×(45﹣t )=8t +900.考点:1.一次函数的应用;2.一元一次不等式组的应用;3.最值问题;4.方案型.7.(2017四川省广安市)如图,已知抛物线2y x bx c =-++与y 轴相交于点A (0,3),与x 正半轴相交于点B ,对称轴是直线x =1.(1)求此抛物线的解析式以及点B 的坐标.(2)动点M 从点O 出发,以每秒2个单位长度的速度沿x 轴正方向运动,同时动点N 从点O 出发,以每秒3个单位长度的速度沿y 轴正方向运动,当N 点到达A 点时,M 、N 同时停止运动.过动点M 作x 轴的垂线交线段AB 于点Q ,交抛物线于点P ,设运动的时间为t 秒. ①当t 为何值时,四边形OMPN 为矩形.②当t >0时,△BOQ 能否为等腰三角形?若能,求出t 的值;若不能,请说明理由.【答案】(1)223y x x =-++,B 点坐标为(3,0);(2)①;②. 【解析】试题分析:(1)由对称轴公式可求得b ,由A 点坐标可求得c ,则可求得抛物线解析式;再令y =0可求得B 点坐标;(2)①用t 可表示出ON 和OM ,则可表示出P 点坐标,即可表示出PM 的长,由矩形的性质可得ON =PM ,可得到关于t 的方程,可求得t 的值;②由题意可知OB =OA ,故当△BOQ 为等腰三角形时,只能有OB =BQ 或OQ =BQ ,用t 可表示出Q 点的坐标,则可表示出OQ 和BQ 的长,分别得到关于t 的方程,可求得t 的值. 试题解析:(1)∵抛物线2y x bx c =-++对称轴是直线x =1,∴﹣2(1)b⨯- =1,解得b =2,∵抛物线过A (0,3),∴c =3,∴抛物线解析式为223y x x =-++,令y =0可得2230x x -++=,解得x =﹣1或x =3,∴B 点坐标为(3,0);考点:1.二次函数综合题;2.动点型;3.分类讨论;4.压轴题.8.(2017四川省眉山市)如图,抛物线22y ax bx =+-与x 轴交于A 、B 两点,与y 轴交于C 点,已知A (3,0),且M (1,83-)是抛物线上另一点. (1)求a 、b 的值;(2)连结AC ,设点P 是y 轴上任一点,若以P 、A 、C 三点为顶点的三角形是等腰三角形,求P 点的坐标; (3)若点N 是x 轴正半轴上且在抛物线内的一动点(不与O 、A 重合),过点N 作NH ∥AC 交抛物线的对称轴于H 点.设ON =t ,△ONH 的面积为S ,求S 与t 之间的函数关系式.【答案】(1)2343a b ⎧=⎪⎪⎨⎪=-⎪⎩ ;(2)P 点的坐标1(0,2)或(02)或(0,54)或(0,2-);(3)2211(01)3311(13)33t t t S t t t ⎧-<<⎪⎪=⎨⎪-≤<⎪⎩.【解析】试题分析:(1)根据题意列方程组即可得到结论;(2)在22y ax bx =+-中,当x =0时.y =﹣2,得到OC =2,如图,设P (0,m ),则PC =m +2,OA =3,根据勾股定理得到ACPA =CA 时,则OP 1=OC =2,②当PC =CAPC =PA 时,点P在AC 的垂直平分线上,根据相似三角形的性质得到P 3(0,54),④当PC =CA(3)过H 作HG ⊥OA 于G ,设HN 交Y 轴于M ,根据平行线分线段成比例定理得到OM =23t,求得抛物线的对称轴为直线x =15523-⨯ =1310,得到OG =1310,求得GN =t ﹣1310,根据相似三角形的性质得到HG =213315t -,于是得到结论.试题解析:(1)把A (3,0),且M (1,83-)代入22y ax bx =+-得:9320823a b a b +-=⎧⎪⎨+-=-⎪⎩,解得:2343a b ⎧=⎪⎪⎨⎪=-⎪⎩; (2)在22y ax bx =+-中,当x =0时.y =﹣2,∴C (0,﹣2),∴OC =2,如图,设P (0,m ),则PC =m +2,OA =3,AC①当PA =CA 时,则OP 1=OC =2,∴P 1(0,2);②当PC =CAmm2,∴P 2(02);③当PC =PA 时,点P 在AC 的垂直平分线上,则△AOC ∽△P 3EC,∴3PC =,∴P 3C =134,∴m =54,∴P 3(0,54),④当PC =CAm =﹣2P 4(0,﹣2,综上所述,P 点的坐标1(0,2)或(02)或(0,54)或(0,2);(3)设直线AC 的解析式为y =kx +b (k ≠0)由题意得:302k b b +=⎧⎨=-⎩,解得:23k =,b =-2,∴223AC y x =-.由(1)得抛物线对应的函数表达式为224233y x x =--=228(1)33x --,设AC 与抛物线y =228(1)33x --的对称轴x =1交于点F ,直线x =1与x 轴交于E 点,则F (1,43-),E (1,0).①当0<t <1时,EN =1-t ,由E N E H A E E F =得,1324t EH -=,∴EH =2(1)3t - ,∴O N HS ∆=12ON •EH =1(1)3t t -,即21133S t t =-;②当1≤t ≤3时,EN =t -1,由E N E H A E E F =得,1324t EH -=,∴EH =2(1)3t - ,∴O N HS ∆=12ON •EH =1(1)3t t -,即21133S t t =-;∴2211(01)3311(13)33t t t S t t t ⎧-<<⎪⎪=⎨⎪-≤<⎪⎩ .考点:二次函数综合题.9.(2017四川省绵阳市)江南农场收割小麦,已知1台大型收割机和3台小型收割机1小时可以收割小麦1.4公顷,2台大型收割机和5台小型收割机1小时可以收割小麦2.5公顷.(1)每台大型收割机和每台小型收割机1小时收割小麦各多少公顷?(2)大型收割机每小时费用为300元,小型收割机每小时费用为200元,两种型号的收割机一共有10台,要求2小时完成8公顷小麦的收割任务,且总费用不超过5400元,有几种方案?请指出费用最低的一种方案,并求出相应的费用.【答案】(1)每台大型收割机1小时收割小麦0.5公顷,每台小型收割机1小时收割小麦0.3公顷;(2)有三种方案,当大型收割机和小型收割机各5台时,总费用最低,最低费用为5000元.【解析】试题分析:(1)设每台大型收割机1小时收割小麦x公顷,每台小型收割机1小时收割小麦y公顷,根据“1台大型收割机和3台小型收割机1小时可以收割小麦1.4公顷,2台大型收割机和5台小型收割机1小时可以收割小麦2.5公顷”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设大型收割机有m台,总费用为w元,则小型收割机有(10﹣m)台,根据总费用=大型收割机的费用+小型收割机的费用,即可得出w与m之间的函数关系式,由“要求2小时完成8公顷小麦的收割任务,且总费用不超过5400元”,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,依此可找出各方案,再结合一次函数的性质即可解决最值问题.试题解析:(1)设每台大型收割机1小时收割小麦x公顷,每台小型收割机1小时收割小麦y公顷,根据题意得:3 1.425 2.5x yx y+=⎧⎨+=⎩,解得:0.50.3xy=⎧⎨=⎩.答:每台大型收割机1小时收割小麦0.5公顷,每台小型收割机1小时收割小麦0.3公顷.考点:1.一元一次不等式组的应用;2.二元一次方程组的应用;3.方案型;4.最值问题.10.(2017四川省绵阳市)如图,已知抛物线2y ax bx c =++(a ≠0)的图象的顶点坐标是(2,1),并且经过点(4,2),直线121+=x y 与抛物线交于B ,D 两点,以BD 为直径作圆,圆心为点C ,圆C 与直线m 交于对称轴右侧的点M (t ,1),直线m 上每一点的纵坐标都等于1. (1)求抛物线的解析式; (2)证明:圆C 与x 轴相切;(3)过点B 作BE ⊥m ,垂足为E ,再过点D 作DF ⊥m ,垂足为F ,求MF 的值.【答案】(1)2124y x x =-+ ;(2)证明见解析;(3 .【解析】试题分析:(1)可设抛物线的顶点式,再结合抛物线过点(4,2),可求得抛物线的解析式;(2)联立直线和抛物线解析式可求得B 、D 两点的坐标,则可求得C 点坐标和线段BD 的长,可求得圆的半径,可证得结论;(3)过点C 作CH ⊥m 于点H ,连接CM ,可求得MH ,利用(2)中所求B 、D 的坐标可求得FH ,则可求得MF 和BE 的长,可求得其比值. 试题解析:(1)∵已知抛物线2y ax bx c =++(a ≠0)的图象的顶点坐标是(2,1),∴可设抛物线解析式为2(2)1y a x =-+ ,∵抛物线经过点(4,2),∴22(42)1a =-+,解得a =14,∴抛物线解析式为21(2)14y x =-+,即2124y x x =-+;(2)联立直线和抛物线解析式可得2124112y x x y x ⎧=-+⎪⎪⎨⎪=+⎪⎩,解得:352x y ⎧=⎪⎨=⎪⎩或352x y ⎧=+⎪⎨=+⎪⎩,∴B(3,522-),D(3+522+),∵C 为BD 的中点,∴点C的纵坐标为5522222-++=52,∵BD,∴圆的半径为52,∴点C 到x 轴的距离等于圆的半径,∴圆C 与x 轴相切;考点:1.二次函数综合题;2.压轴题.11.(2017四川省绵阳市)如图,已知△ABC 中,∠C =90°,点M 从点C 出发沿CB 方向以1c m/s 的速度匀速运动,到达点B 停止运动,在点M 的运动过程中,过点M 作直线MN 交AC 于点N ,且保持∠NMC =45°,再过点N 作AC 的垂线交AB 于点F ,连接MF ,将△MNF 关于直线NF 对称后得到△ENF ,已知AC =8cm ,BC =4cm ,设点M 运动时间为t (s ),△ENF 与△ANF 重叠部分的面积为y (cm 2).(1)在点M 的运动过程中,能否使得四边形MNEF 为正方形?如果能,求出相应的t 值;如果不能,说明理由;(2)求y 关于t 的函数解析式及相应t 的取值范围; (3)当y 取最大值时,求sin ∠NEF 的值.