高中物理动量与能量知识点详解和练习
- 格式:doc
- 大小:685.50 KB
- 文档页数:19
高中物理动量定理及其解题技巧及练习题(含答案)含解析一、高考物理精讲专题动量定理1.观赏“烟火”表演是某地每年“春节”庆祝活动的压轴大餐。
某型“礼花”底座仅0.2s 的发射时间,就能将质量为m =5kg 的礼花弹竖直抛上180m 的高空。
(忽略发射底座高度,不计空气阻力,g 取10m/s 2)(1)“礼花”发射时燃烧的火药对礼花弹的平均作用力是多少?(已知该平均作用力远大于礼花弹自身重力)(2)某次试射,当礼花弹到达最高点时爆炸成沿水平方向运动的两块(爆炸时炸药质量忽略不计),测得前后两块质量之比为1:4,且炸裂时有大小为E =9000J 的化学能全部转化为了动能,则两块落地点间的距离是多少? 【答案】(1)1550N ;(2)900m 【解析】 【分析】 【详解】(1)设发射时燃烧的火药对礼花弹的平均作用力为F ,设礼花弹上升时间为t ,则:212h gt =解得6s t =对礼花弹从发射到抛到最高点,由动量定理00()0Ft mg t t -+=其中00.2s t =解得1550N F =(2)设在最高点爆炸后两块质量分别为m 1、m 2,对应的水平速度大小分别为v 1、v 2,则: 在最高点爆炸,由动量守恒定律得1122m v m v =由能量守恒定律得2211221122E m v m v =+ 其中1214m m = 12m m m =+联立解得1120m/s v =230m/s v =之后两物块做平抛运动,则 竖直方向有212h gt =水平方向有12s v t v t =+由以上各式联立解得s=900m2.如图所示,在倾角θ=37°的足够长的固定光滑斜面的底端,有一质量m =1.0kg 、可视为质点的物体,以v 0=6.0m/s 的初速度沿斜面上滑。
已知sin37º=0.60,cos37º=0.80,重力加速度g 取10m/s 2,不计空气阻力。
求: (1)物体沿斜面向上运动的加速度大小;(2)物体在沿斜面运动的过程中,物体克服重力所做功的最大值; (3)物体在沿斜面向上运动至返回到斜面底端的过程中,重力的冲量。
[基础落实练]1.对于一定质量的某物体而言,关于其动能和动量的关系,下列说法正确的是() A.物体的动能改变,其动量不一定改变B.物体动量改变,则其动能一定改变C.物体的速度不变,则其动量不变,动能也不变D.动量是标量,动能是矢量解析:物体的动能改变,则物体的速度大小一定改变,则其动量一定改变,A错误;动量表达式为p=m v,动量改变可能只是速度方向改变,其动能不一定改变,B错误;物体的速度不变,则其动量不变,动能也不变,C正确;动量是矢量,动能是标量,D错误。
答案:C2.一物体沿水平面做初速度为零的匀加速直线运动,以动量大小p为纵轴建立直角坐标系,横轴分别为速度大小v、运动时间t、位移大小x,则以下图像可能正确的是()解析:物体做初速度为零的匀加速直线运动,则速度v=at,根据动量的计算公式有p =m v=mat,可知动量与速度和时间都成正比关系,故A、B错误;根据匀变速直线运动规律有v2=2ax,根据动量的计算公式有p=m v=m2ax,根据数学知识可知C图正确,故C 正确,D错误。
答案:C3.行驶中的汽车如果发生剧烈碰撞,车内的安全气囊会被弹出并瞬间充满气体。
若碰撞后汽车的速度在很短时间内减小为零,关于安全气囊在此过程中的作用,下列说法正确的是()A.增加了司机单位面积的受力大小B.减少了碰撞前后司机动量的变化量C.将司机的动能全部转换成汽车的动能D.延长了司机的受力时间并增大了司机的受力面积解析:汽车剧烈碰撞瞬间,安全气囊弹出,立即跟司机身体接触。
司机在很短时间内由运动到静止,动量的变化量是一定的,由于安全气囊的存在,作用时间变长,据动量定理Δp=FΔt知,司机所受作用力减小;又知安全气囊打开后,司机与物体的接触面积变大,因此减少了司机单位面积的受力大小;碰撞过程中,动能转化为内能和气囊的弹性势能。
综上可知,选项D正确。
答案:D4.(2024·四川绵阳诊断)质点所受的合力F方向始终在同一直线上,大小随时间变化的情况如图所示,已知t=0时刻质点的速度为零。
动量和能量专题限时训练1建议用时40分钟,实际用时________1.如图,长度x =5m 的粗糙水平面PQ 的左端固定一竖直挡板,右端Q 处与水平传送带平滑连接,传送带以一定速率v 逆时针转动,其上表面QM 间距离为L =4m ,MN 无限长,M 端与传送带平滑连接.物块A 和B 可视为质点,A 的质量m =1.5kg,B 的质量M =5.5kg.开始