【答案】(1)85;(2)2212 (02)41416(24)1233t t t y t t t ⎧-+<<⎪⎪=⎨⎪-+≤≤⎪⎩;(3)10.【解析】试题分析:(1)由已知得出CN =CM =t ,FN ∥BC ,得出AN =8﹣t ,由平行线证出△ANF ∽△ACB ,得出对应边成比例求出NF =12AN =12(8﹣t ),由对称的性质得出∠ENF =∠MNF =∠NMC =45°,MN =NE ,OE =OM =CN =t ,由正方形的性质得出OE =ON =FN ,得出方程,解方程即可;(2)分两种情况:①当0<t ≤2时,由三角形面积得出2124y t t =-+ ; ②当2<t ≤4时,作GH ⊥NF 于H ,由(1)得:NF =12(8﹣t ),GH =NH ,GH =2FH ,得出GH =23NF =13(8﹣t ),由三角形面积得出21(8)12y t =-(2<t ≤4); (3)当点E 在AB 边上时,y 取最大值,连接EM ,则EF =BF ,EM =2CN =2CM =2t ,EM =2BM ,得出方程,解方程求出CN =CM =2,AN =6,得出BM =2,NF =12AN =3,因此EM =2BM =4,作FD ⊥NE 于D ,由勾股定理求出EB==,求出EF=12EB=,由等腰直角三角形的性质和勾股定理得出DF=HF=2,在Rt△DEF中,由三角函数定义即可求出sin∠NEF的值.试题解析:(1)能使得四边形MNEF为正方形;理由如下:连接ME交NF于O,如图1所示:∵∠C=90°,∠NMC=45°,NF⊥AC,∴CN=CM=t,FN∥BC,∴AN=8﹣t,△ANF∽△ACB,∴84AN ACNF BC== =2,∴NF=12AN=12(8﹣t),由对称的性质得:∠ENF=∠MNF=∠NMC=45°,MN=NE,OE=OM=CN=t,∵四边形MNEF是正方形,∴OE=ON=FN,∴t=12×12(8﹣t),解得:t=85;即在点M的运动过程中,能使得四边形MNEF为正方形,t的值为85;(3)当点E在AB边上时,y取最大值,连接EM,如图3所示:则EF=BF,EM=2CN=2CM=2t,EM=2BM,∵BM=4﹣t,∴2t=2(4﹣t),解得:t=2,∴CN=CM=2,AN=6,∴BM=4﹣2=2,NF=12AN=3,∴EM=2BM=4,作FD⊥NE于D,则EB=DNF是等腰直角三角形,∴EF=12EBDFHF,在Rt△DEF中,sin∠NEF=DFEF.考点:1.四边形综合题;2.最值问题;3.动点型;4.存在型;5.分类讨论;6.压轴题.12.(2017四川省达州市)如图,△ABC内接于⊙O,CD平分∠ACB交⊙O于D,过点D作PQ∥AB分别交CA、CB延长线于P、Q,连接BD.(1)求证:PQ是⊙O的切线;(2)求证:BD2=AC•BQ;(3)若AC、BQ的长是关于x的方程4x mx+=的两实根,且tan∠PCD=13,求⊙O的半径.【答案】(1)证明见解析;(2)证明见解析;(3).【解析】试题分析:(1)根据平行线的性质和圆周角定理得到∠ABD=∠BDQ=∠ACD,连接OB,OD,交AB于E,根据圆周角定理得到∠OBD=∠ODB,∠O=2∠DCB=2∠BDQ,根据三角形的内角和得到2∠ODB+2∠O=180°,于是得到∠ODB+∠O=90°,根据切线的判定定理即可得到结论;(2)证明:连接AD,根据等腰三角形的判定得到AD=BD,根据相似三角形的性质即可得到结论;(3)根据题意得到AC•BQ=4,得到BD=2,由(1)知PQ是⊙O的切线,由切线的性质得到OD⊥PQ,根据平行线的性质得到OD⊥AB,根据三角函数的定义得到BE=3DE,根据勾股定理得到BE的长,设OB=OD=R,根据勾股定理即可得到结论.试题解析:(1)证明:∵PQ∥AB,∴∠ABD=∠BDQ=∠ACD,∵∠ACD=∠BCD,∴∠BDQ=∠ACD,如图1,连接OB ,OD ,交AB 于E ,则∠OB D =∠ODB ,∠O =2∠DCB =2∠BDQ ,在△OBD 中,∠OBD +∠ODB +∠O =180°,∴2∠ODB +2∠O =180°,∴∠ODB +∠O =90°,∴PQ 是⊙O 的切线;(2)证明:如图2,连接AD ,由(1)知PQ 是⊙O 的切线,∴∠BDQ =∠DCB =∠ACD =∠BCD =∠BAD ,∴AD =BD ,∵∠DBQ =∠ACD ,∴△BDQ ∽△ACD ,∴AD AC BQ BD=,∴BD 2=AC •BQ ; (3)解:方程4x m x +=可化为x 2﹣mx +4=0,∵AC 、BQ 的长是关于x 的方程4x m x+=的两实根,∴AC •BQ =4,由(2)得BD 2=AC •BQ ,∴BD 2=4,∴BD =2,由(1)知PQ 是⊙O 的切线,∴OD ⊥PQ ,∵PQ ∥AB ,∴OD ⊥AB ,由(1)得∠PCD =∠ABD ,∵tan ∠PCD =13,∴tan ∠ABD =13,∴BE =3DE ,∴DE 2+(3DE )2=BD 2=4,∴DE =5,∴BE 设OB =OD =R ,∴OE =R ,∵OB 2=OE 2+BE 2,∴R 2=(R )2+2,解得:R =,∴⊙O 的半径为.考点:1.相似三角形的判定与性质;2.分式方程的解;3.圆周角定理;4.切线的判定与性质;5.解直角三角形;6.压轴题.13.(2017四川省达州市)探究:小明在求同一坐标轴上两点间的距离时发现,对于平面直角坐标系内任意两点P 1(x 1,y 1),P 2(x 2,y 2),可通过构造直角三角形利用图1得到结论:12PP =还利用图2证明了线段P 1P 2的中点P (x ,y )P 的坐标公式:122x x x +=,122y y y +=.(1)请你帮小明写出中点坐标公式的证明过程;运用:(2)①已知点M (2,﹣1),N (﹣3,5),则线段MN 长度为 ;②直接写出以点A (2,2),B (﹣2,0),C (3,﹣1),D 为顶点的平行四边形顶点D 的坐标: ; 拓展:(3)如图3,点P (2,n )在函数43y x =(x ≥0)的图象OL 与x 轴正半轴夹角的平分线上,请在OL 、x 轴上分别找出点E 、F ,使△PEF 的周长最小,简要叙述作图方法,并求出周长的最小值.【答案】(1)答案见解析;(2;②(﹣3,3)或(7,1)或(﹣1,﹣3);(3)5. 【解析】试题分析:(1)用P 1、P 2的坐标分别表示出OQ 和PQ 的长即可证得结论;(3)设P 关于直线OL 的对称点为M ,关于x 轴的对称点为N ,连接PM 交直线OL 于点R ,连接PN 交x 轴于点S ,则可知OR =OS =2,利用两点间距离公式可求得R 的坐标,再由PR =PS =n ,可求得n 的值,可求得P 点坐标,利用中点坐标公式可求得M 点坐标,由对称性可求得N 点坐标,连接MN 交直线OL 于点E ,交x 轴于点S ,此时EP =EM ,FP =FN ,此时满足△PEF 的周长最小,利用两点间距离公式可求得其周长的最小值. 试题解析:(1)∵P 1(x 1,y 1),P 2(x 2,y 2),∴Q 1Q 2=OQ 2﹣OQ 1=x 2﹣x 1,∴Q 1Q =212x x -,∴OQ =OQ 1+Q 1Q =x 1+212x x -=122x x + ,∵PQ 为梯形P 1Q 1Q 2P 2的中位线,∴PQ =11222PQ P Q + =122y y +,即线段P 1P 2的中点P (x ,y )P 的坐标公式为x =122x x +,y =122y y +;(2)①∵M (2,﹣1),N (﹣3,5),∴MN ;②∵A (2,2),B (﹣2,0),C (3,﹣1),∴当AB 为平行四边形的对角线时,其对称中心坐标为(0,1),设D (x ,y ),则x +3=0,y +(﹣1)=2,解得x =﹣3,y =3,∴此时D 点坐标为(﹣3,3),当AC 为对角线时,同理可求得D 点坐标为(7,1),当BC 为对角线时,同理可求得D 点坐标为(﹣1,﹣3),综上可知D 点坐标为(﹣3,3)或(7,1)或(﹣1,﹣3),故答案为:(﹣3,3)或(7,1)或(﹣1,﹣3);(3)如图,设P 关于直线OL 的对称点为M ,关于x 轴的对称点为N ,连接PM 交直线OL 于点R ,连接PN 交x 轴于点S ,连接MN 交直线OL 于点E ,交x 轴于点F ,又对称性可知EP =EM ,FP =FN ,∴PE +PF +EF =ME +EF +NF =MN ,∴此时△PEF 的周长即为MN 的长,为最小,设R (x ,43x ),由题意可知OR =OS =2,PR =PS =n =2,解得x =﹣65(舍去)或x =65,∴R (65,85),∴n =,解得n =1,∴P (2,1),∴N (2,﹣1),设M (x ,y ),则22x +=65,12y + =85,解得x =25,y =115,∴M (25,115),∴MN 5,即△PEF 的周长的最小值为5.考点:1.一次函数综合题;2.阅读型;3.分类讨论;4.最值问题;5.探究型;6.压轴题. 14.(2017四川省达州市)如图1,点A 坐标为(2,0),以OA 为边在第一象限内作等边△OAB ,点C 为x 轴上一动点,且在点A 右侧,连接BC ,以BC 为边在第一象限内作等边△BCD ,连接AD 交BC 于E .(1)①直接回答:△OBC 与△ABD 全等吗? ②试说明:无论点C 如何移动,AD 始终与OB 平行;(2)当点C 运动到使AC 2=AE •AD 时,如图2,经过O 、B 、C 三点的抛物线为y 1.试问:y 1上是否存在动点P ,使△BEP 为直角三角形且BE 为直角边?若存在,求出点P 坐标;若不存在,说明理由;(3)在(2)的条件下,将y 1沿x 轴翻折得y 2,设y 1与y 2组成的图形为M ,函数y =+的图象l与M 有公共点.试写出:l 与M 的公共点为3个时,m 的取值.【答案】(1)①△OBC 与△ABD 全等;②证明见解析;(2)P (32,-;(3)﹣4912≤m <0. 【解析】试题分析:(1)①利用等边三角形的性质证明△OBC ≌△ABD ; ②证明∠OBA =∠BAD =60°,可得OB ∥AD ;(3)先画出如图3,根据图形画出直线与图形M 有个公共点时,两个边界的直线,上方到y =,将y =向下平移即可满足l 与图形M 有3个公共点,一直到直线l 与y 2相切为止,主要计算相切时,列方程组,确定△≥0时,m 的值即可.试题解析:(1)①△OBC 与△ABD 全等,理由是:如图1,∵△OAB 和△BCD 是等边三角形,∴∠OBA =∠CBD =60°,OB =AB ,BC =BD ,∴∠OBA +∠ABC =∠CBD +∠ABC ,即∠OBC =∠ABD ,∴△OBC ≌△ABD (SAS );②∵△OBC ≌△ABD ,∴∠BAD =∠BOC =60°,∴∠OBA =∠BAD ,∴OB ∥AD ,∴无论点C 如何移动,AD 始终与OB 平行;(2)如图2,∵AC 2=AE •AD ,∴AC AEAD AC=,∵∠EAC =∠DAC ,∴△AEC ∽△ACD ,∴∠ECA =∠ADC ,∵∠BAD =∠BAO =60°,∴∠DAC =60°,∵∠BED =∠AEC ,∴∠ACB =∠ADB ,∴∠ADB =∠ADC ,∵BD =CD ,∴DE ⊥BC ,Rt △ABE 中,∠BAE =60°,∴∠ABE =30°,∴AE =12AB =12×2=1,Rt △AEC 中,∠EAC =60°,∴∠ECA =30°,∴AC =2AE =2,∴C (4,0),等边△OAB 中,过B 作BH ⊥x 轴于H ,∴BH,∴B (1,设y 1的解析式为:y =ax (x ﹣4),把B (1=a (1﹣4),a =﹣3,∴设y 1的解析式为:y 1=﹣3x (x ﹣4)=233x x -+,过E 作EG ⊥x 轴于G ,Rt △AGE 中,AE =1,∴AG =12AE =12,EGE (52,,设直线AE 的解析式为:y =kx +b ,把A (2,0)和E (52代入得:2052k b k b +=⎧⎪⎨+=⎪⎩,解得:k b ⎧=⎪⎨=-⎪⎩,∴直线AE 的解析式为:y =-,则233y y x x ⎧=-⎪⎨=-+⎪⎩,解得:113x y =⎧⎪⎨=⎪⎩112x y =-⎧⎪⎨=-⎪⎩P (32,-; (3)如图3,y 1=233x x -+=2(2)33x --+,顶点(2,3),∴抛物线y 2的顶点为(2,),∴y 222)x -m =0时,y =与图形M 两公共点,当y 2与l 相切时,即有一个公共点,l 与图形M 有3个公共点,则:22)y x y ⎧=-⎪⎨⎪=⎩2(2)33x =--,x 2﹣7x ﹣3m =0,△=(﹣7)2﹣4×1×(﹣3m )≥0,m ≥﹣4912,∴当l 与M 的公共点为3个时,m 的取值是:﹣4912≤m <0.考点:1.二次函数综合题;2.翻折变换(折叠问题);3.动点型;4.存在型;5.分类讨论;6.压轴题. 15.(2017山东省枣庄市)如图,抛物线212y x bx c =-++ 与x 轴交于点A 和点B ,与y 轴交于点C ,点B 坐标为(6,0),点C 坐标为(0,6),点D 是抛物线的顶点,过点D 作x 轴的垂线,垂足为E ,连接BD .(1)求抛物线的解析式及点D 的坐标;(2)点F 是抛物线上的动点,当∠FBA =∠BDE 时,求点F 的坐标;(3)若点M 是抛物线上的动点,过点M 作MN ∥x 轴与抛物线交于点N ,点P 在x 轴上,点Q 在坐标平面内,以线段MN 为对角线作正方形MPNQ ,请写出点Q 的坐标. 【答案】(1)21262y x x =-++,D (2,8);(2)(﹣1,72)或(﹣3,﹣92);(3)(2,2-+或(2,2--. 【解析】试题分析:(1)由B 、C 的坐标,利用待定系数法可求得抛物线解析式,再求其顶点D 即可;(3)由于M 、N 两点关于对称轴对称,可知点P 为对称轴与x 轴的交点,点Q 在对称轴上,可设出Q 点的坐标,则可表示出M 的坐标,代入抛物线解析式可求得Q 点的坐标. 试题解析:(1)把B 、C 两点坐标代入抛物线解析式可得:18606b c c -++=⎧⎨=⎩,解得:26b c =⎧⎨=⎩,∴抛物线解析式为21262y x x =-++ ,∵21262y x x =-++=21(2)82x --+,∴D (2,8); (2)如图1,过F 作FG ⊥x 轴于点G ,设F (x ,21262x x -++),则FG =|21262x x -++|,∵∠FBA =∠BDE ,∠FGB =∠BED =90°,∴△FBG ∽△BDE ,∴FG BFBG DE =,∵B (6,0),D (2,8),∴E (2,0),BE =4,DE =8,OB =6,∴BG =6﹣x ,∴21264268x x x -++=-,当点F 在x 轴上方时,有21261262x x x -++=-,解得x =﹣1或x =6(舍去),此时F 点的坐标为(﹣1,72);当点F 在x 轴下方时,有21261262x x x -++=--,解得x =﹣3或x =6(舍去),此时F 点的坐标为(﹣3,﹣92); 综上可知F 点的坐标为(﹣1,72)或(﹣3,﹣92);考点:1.二次函数综合题;2.分类讨论;3.动点型;4.压轴题.16.(2017山东省济宁市)已知函数2(25)2y mx m x m =--+-的图象与x 轴有两个公共点. (1)求m 的取值范围,并写出当m 取范围内最大整数时函数的解析式; (2)题(1)中求得的函数记为C 1.①当n ≤x ≤﹣1时,y 的取值范围是1≤y ≤﹣3n ,求n 的值;②函数22()y x h k =-+的图象由函数C 1的图象平移得到,其顶点P 落在以原点为圆心,或圆上,设函数C 1的图象顶点为M ,求点P 与点M 距离最大时函数C 2的解析式. 【答案】(1)m <2512且m ≠0,22y x x =+;(2)①﹣2;②22(2)1y x =-+. 【解析】试题分析:(1)函数图形与x 轴有两个公共点,则该函数为二次函数且△>0,故此可得到关于m 的不等式组,从而可求得m 的取值范围;(2)先求得抛物线的对称轴,当n ≤x ≤﹣1时,函数图象位于对称轴的左侧,y 随x 的增大而减小,当当x =n 时,y 有最大值﹣3n ,然后将x =n ,y =﹣3n 代入求解即可;试题解析:(1)∵函数图象与x 轴有两个交点,∴m ≠0且[﹣(2m ﹣5)]2﹣4m (m ﹣2)>0,解得:m <2512且m ≠0.∵m 为符合条件的最大整数,∴m =2,∴函数的解析式为22y x x =+. (2)抛物线的对称轴为x =2b a - =14-. ∵n ≤x ≤﹣1<14-,a =2>0,∴当n ≤x ≤﹣1时,y 随x 的增大而减小,∴当x =n 时,y =﹣3n ,∴2n 2+n =﹣3n ,解得n =﹣2或n =0(舍去),∴n 的值为﹣2.(3)∵22y x x =+=2112()48x +-,∴M (14-,18-). 如图所示:当点P 在OM 与⊙O 的交点处时,PM 有最大值. 设直线OM 的解析式为y =kx ,将点M 的坐标代入得:1148k -=-,解得:k =12,∴OM 的解析式为y =12x . 设点P 的坐标为(x ,12x ).由两点间的距离公式可知:OP =5,解得:x =2或x =﹣2(舍去),∴点P 的坐标为(2,1),∴当点P 与点M 距离最大时函数C 2的解析式为22(2)1y x =-+ . 考点:1.二次函数综合题;2.最值问题.17.(2017山东省济宁市)定义:点P 是△ABC 内部或边上的点(顶点除外),在△PAB ,△PBC ,△PCA 中,若至少有一个三角形与△ABC 相似,则称点P 是△ABC 的自相似点.例如:如图1,点P 在△ABC 的内部,∠PBC =∠A ,∠PCB =∠ABC ,则△BCP ∽△ABC ,故点P 是△ABC 的自相似点.请你运用所学知识,结合上述材料,解决下列问题:在平面直角坐标系中,点M 是曲线y x(x >0)上的任意一点,点N 是x 轴正半轴上的任意一点.(1)如图2,点P 是OM 上一点,∠ONP =∠M ,试说明点P 是△MON 的自相似点;当点M 的坐标是3),点N ,0)时,求点P 的坐标;(2)如图3,当点M 的坐标是(3,点N 的坐标是(2,0)时,求△MON 的自相似点的坐标; (3)是否存在点M 和点N ,使△MON 无自相似点?若存在,请直接写出这两点的坐标;若不存在,请说明理由.【答案】(1)P (4,34);(2)(1,3)或(2,3);(3)存在, M ,3),N (0).【解析】试题分析:(1)由∠ONP =∠M ,∠NOP =∠MON ,得出△NOP ∽△MON ,证出点P 是△MON 的自相似点;过P 作PD ⊥x 轴于D ,则tan ∠POD =MNONAON =60°,由点M 和N 的坐标得出∠MNO =90°,由相似三角形的性质得出∠NPO =∠MNO =90°,在Rt △OPN 中,由三角函数求出OP =2,OD =4,PD =34,即可得出答案;(3)证出OM ON ,∠MON =60°,得出△MON 是等边三角形,由点P 在△ABC 的内部,得出∠PBC ≠∠A ,∠PCB ≠∠ABC ,即可得出结论.试题解析:(1)∵∠ONP =∠M ,∠NOP =∠MON ,∴△NOP ∽△MON ,∴点P 是△MON 的自相似点;过P 作PD ⊥x 轴于D ,则tan ∠POD =MNONAON =60°,∵当点M 3),点N 的坐标是0),∴∠MNO =90°,∵△NOP ∽△MON ,∴∠NPO =∠MNO =90°,在Rt △OPN 中,OP =ON cos60°=2,∴OD =OP cos60°=2×12=4,PD =OP •sin60°=2×2=34,∴P (4,34); (2)作ME ⊥x 轴于H ,如图3所示:∵点M 的坐标是(3,点N 的坐标是(2,0),∴OM 直线OM 的解析式为y =3x ,ON =2,∠MOH =30°,分两种情况:①如图3所示:∵P 是△MON 的相似点,∴△PON ∽△NOM ,作PQ ⊥x 轴于Q ,∴PO =PN ,OQ =12ON =1,∵P 的横坐标为1,∴y =3×1=3,∴P (1,3); ②如图4所示:由勾股定理得:MN ,∵P 是△MON 的相似点,∴△PNM ∽△NOM ,∴PN MNON MO =,即2PN =,解得:PN =3,即P 的纵坐标为3,代入y =3x 得:3 =3x ,解得:x =2,∴P (2,3);综上所述:△MON 的自相似点的坐标为(1)或(2);考点:1.反比例函数综合题;2.阅读型;3.新定义;4.存在型;5.分类讨论;6.压轴题.18.(2017山西省)综合与实践背景阅读早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三,股四,弦五”.它被记载于我国古代著名数学著作《周髀算经》中.为了方便,在本题中,我们把三边的比为3:4:5的三角形称为(3,4,5)型三角形.例如:三边长分别为9,12,15或3,4,5)型三角形.用矩形纸片按下面的操作方法可以折出这种类型的三角形.实践操作如图1,在矩形纸片ABCD中,AD=8cm,AB=12cm.第一步:如图2,将图1中的矩形纸片ABCD沿过点A的直线折叠,使点D落在AB上的点E处,折痕为AF,再沿EF折叠,然后把纸片展平.第二步:如图3,将图2中的矩形纸片再次折叠,使点D与点F重合,折痕为GH,然后展平,隐去AF.第三步:如图4,将图3中的矩形纸片沿AH折叠,得到△AD′H,再沿AD′折叠,折痕为AM,AM与折痕EF 交于点N,然后展平.问题解决(1)请在图2中证明四边形AEFD是正方形.(2)请在图4中判断NF与ND′的数量关系,并加以证明.(3)请在图4中证明△AEN是(3,4,5)型三角形.探索发现(4)在不添加字母的情况下,图4中还有哪些三角形是(3,4,5)型三角形?请找出并直接写出它们的名称.【答案】(1)证明见解析;(2)NF =ND ′,证明见解析;(3)证明见解析;(4)△MFN ,△MD ′H ,△MDA . 【解析】试题分析:(1)根据题中所给(3,4,5)型三角形的定义证明即可; (2)NF =ND ′,证明Rt △HNF ≌Rt △HND ′即可;(3)根据题中所给(3,4,5)型三角形的定义证明即可;(4)由△AEN 是(3,4,5)型三角形,凡是与△AEN 相似的△都是(3,4,5)型三角形.试题解析:(1)∵四边形ABCD 是矩形,∴∠D =∠DAE =90°.由折叠知:AE =AD ,∠AEF =∠D =90°,∴∠D =∠DAE =∠AEF =90°,∴四边形AEFD 是矩形.∵AE =AD ,∴矩形AEFD 是正方形. (2)NF =ND ′.证明如下:连结HN .由折叠知:∠AD ′H =∠D =90°,HF =HD =HD ′.∵四边形AEFD 是正方形,∴∠EFD =90°. ∵∠AD ′H =90°,∴∠HD ′N =90°.在Rt △HNF 和Rt △HND ′中,∵HN =HN ,HF =HD ′,∴Rt △HNF ≌Rt △HND ′,∴NF =ND ′.(3)∵四边形AEFD 是正方形,∴AE =EF =AD =8cm ,由折叠知:AD ′=AD =8cm ,EN =EF -NF =(8-x )㎝.在Rt △AEN 中,由勾股定理得:222AN AE EN =+ ,即222(8)8(8)xx +=+-,解得:x =2,∴AN =8+x =10(㎝),EN =6(㎝),∴AN =6:8:10=3:4:5,∴△AEN 是(3,4,5)型三角形.考点:1.勾股定理的应用;2.新定义;3.阅读型;4.探究型;5.压轴题.19.(2017广东省)如图,在平面直角坐标系中,O 为原点,四边形ABCO 是矩形,点A ,C 的坐标分别是A(0,2)和C (0),点D 是对角线AC 上一动点(不与A ,C 重合),连结BD ,作DE ⊥DB ,交x 轴于。
专题16 二次函数与最短路径问题考向1 利用轴对称求线段之和的最小值【母题来源】2021年中考山东省东营卷【母题题文】如图,抛物线y =−12x 2+bx+c 与x 轴交于A 、B 两点,与y 轴交于点C ,直线y =−12x+2过B 、C 两点,连接AC .(1)求抛物线的解析式;(2)求证:△AOC ∽△ACB ;(3)点M (3,2)是抛物线上的一点,点D 为抛物线上位于直线BC 上方的一点,过点D 作DE ⊥x 轴交直线BC 于点E ,点P 为抛物线对称轴上一动点,当线段DE 的长度最大时,求PD+PM 的最小值.【答案】(1)∵直线y =−12x+2过B 、C 两点,当x =0时,代入y =−12x+2,得y =2,即C (0,2),当y =0时,代入y =−12x+2,得x =4,即B (4,0),把B (4,0),C (0,2)分别代入y =−12x 2+bx+c ,得{−8+4b +c =0c =2, 解得{b =32c =2, ∴抛物线的解析式为y =−12x 2+32x+2;(2)∵抛物线y =−12x 2+32x+2与x 轴交于点A ,∴−12x 2+32x+2=0,解得x 1=﹣1,x 2=4,∴点A 的坐标为(﹣1,0),∴AO =1,AB =5,在Rt △AOC 中,AO =1,OC =2,∴AC=√5,∴AOAC=√5=√55,∵ACAB=√55,∴AOAC=ACAB,又∵∠OAC=∠CAB,∴△AOC∽△ACB;(3)设点D的坐标为(x,−12x2+32x+2),则点E的坐标为(x,−12x+2),∴DE=−12x2+32x+2﹣(−12x+2)=−12x2+32x+2+12x﹣2 =−12x2+2x=−12(x﹣2)2+2,∵−12<0,∴当x=2时,线段DE的长度最大,此时,点D的坐标为(2,3),∵C(0,2),M(3,2),∴点C和点M关于对称轴对称,连接CD交对称轴于点P,此时PD+PM最小,连接CM交直线DE于点F,则∠DFC=90°,点F的坐标为(2,2),∴CD=√CF2+DF2=√5,∵PD+PM=PC+PD=CD,∴PD+PM的最小值为√5.【试题解析】(1)直线y=−12x+2过B、C两点,可求B、C两点坐标,把B(4,0),C(0,2)分别代入y=−12x2+bx+c,可得解析式.(2)抛物线y=−12x2+32x+2与x轴交于点A,即y=0,可得点A的横坐标,由相似三角形的判定得:△AOC∽△ACB.(3)设点D的坐标为(x,−12x2+32x+2),则点E的坐标为(x,−12x+2),由坐标得DE=−12x2+2x,当x=2时,线段DE的长度最大,此时,点D的坐标为(2,3),即点C和点M关于对称轴对称,连接CD交对称轴于点P,此时PD+PM最小,连接CM交直线DE于点F,则∠DFC=90°,由勾股定理得CD=√5,根据PD+PM =PC+PD=CD,即可求解.【命题意图】函数思想;应用意识.【命题方向】主要为解答题,一般为压轴题,具有很强的甄别性.【得分要点】已知:在直线l同恻有A.B两点,在l上找一点P,使得AP+PB最小.作法:如图.作点A关于直线l的对称点A’,连结A'B,与直线,的交点就是点P考向2 利用三点共线求线段之和的最小值【母题来源】2021年中考湖北省恩施卷【母题题文】如图,在平面直角坐标系中,四边形ABCD为正方形,点A,B在x轴上,抛物线y=x2+bx+c 经过点B,D(﹣4,5)两点,且与直线DC交于另一点E.(1)求抛物线的解析式;(2)F为抛物线对称轴上一点,Q为平面直角坐标系中的一点,是否存在以点Q,F,E,B为顶点的四边形是以BE为边的菱形.若存在,请求出点F的坐标;若不存在,请说明理由;(3)P为y轴上一点,过点P作抛物线对称轴的垂线,垂足为M,连接ME,BP,探究EM+MP+PB是否存在最小值.若存在,请求出这个最小值及点M的坐标;若不存在,请说明理由.BAPlABl【答案】(1)由点D 的纵坐标知,正方形ABCD 的边长为5,则OB =AB ﹣AO =5﹣4=1,故点B 的坐标为(1,0),则{1+b +c =016−4b +c =5,解得{b =2c =−3故抛物线的表达式为y =x 2+2x ﹣3; (2)存在,理由:∵点D 、E 关于抛物线对称轴对称,故点E 的坐标为(2,5),由抛物线的表达式知,其对称轴为直线x =﹣1,故设点F 的坐标为(﹣1,m ),由点B 、E 的坐标得,BE 2=(2﹣1)2+(5﹣0)2=26,设点Q 的坐标为(s ,t ),∵以点Q ,F ,E ,B 为顶点的四边形是以BE 为边的菱形,故点B 向右平移1个单位向上平移5个单位得到点E ,则Q (F )向右平移1个单位向上平移5个单位得到点F (Q ),且BE =EF (BE =EQ ),则{s +1=−1t +5=m 26=(2+1)2+(m −5)2或{s −1=−1t −5=m 26=(s −2)2+(t −5)2, 解得{m =5±√17s =−2t =±√17或{s =0t =5±√22m =±√22,故点F 的坐标为(﹣1,5+√17)或(﹣1,5−√17)或(﹣1,√22)或(﹣1,−√22);(3)存在,理由:由题意抛物线的对称轴交x 轴于点B ′(﹣1,0),将点B ′向左平移1个单位得到点B ″(﹣2,0),连接B″E,交函数的对称轴于点M,过点M作MP⊥y轴,则点P、M为所求点,此时EM+MP+PB为最小,理由:∵B′B″=PM=1,且B′B″∥PM,故四边形B″B′PM为平行四边形,则B″M=B′P=BP,则EM+MP+PB=EM+1+MB″=B″E+1为最小,由点B″、E的坐标得,直线B″E的表达式为y=54(x+2),当x=﹣1时,y=54(x+2)=54,故点M的坐标为(﹣1,54),则EM+MP+PB的最小值B″E+1=1+√(−2−2)2+(0−5)2=√41+1.【试题解析】(1)求出点B的坐标为(1,0),再用待定系数法即可求解;(2)以点Q,F,E,B为顶点的四边形是以BE为边的菱形,故点B向右平移1个单位向上平移5个单位得到点E,则Q(F)向右平移1个单位向上平移5个单位得到点F(Q),且BE=EF(BE=EQ),即可求解;(3)由题意抛物线的对称轴交x轴于点B′(﹣1,0),将点B′向左平移1个单位得到点B″(﹣2,0),连接B″E,交函数的对称轴于点M,过点M作MP⊥y轴,则点P、M为所求点,此时EM+MP+PB为最小,进而求解.【命题意图】考查代数几何综合题;分类讨论;矩形菱形正方形;数据分析观念.【命题方向】解答题,一般设定为试卷压轴题.【得分要点】利用转化思想得三点共线,进而利用三点共线求线段的最小值.1.(2021•湖北南漳县模拟)在平面直角坐标系xOy中,矩形OABC的顶点A,C的坐标分别为(0,3),(2,0),顶点为M的抛物线y=﹣x2+bx+c经过点A,B,且与x轴交于点D,E(点D在点E的左侧).(1)求点B 的坐标,抛物线的解析式及顶点M 的坐标;(2)点P 是(1)中抛物线对称轴上一动点,求△PAD 的周长最小时点P 的坐标;(3)平移抛物线y =﹣x 2+bx+c ,使抛物线的顶点始终在直线AM 上移动,在平移的过程中,当抛物线与线段BM 有公共点时,求抛物线顶点的横坐标a 的取值范围.解:(1)∵A ,C 点的坐标分别为(0,3),(2,0),并且四边形ABCD 是矩形,∴B 点的坐标是(2,3),把A 、B 代入抛物线解析式,则{c =3−4+2b +c =3, 解得{c =3b =2, ∴抛物线的解析式为y =﹣x 2+2x+3,∴y =﹣(x ﹣1)2+4,即顶点M 为(1,4);(2)在对称轴上取一点P ,连接PA ,PB ,PD ,由抛物线及矩形的轴对称性可知点A ,B 关于抛物线的对称轴对称,∴PA =PB ,∴当点P ,B ,D 在一条直线上时△PAD 的周长最小,当﹣x 2+2x+3=0时,解得x 1=﹣1,x 3=3,∴点D (﹣1,0),设直线BD 的解析式为y =kx+q ,代入B 点、D 点坐标得({2k +q =3−k +q =0, 解得{k =1q =1, ∴直线BD 的解析式为y =x+1,当x =1时,y =2,∴P 点的坐标为(1,2);(3)设直线AM 的解析式为:y AM =mx+n ,代入点A 和点M 的坐标得{n =3m +n =4, 解得{m =1n =3, ∴直线AM 的解析式为y AM =x+3,同理得直线BM 的解析式为y BM =﹣x+5,∵抛物线y =﹣x 2+bx+c 的顶点在直线y AM =x+3上,∴设平移中的抛物线的解析式为y =﹣(x ﹣a )2+a+3,当a =1时,抛物线y =﹣(x ﹣a )2+a+3即y =﹣x 2+2x+3,此时抛物线y =﹣(x ﹣a )2+a+3与线段AB 有两个交点,当a >1时,①抛物线y =﹣(x ﹣a )2+a+3经过点M 时,有﹣(1﹣a )2+a+3=4,解得:a 1=1(舍去),a 2=2,②当抛物线y =﹣(x ﹣a )2+a+3经过点B 时,有﹣(2﹣a )2+a+3=3,解得:a 1=1(舍去),a 2=4,综上可得2≤a ≤4,当a <1,抛物线y =﹣(x ﹣a )2+a+3与直线y BA =﹣x+5有公共点时,则方程﹣(x ﹣a )2+a+3=﹣x+5即x 2﹣(2a+1)x+a 2﹣a+2=0有实数根,∴(2a+1)2﹣4(a 2﹣a+2)≥0,即a ≥78,∴1>a ≥78,综上可得1>a ≥78或2≤a ≤4时,平移后的抛物线与线段BA 有公共点.2. (2021•江苏省江阴市模拟)如图,菱形ABCD 的对角线AC ,BD 交于点O ,AB =4.BD =5.点P 是线段AO 上一动点(不与A ,O 重合).点E 与点P 在AD 所在直线的两侧.AE ⊥AB .AE =BD .点F 在AD 边上,DF =AP .连接PE ,BF .(1)补全图形,求PE :BF 的值;(2)连接BP ,点P 在何处时BP+BF 取得最小值?并求出这个最小值.解:(1)图形如图所示:∵四边形ABCD是菱形,∴AC⊥BD,∠DAO=∠BAO,∴∠AOD=90°,∵EA⊥AB,∴∠EAP+∠BAO=90°,∵∠DAO+∠ADO=90°,∴∠EAP=∠BDF,∵AE=DB,AP=DF,∴△EAP≌△BDF(SAS),∴PE=BF,∴PE:BF=1.(2)∵PE=BF,∴BP+BF=BP+PE≥BE,∴当点P在BE与OA的交点处时,BP+BF的值最小,最小值BE=√AE2+AB2=√52+42=√41.。
专题16 压轴题一、选择题1.(2016四川省凉山州)已知,一元二次方程28150x x -+=的两根分别是⊙O 1和⊙O 2的半径,当⊙O 1和⊙O 2相切时,O 1O 2的长度是( )A .2B .8C .2或8D .2<O 2O 2<8 【答案】C .考点:1.圆与圆的位置关系;2.根与系数的关系;3.分类讨论.2.(2016四川省宜宾市)如图,点P 是矩形ABCD 的边AD 上的一动点,矩形的两条边AB 、BC 的长分别是6和8,则点P 到矩形的两条对角线AC 和BD 的距离之和是( )A .4.8B .5C .6D .7.2 【答案】A . 【解析】试题分析:首先连接OP ,由矩形的两条边AB 、BC 的长分别为3和4,可求得OA =OD =5,△AOD 的面积,然后由S △A O D =S △A O P +S △D O P =12OA •PE +OD •PF 求得答案. 试题解析:连接OP ,∵矩形的两条边AB 、BC 的长分别为6和8,∴S 矩形A B C D=AB •BC =48,OA =OC ,OB =OD ,AC =BD =10,∴OA =OD =5,∴S △A C D =12S 矩形A B C D=24,∴S △A O D =12S △A C D =12,∵S △A O D =S △A O P +S △D O P =12OA •PE +12OD •PF =12×5×PE +12×5×PF =52(PE +PF )=12,解得:PE +PF =4.8.故选A .考点:1.矩形的性质;2.和差倍分;3.定值问题.3.(2016四川省宜宾市)宜宾市某化工厂,现有A种原料52千克,B种原料64千克,现用这些原料生产甲、乙两种产品共20件.已知生产1件甲种产品需要A种原料3千克,B种原料2千克;生产1件乙种产品需要A种原料2千克,B种原料4千克,则生产方案的种数为()A.4 B.5 C.6 D.7【答案】B.故选B.考点:1.二元一次方程组的应用;2.方案型.4.(2016四川省泸州市)以半径为1的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是()A B C.D【答案】D .考点:1.正多边形和圆;2.分类讨论.5.(2016四川省自贡市)圆锥的底面半径为4cm ,高为5cm ,则它的表面积为( )A .12πcm 2B .26πcm 2C cm 2D .16)πcm 2【答案】D . 【解析】试题分析:利用勾股定理求得圆锥的母线长,则圆锥表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2.试题解析:底面半径为4cm ,则底面周长=8πcm ,底面面积=16πcm 2;由勾股定理得,母线长cm ,圆锥的侧面面积=182π⨯=cm 2,∴它的表面积=16π+=16)π cm 2,故选D . 考点:1.圆锥的计算;2.压轴题.6.(2016甘肃省白银市)如图,△ABC是等腰直角三角形,∠A=90°,BC=4,点P是△ABC边上一动点,沿B→A→C的路径移动,过点P作PD⊥BC于点D,设BD=x,△BDP的面积为y,则下列能大致反映y与x函数关系的图象是()A.B.C.D.【答案】A.当2<x≤4时,如图2,∵∠C=45°,∴PD=CD=4﹣x,∴y=12•(4﹣x)•x=2122x x-+,故选A.考点:1.动点问题的函数图象;2.分类讨论.二、填空题7.(2016四川省凉山州)如图,四边形ABCD中,∠BAD=∠ADC=90°,AB=AD=CD=P是四边形ABCD四条边上的一个动点,若P到BD的距离为52,则满足条件的点P有个.【答案】2.考点:1.点到直线的距离;2.分类讨论.8.(2016四川省宜宾市)如图,在边长为4的正方形ABCD中,P是BC边上一动点(不含B、C两点),将△ABP沿直线AP翻折,点B落在点E处;在CD上有一点M,使得将△CMP沿直线MP翻折后,点C落在直线PE上的点F处,直线PE交CD于点N,连接MA,NA.则以下结论中正确的有(写出所有正确结论的序号)①△CMP∽△BPA;②四边形AMCB的面积最大值为10;③当P为BC中点时,AE为线段NP的中垂线;④线段AM的最小值为⑤当△ABP≌△ADN时,BP=4.【答案】①②⑤.考点:相似形综合题.9.(2016四川省自贡市)如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为cm2.【答案】16.考点:1.一次函数综合题;2.压轴题.10.(2016江苏省宿迁市)如图,在矩形ABCD中,AD=4,点P是直线AD上一动点,若满足△PBC是等腰三角形的点P有且只有3个,则AB的长为.【答案】4.考点:1.矩形的性质;2.等腰三角形的性质;3.勾股定理;4.分类讨论.11.(2016江西省)如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是.【答案】5.【解析】试题分析:分情况讨论:①当AP=AE=5时,则△AEP是等腰直角三角形,得出底边PE AE=②当PE=AE=5时,求出BE,由勾股定理求出PB,再由勾股定理求出等边AP即可;③当PA=PE时,底边AE=5;即可得出结论.试题解析:如图所示:①当AP=AE=5时,∵∠BAD=90°,∴△AEP是等腰直角三角形,∴底边PE AE=②当PE=AE=5时,∵BE=AB﹣AE=8﹣5=3,∠B=90°,∴PB==4,∴底边考点:1.矩形的性质;2.等腰三角形的性质;3.勾股定理;4.分类讨论.12.(2016甘肃省兰州市)对于一个矩形ABCD 及⊙M 给出如下定义:在同一平面内,如果矩形ABCD 的四个顶点到⊙M 上一点的距离相等,那么称这个矩形ABCD 是⊙M 的“伴侣矩形”.如图,在平面直角坐标系xOy 中,直线l :3y =-交x 轴于点M ,⊙M 的半径为2,矩形ABC D 沿直线运动(BD 在直线l 上),BD =2,AB ∥y 轴,当矩形ABCD 是⊙M 的“伴侣矩形”时,点C 的坐标为 .【答案】(12,2-)或(32,2). 【解析】试题分析:根据“伴侣矩形”的定义可知:圆上的点一定在矩形的对角线交点上,因为只有对角线交点到四个顶点的距离相等,由此画出图形,先求出直线与x 轴和y 轴两交点的坐标,和矩形的长和宽;有两种情况:①矩形在x 轴下方时,作辅助线构建相似三角形得比例式,分别求出DG 和DH 的长,从而求出CG 的长,根据坐标特点写出点C 的坐标;②矩形在x 轴上方时,也分别过C 、B 两点向两坐标轴作垂线,利用平行相似得比例式,求出C 的坐标.考点:1.圆的综合题;2.新定义;3.分类讨论.三、解答题13.(2016上海市)如图,抛物线25y ax bx =+-(a ≠0)经过点A (4,﹣5),与x 轴的负半轴交于点B ,与y 轴交于点C ,且OC =5OB ,抛物线的顶点为点D .(1)求这条抛物线的表达式;(2)联结AB 、BC 、CD 、DA ,求四边形ABCD 的面积;(3)如果点E 在y 轴的正半轴上,且∠BEO =∠ABC ,求点E 的坐标.【答案】(1)245y x x =--;(2)18;(3)E (0,32).(2)由245y x x =--,得顶点D 的坐标为(2,﹣9).连接AC ,∵点A 的坐标是(4,﹣5),点C 的坐标是(0,﹣5),又S △ABC =12×4×5=10,S △ACD =12×4×4=8,∴S 四边形ABCD =S △ABC +S △ACD =18; (3)过点C 作CH ⊥AB ,垂足为点H .∵S △ABC =12×AB ×CH =10,AB =,∴CH =,在RT △BCH 中,∠BHC =90°,BC =,BH ==,∴tan ∠CBH =23CH BH =.∵在RT △BOE 中,∠BOE =90°,tan ∠BEO =BO EO,∵∠BEO =∠ABC ,∴BO EO =23,得EO =32,∴点E 的坐标为(0,32). 考点:二次函数综合题.14.(2016上海市)如图所示,梯形ABCD 中,AB ∥DC ,∠B =90°,AD =15,AB =16,BC =12,点E 是边AB 上的动点,点F 是射线CD 上一点,射线ED 和射线AF 交于点G ,且∠AGE =∠DAB .(1)求线段CD 的长;(2)如果△AEC 是以EG 为腰的等腰三角形,求线段AE 的长;(3)如果点F 在边CD 上(不与点C 、D 重合),设AE =x ,DF =y ,求y 关于x 的函数解析式,并写出x 的取值范围.【答案】(1)7;(2)15或252;(3)22518x y x -=(2592x <<).考点:1.四边形综合题;2.相似三角形综合题;3.分类讨论;4.压轴题.15.(2016北京市)在等边△ABC中:(1)如图1,P,Q是BC边上的两点,AP=AQ,∠BAP=20°,求∠AQB的度数;(2)点P,Q是BC边上的两个动点(不与点B,C重合),点P在点Q的左侧,且AP=AQ,点Q关于直线AC 的对称点为M,连接AM,PM.①依题意将图2补全;②小茹通过观察、实验提出猜想:在点P,Q运动的过程中,始终有PA=PM,小茹把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:要证明PA=PM,只需证△APM是等边三角形;想法2:在BA上取一点N,使得BN=BP,要证明PA=PM,只需证△ANP≌△PCM;想法3:将线段BP绕点B顺时针旋转60°,得到线段BK,要证PA=PM,只需证PA=CK,PM=CK…请你参考上面的想法,帮助小茹证明PA=PM(一种方法即可).【答案】(1)40°;(2)①作图见解析;②证明见解析.考点:三角形综合题.16.(2016北京市)在平面直角坐标系xOy 中,点P 的坐标为(1x ,1y ),点Q 的坐标为(2x ,2y ),且12x x ≠,12y y ≠,若P ,Q 为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P ,Q 的“相关矩形”.下图为点P ,Q 的“相关矩形”的示意图.(1)已知点A 的坐标为(1,0).①若点B 的坐标为(3,1)求点A ,B 的“相关矩形”的面积;②点C 在直线x =3上,若点A ,C 的“相关矩形”为正方形,求直线AC 的表达式;(2)⊙O M 的坐标为(m ,3).若在⊙O 上存在一点N ,使得点M ,N 的“相关矩形”为正方形,求m 的取值范围.【答案】(1)①2;②1y x =- 或 1y x =-+;(2)1≤m ≤5 或者51m -≤≤-.考点:1.圆的综合题;2.新定义.17.(2016吉林省长春市)如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=8,∠BAD=60°,点E从点A出发,沿AB以每秒2个单位长度的速度向终点B运动,当点E不与点A重合时,过点E作EF⊥AD于点F,作EG∥AD交AC于点G,过点G作GH⊥AD交AD(或AD的延长线)于点H,得到矩形EFHG,设点E运动的时间为t秒(1)求线段EF的长(用含t的代数式表示);(2)求点H与点D重合时t的值;(3)设矩形EFHG与菱形ABCD重叠部分图形的面积与S平方单位,求S与t之间的函数关系式;(4)矩形EFHG的对角线EH与FG相交于点O′,当OO′∥AD时,t的值为;当OO′⊥AD时,t的值为.【答案】(1)EF=t;(2)t=83;(3)228(0)383 (4)3tSt⎧≤≤⎪⎪=⎨⎪+-<≤⎪⎩;(4)t=4;t=3.考点:1.四边形综合题;2.动点型;3.分类讨论;4.分段函数;5.压轴题.18.(2016吉林省长春市)如图,在平面直角坐标系中.有抛物线2(3)4y a x =-+和2()y a x h =-.抛物线2(3)4y a x =-+经过原点,与x 轴正半轴交于点A ,与其对称轴交于点B .P 是抛物线2(3)4y a x =-+上一点,且在x 轴上方.过点P 作x 轴的垂线交抛物线2()y a x h =-于点Q .过点Q 作PQ 的垂线交抛物线2()y a x h =-于点'Q (不与点Q 重合),连结'PQ .设点P 的横坐标为m .(1)求a 的值;(2)当抛物线2()y a x h =-经过原点时,设△'PQQ 与△OAB 重叠部分图形的周长为l .②求l 与m 之间的函数关系式;(3)当h 为何值时,存在点P ,使以点O 、A 、Q 、'Q 为顶点的四边形是轴对称图形?直接写出h 的值.【答案】(1)49a =-;(2)①43;②24 (03)1171010(36)163m m l m m m <≤⎧⎪=⎨-++<<⎪⎩;(3)h =3或3-3+考点:1.二次函数综合题;2.分类讨论;3.压轴题.19.(2016四川省凉山州)为了更好的保护美丽图画的邛海湿地,西昌市污水处理厂决定先购买A、B两型污水处理设备共20台,对邛海湿地周边污水进行处理,每台A型污水处理设备12万元,每台B型污水处理设备10万元.已知1台A型污水处理设备和2台B型污水处理设备每周可以处理污水640吨,2台A型污水处理设备和3台B型污水处理设备每周可以处理污水1080吨.(1)求A、B两型污水处理设备每周分别可以处理污水多少吨?(2)经预算,市污水处理厂购买设备的资金不超过230万元,每周处理污水的量不低于4500吨,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少?【答案】(1)A型污水处理设备每周每台可以处理污水240吨,B型污水处理设备每周每台可以处理污水200吨;(2)共有三种方案,详见解析,购买A型污水处理设备13台,则购买B型污水处理设备7台时,所需购买资金最少,最少是226万元.即A型污水处理设备每周每台可以处理污水240吨,B型污水处理设备每周每台可以处理污水200吨;考点:1.一元一次不等式组的应用;2.二元一次方程组的应用;3.最值问题;4.方案型.20.(2016四川省凉山州)如图,已知抛物线2y ax bx c =++(a ≠0)经过A (﹣1,0)、B (3,0)、C (0,﹣3)三点,直线l 是抛物线的对称轴. (1)求抛物线的函数关系式;(2)设点P 是直线l 上的一个动点,当点P 到点A 、点B 的距离之和最短时,求点P 的坐标; (3)点M 也是直线l 上的动点,且△MAC 为等腰三角形,请直接写出所有符合条件的点M 的坐标.【答案】(1)223y x x =--;(2)P (1,0);(3). 【解析】试题分析:(1)直接将A 、B 、C 三点坐标代入抛物线的解析式中求出待定系数即可;(2)由图知:A .B 点关于抛物线的对称轴对称,那么根据抛物线的对称性以及两点之间线段最短可知,直线l 与x 轴的交点,即为符合条件的P 点;(3)由于△MAC 的腰和底没有明确,因此要分三种情况来讨论:①MA =AC 、②MA =MC 、③AC =MC ;可先设出M 点的坐标,然后用M 点纵坐标表示△MAC 的三边长,再按上面的三种情况列式求解.试题解析:(1)将A (﹣1,0)、B (3,0)、C (0,﹣3)代入抛物线2y ax bx c =++中,得:09303a b c a b c c -+=⎧⎪++=⎨⎪=-⎩考点:1.二次函数综合题;2.分类讨论;3.综合题;4.动点型.21.(2016四川省宜宾市)如图,已知二次函数21y a x b x =+过(﹣2,4),(﹣4,4)两点.(1)求二次函数1y 的解析式;(2)将1y 沿x 轴翻折,再向右平移2个单位,得到抛物线2y ,直线y =m (m >0)交2y 于M 、N 两点,求线段MN 的长度(用含m 的代数式表示);(3)在(2)的条件下,1y 、2y 交于A 、B 两点,如果直线y =m 与1y 、2y 的图象形成的封闭曲线交于C 、D 两点(C 在左侧),直线y =﹣m 与1y 、2y 的图象形成的封闭曲线交于E 、F 两点(E 在左侧),求证:四边形CEFD 是平行四边形.【答案】(1)21132y x x =--;(2)(3)证明见解析.CD =12x x -==,由219(1)22y m y x =-⎧⎪⎨=+-⎪⎩,消去y 得到22820x x m +-+=,设两个根为1x ,2x ,则EF =12x x -==∴EF =CD ,EF ∥CD ,∴四边形CEFD 是平行四边形.考点:二次函数综合题.22.(2016四川省巴中市)已知:如图,四边形ABCD 是平行四边形,延长BA 至点E ,使AE +CD =AD .连结CE ,求证:C E 平分∠BCD .【答案】证明见解析.考点:1.平行四边形的性质;2.和差倍分.23.(2016四川省巴中市)如图,在平面直角坐标系中,抛物线245y mx mx m =+-(m <0)与x 轴交于点A 、B (点A 在点B 的左侧),该抛物线的对称轴与直线3y x =相交于点E ,与x 轴相交于点D ,点P 在直线y x =上(不与原点重合),连接PD ,过点P 作PF ⊥PD 交y 轴于点F ,连接DF .(1)如图①所示,若抛物线顶点的纵坐标为 (2)求A 、B 两点的坐标;(3)如图②所示,小红在探究点P 的位置发现:当点P 与点E 重合时,∠PDF 的大小为定值,进而猜想:对于直线3y x =上任意一点P (不与原点重合),∠PDF 的大小为定值.请你判断该猜想是否正确,并说明理由.【答案】(1)2333y x x =--+;(2)A (﹣5,0)、B (1,0);(3)∠PDF =60°.考点:1.二次函数综合题;2.定值问题.24.(2016四川省广安市)如图,抛物线2y x bx c =++与直线132y x =-交于A 、B 两点,其中点A 在y 轴上,点B 坐标为(﹣4,﹣5),点P 为y 轴左侧的抛物线上一动点,过点P 作PC ⊥x 轴于点C ,交AB 于点D .(1)求抛物线的解析式;(2)以O ,A ,P ,D 为顶点的平行四边形是否存在?如存在,求点P 的坐标;若不存在,说明理由. (3)当点P 运动到直线AB 下方某一处时,过点P 作PM ⊥AB ,垂足为M ,连接PA 使△PAM 为等腰直角三角形,请直接写出此时点P 的坐标.【答案】(1)2932y x x =+-;(2)P (2-1--,(﹣1,132-),(﹣3,152-);(3)P (32-,152-). 【解析】试题分析:(1)先确定出点A 坐标,然后用待定系数法求抛物线解析式;(2)先用m 表示出PD ,当PD =OA =3,故存在以O ,A ,P ,D 为顶点的平行四边形,得到243m m +=,分两种情况进行讨论计算即可;(3)由△PAM 为等腰直角三角形,得到∠BAP =45°,从而求出直线AP 的解析式,最后求出直线AP 和抛物线的交点坐标即可. 试题解析:(1)∵直线132y x =-交于A 、B 两点,其中点A 在y 轴上,∴A (0,﹣3),∵B (﹣4,﹣5),考点:1.二次函数综合题;2.动点型;3.存在型;4.分类讨论;5.压轴题.25.(2016四川省成都市)如图,在Rt △ABC 中,∠ABC =90°,以CB 为半径作⊙C ,交AC 于点D ,交AC 的延长线于点E ,连接ED ,BE . (1)求证:△ABD ∽△AEB ; (2)当43AB BC 时,求tanE ; (3)在(2)的条件下,作∠BAC 的平分线,与BE 交于点F ,若AF =2,求⊙C 的半径.【答案】(1)证明见解析;(2)12;(3)8.考点:圆的综合题.26.(2016四川省成都市)如图,在平面直角坐标系xOy 中,抛物线2(1)3y a x =+-与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C (0,83-),顶点为D ,对称轴与x 轴交于点H ,过点H 的直线l 交抛物线于P ,Q 两点,点Q 在y 轴的右侧. (1)求a 的值及点A ,B 的坐标;(2)当直线l 将四边形ABCD 分为面积比为3:7的两部分时,求直线l 的函数表达式;(3)当点P 位于第二象限时,设PQ 的中点为M ,点N 在抛物线上,则以DP 为对角线的四边形DMPN 能否为菱形?若能,求出点N 的坐标;若不能,请说明理由.【答案】(1)13a =,A (-4,0),B (2,0);(2)y =2x +2或4433y x =--;(3)存在,N (-132-, 1). 【解析】由⎪⎩⎪⎨⎧-+=+=3832312x x y k kx y ,∴038)32(312=---+k x k x ,∴1223x x k+=-+,212123y y kx k kx k k +=+++=,∵点M 是线段PQ 的中点,∴由中点坐标公式的点M (312k -,232k ).假设存在这样的N 点如图,直线DN ∥PQ ,设直线DN 的解析式为y =kx +k ﹣3,由⎪⎩⎪⎨⎧-+=-+=38323132x x y k kx y ,解考点:1.二次函数综合题;2.压轴题.27.(2016四川省攀枝花市)如图,在△AOB中,∠AOB为直角,OA=6,OB=8,半径为2的动圆圆心Q从点O出发,沿着OA方向以1个单位长度/秒的速度匀速运动,同时动点P从点A出发,沿着AB方向也以1个单位长度/秒的速度匀速运动,设运动时间为t秒(0<t≤5)以P为圆心,PA长为半径的⊙P与AB、OA的另一个交点分别为C、D,连结CD、QC.(1)当t为何值时,点Q与点D重合?(2)当⊙Q经过点A时,求⊙P被OB截得的弦长.(3)若⊙P与线段QC只有一个公共点,求t的取值范围.【答案】(1)3011;(2;(3)0<t ≤1813或3011<t ≤5.考点:1.圆的综合题;2.分类讨论;3.动点型;4.压轴题.28.(2016四川省攀枝花市)如图,抛物线2y x bx c =++与x 轴交于A 、B 两点,B 点坐标为(3,0),与y 轴交于点C (0,﹣3) (1)求抛物线的解析式;(2)点P 在抛物线位于第四象限的部分上运动,当四边形ABPC 的面积最大时,求点P 的坐标和四边形ABPC 的最大面积.(3)直线l 经过A 、C 两点,点Q 在抛物线位于y 轴左侧的部分上运动,直线m 经过点B 和点Q ,是否存在直线m ,使得直线l 、m 与x 轴围成的三角形和直线l 、m 与y 轴围成的三角形相似?若存在,求出直线m 的解析式,若不存在,请说明理由.【答案】(1)223y x x =--;(2)P 点坐标为(32,154-)时,四边形ABPC 的面积最大,最大面积为758;(3)存在,113y x =-.在223y x x =--中,令y =0可得2023x x =--,解得x =﹣1或x =3,∴A 点坐标为(﹣1,0),∴AB =3﹣(﹣1)=4,且OC =3,∴S △ABC =12AB •OC =12×4×3=6,∵B (3,0),C (0,﹣3),∴直线BC 解析式为y =x ﹣3,设P 点坐标为(x ,223x x --),则M 点坐标为(x ,x ﹣3),∵P 点在第四限,∴PM =23(23)x x x ----=23x x -+,∴S △PBC =12PM •OH +12PM •HB =12PM •(OH +HB )=12PM •OB =32PM ,∴当PM 有最大值时,△PBC 的面积最大,则四边形ABPC 的面积最大,∵PM =23x x -+=239()24x --+,∴当x =32时,PM max =94,则S △PBC =3924⨯=278,此时P 点坐标为(32,154-),S 四边形ABPC =S △ABC +S △PBC =6+278=758,即当P 点坐标为(32,154-)时,四边形ABPC 的面积最大,最大面积为758;考点:1.二次函数综合题;2.存在型;3.最值问题;4.二次函数的最值;5.动点型;6.压轴题.29.(2016四川省泸州市)如图,△ABC内接于⊙O,BD为⊙O的直径,BD与AC相交于点H,AC的延长线与过点B的直线相交于点E,且∠A=∠EBC.(1)求证:B E是⊙O的切线;(2)已知CG∥EB,且CG与BD、BA分别相交于点F、G,若BG•BA=48,FG=,DF=2BF,求AH的值.【答案】(1)证明见解析;(2)考点:1.圆的综合题;2.三角形的外接圆与外心;3.切线的判定.30.(2016四川省泸州市)如图,在平面直角坐标系中,点O为坐标原点,直线l与抛物线2=+相交于A(1,,B(4,0)两点.y mx nx(1)求出抛物线的解析式;(2)在坐标轴上是否存在点D,使得△ABD是以线段AB为斜边的直角三角形?若存在,求出点D的坐标;若不存在,说明理由;(3)点P是线段AB上一动点,(点P不与点A、B重合),过点P作PM∥OA,交第一象限内的抛物线于点M,过点M作MC⊥x轴于点C,交AB于点N,若△BCN、△PMN的面积S△B C N、S△P M N满足S△B C N=2S△P M N,求出MNNC的值,并求出此时点M的坐标.【答案】(1)2y=+;(2)D(1,0)或(0)或(0);(3),M(1,).综上可知存在满足条件的D 点,其坐标为(1,0)或(0,2)或(0,2);(3)如图2,过P 作PF ⊥CM 于点F ,∵PM ∥OA ,∴Rt △ADO ∽Rt △MFP ,∴MF ADPF OD==∴MF =,在Rt △ABD 中,BD =3,AD =∴tan ∠ABD =∴∠ABD =60°,设BC =a ,则CN =a ,在Rt △PFN 中,∠PNF =∠BNC =30°,∴tan ∠PNF =3PF PN =,∴FN =,∴MN =MF +FN =PF ,∵S △B C N =2S △P M N ,∴22122=⨯⨯,∴a =PF ,∴NC =a =PF ,∴MNNC ==,∴MN =NC ==a ,∴MC =MN +NC =()a ,∴M 点坐标为(4﹣a ,()a ),又M 点在抛物线上,代入可得2))a a -+-=()a ,解得a =3或a =0(舍去),OC =4﹣a =1,MC =,∴点M 的坐标为(1,).考点:1.二次函数综合题;2.分类讨论;3.动点型;4.存在型;5.压轴题. 31.(2016四川省资阳市)已知抛物线与x 轴交于A (6,0)、B (54-,0)两点,与y 轴交于点C ,过抛物线上点M (1,3)作MN ⊥x 轴于点N ,连接OM .(1)求此抛物线的解析式;(2)如图1,将△OMN 沿x 轴向右平移t 个单位(0≤t ≤5)到△O ′M ′N ′的位置,MN ′、M ′O ′与直线AC 分别交于点E 、F .①当点F 为M ′O ′的中点时,求t 的值;②如图2,若直线M ′N ′与抛物线相交于点G ,过点G 作GH ∥M ′O ′交AC 于点H ,试确定线段EH 是否存在最大值?若存在,求出它的最大值及此时t 的值;若不存在,请说明理由.【答案】(1)241921515y x x =-++;(2)①1;②t =2时,EH 最大值为考点:1.二次函数综合题;2.最值问题;3.二次函数的最值;4.存在型;5.平移的性质;6.压轴题.32.(2016山东省临沂市)现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.(1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;(2)小明选择哪家快递公司更省钱?【答案】(1)22 (01)157 (1)x xyx x<<⎧=⎨+>⎩甲,=163y x+乙;(2)当12<x<4时,选乙快递公司省钱;当x=4或x=12时,选甲、乙两家快递公司快递费一样多;当0<x<12或x>4时,选甲快递公司省钱.当0<x <12或x >4时,选甲快递公司省钱. 考点:1.一次函数的应用;2.分段函数;3.方案型.33.(2016山东省临沂市)如图,在平面直角坐标系中,直线y =﹣2x +10与x 轴,y 轴相交于A ,B 两点,点C 的坐标是(8,4),连接AC ,BC .(1)求过O ,A ,C 三点的抛物线的解析式,并判断△ABC 的形状;(2)动点P 从点O 出发,沿OB 以每秒2个单位长度的速度向点B 运动;同时,动点Q 从点B 出发,沿BC 以每秒1个单位长度的速度向点C 运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为t 秒,当t 为何值时,PA =QA ?(3)在抛物线的对称轴上,是否存在点M ,使以A ,B ,M 为顶点的三角形是等腰三角形?若存在,求出点M 的坐标;若不存在,请说明理由.【答案】(1)21566y x x =-,直角三角形;(2)103;(3)M 1(52),M 2(52,M 3(52,2),M 4(52,2-).(3)存在,∵21566y x x =-,∴抛物线的对称轴为x =52,∵A (5,0),B (0,10),∴AB = 设点M (52,m );①若BM =BA 时,∴225()(10)1252m +-=,∴m 1=202+,m 2=202-M 1(52,202+),M 2(52②若AM =AB 时,∴225()1252m +=,∴m 3=2,m 4=2-,∴M 3(52,2),M 4(52,2-); ③若MA =MB 时,∴222255(5)()(10)22m m -+=+-,∴m =5,∴M (52,5),此时点M 恰好是线段AB 的中点,构不成三角形,舍去;∴点M 的坐标为:M 1(52,202+),M 2(52,202-),M 3(52,2),M 4(52,2-).考点:1.二次函数综合题;2.动点型;3.存在型;4.分类讨论;5.压轴题.34.(2016山东省德州市)如图,⊙O 是△ABC 的外接圆,AE 平分∠BAC 交⊙O 于点E ,交BC 于点D ,过点E做直线l∥BC.(1)判断直线l与⊙O的位置关系,并说明理由;(2)若∠ABC的平分线BF交AD于点F,求证:B E=EF;(3)在(2)的条件下,若DE=4,DF=3,求AF的长.【答案】(1)直线l与⊙O相切;(2)证明见解析;(3)214.∵AE平分∠BAC,∴∠BAE=∠CAE,∴BE CE,∴∠BOE=∠COE.又∵OB=OC,∴OE⊥BC.∵l∥BC,∴OE⊥l,∴直线l与⊙O相切.(2)∵BF平分∠ABC,∴∠ABF=∠CBF.又∵∠CBE=∠CAE=∠BAE,∴∠CBE+∠CBF=∠BAE+∠ABF.又∵∠EFB =∠BAE +∠ABF ,∴∠EBF =∠EFB ,∴BE =EF .(3)由(2)得BE =EF =DE +DF =7.∵∠DBE =∠BAE ,∠DEB =∠BEA ,∴△BED ∽△AEB ,∴DE BE BE AE =,即477AE=,解得;AE =494,∴AF =AE ﹣EF =494﹣7=214. 考点:圆的综合题.35.(2016山东省德州市)已知,m ,n 是一元二次方程2+430x x +=的两个实数根,且|m |<|n |,抛物线2y x bx c =++的图象经过点A (m ,0),B (0,n ),如图所示.(1)求这个抛物线的解析式;(2)设(1)中的抛物线与x 轴的另一个交点为抛物线的顶点为D ,试求出点C ,D 的坐标,并判断△BCD 的形状;(3)点P 是直线BC 上的一个动点(点P 不与点B 和点C 重合),过点P 作x 轴的垂线,交抛物线于点M ,点Q 在直线BC 上,距离点P个单位长度,设点P 的横坐标为t ,△PMQ 的面积为S ,求出S 与t 之间的函数关系式.【答案】(1)223y x x =--;(2)△BCD 是直角三角形;(3)S =2213(03)2213 (03)22t t t t t t t ⎧-+<<⎪⎪⎨⎪-<>⎪⎩或.考点:1.二次函数综合题;2.分类讨论.36.(2016江苏省宿迁市)如图,在平面直角坐标系xOy 中,将二次函数21y x =-的图象M 沿x 轴翻折,把所得到的图象向右平移2个单位长度后再向上平移8个单位长度,得到二次函数图象N . (1)求N 的函数表达式;(2)设点P (m ,n )是以点C (1,4)为圆心、1为半径的圆上一动点,二次函数的图象M 与x 轴相交于两点A 、B ,求22PA PB +的最大值;(3)若一个点的横坐标与纵坐标均为整数,则该点称为整点.求M 与N 所围成封闭图形内(包括边界)整点的个数.【答案】(1)245y x x =-++;(2)38+(3)25.。
一、解答题:
1.(2015.上海市,第24题,12分) (本题满分12分,每小题满分各4分)
已知在平面直角坐标系xOy中(如图),抛物线24yax与x轴的负半轴相交于点A,
与y轴相交于点B,25AB.点P在抛物线上,线段AP与y轴的正半轴交于点C,
线段BP与x轴相交于点D.设点P的横坐标为m.
(1)求这条抛物线的解析式;
(2)用含m的代数式表示线段CO的长;
(3)当3tan2ODC时,求PAD的正弦值.
1
1
x
y
O
2.(2015.上海市,第25题,14分) (本题满分14分,第(1)小题满分4分,第(2)小题满分
5分,第(3)小题满分5分)
已知:如图,AB是半圆O的直径,弦//CDAB,动点P、Q分别在线段OC、CD上,
且DQOP,AP的延长线与射线OQ相交于点E、与弦CD相交于点F(点F与点C、
D
不重合),20AB,4cos5AOC.设OPx,CPF的面积为y.
(1)求证:APOQ;
(2)求y关于x的函数关系式,并写出它的定义域;
(3)当OPE是直角三角形时,求线段OP的长.
O
P
Q
F
E
D
C
BA
备用图
O
D
C
BA
3. (2015.河南省,第23题,11分)(11分)如图,边长为8的正方形OABC的两边在坐
标轴上,以点C为顶点的抛物线经过点A,点P是抛物线上点A、C间的一个动点(含
端点),过点P作PF⊥BC于点F. 点D、E的坐标分别为(0,6),(-4,0),连接
PD,PE,DE.
(1)请直接写出抛物线的解析式;
(2)小明探究点P的位置发现:当点P与点A或点C重合时,PD与PF的差为定值. 进
而猜想:对于任意一点P,PD与PF的差为定值. 请你判断该猜想是否正确,并说
明理由;
(3)小明进一步探究得出结论:若将“使△PDE的面积为整数”的点P记作“好点”,
则存在多个“好点”,且使△PDE的周长最小的点P也是一个“好点”.
请直接写出所有“好点”的个数,并求出△PDE的周长最小时“好点”的坐标.
4. (2015.重庆市A卷,第26题,12分)如图1,在平面直角坐标系中,抛物线
2
3
3334yxx
交x轴于A,B两点(点A在点B的左侧),交y轴于点W,顶点
为C,抛物线的对称轴与x轴的交点为D。
(1)求直线BC的解析式;
(2)点E(m,0),F(m+2,0)为x轴上两点,其中4m2,'EE,'FF分别垂直
于x轴,交抛物线与点E,F,交BC于点M,N,当MENF的值最大时,在y轴上找
一点R,使RFRE的值最大,请求出R点的坐标及RFRE的最大值;
(3)如图2,已知x轴上一点9,02P,现以P为顶点,23为边长在x轴上方作等边三
角形QPG,使GP⊥x轴,现将△QPG沿PA方向以每秒1个单位长度的速度平移,当点P到
达点A时停止,记平移后的△QPG为QPG,设QPG与△ADC的重叠部分面积为s,
当点Q到x轴的距离与点Q到直线AW的距离相等时,求s的值。
P
E O F C D B A
图
x
y
5. (2015.重庆市B卷,第26题,12分)如图,抛物线223yxx与x轴交与A,B
两点(点A在点B的左侧),与y轴交于点C. 点D和点C关于抛物线的对称轴对称,直线
AD与y轴相交于点E.
(1)求直线AD的解析式;
(2)如图1,直线AD上方的抛物线上有一点F,过点F作FG⊥AD于点G,作FH平行于x
轴交直线AD于点H,求△FGH的周长的最大值;
(3)点M是抛物线的顶点,点P是y轴上一点,点Q是坐标平面内一点,以A,M,P,Q
为顶点的四边形是AM为边的矩形,若点T和点Q关于AM所在直线对称,求点T的坐标.
26题图1
26题图2
x
y
x
y
x
y
26题备用图2
26题备用图1
26题图1
C
BA
O
C
A
O
H
G
E
D
C
BA
O
F
M
M
6. (2015.北京市,第29题,7分)在平面直角坐标系xOy中,⊙C的半径为r,P是与圆心
C不重合的点,点P关于⊙C的反称点的定义如下:若在射线..CP上存在一点P
′,满足
CP+CP′=2r.则称P′为点P关于⊙C的反称点,下图为点P及其关于⊙C的反称点P
′
的示意图.
特别地,当点P′与圆心C重合时,规定CP′=0.
(1)当⊙O的半径为1时.
①分別判断点M(2,1),3(,0)2N,(1,3)T关于⊙O的反称点是否存在?若存在,求其坐
标;
②点P在直线y=-x+2上,若点P关于⊙O的反称点P′存在,且点P′不在x袖上,求
点P的横坐标的取值范围;
(2)⊙C的圆心在x袖上,半径为1,直线3233yx与x轴、y轴分別交于点A,B.
若线段..AB存在点P,使得点P关于⊙C的反称点P′在⊙C的内部,求圆心C的横坐标的取
值范围.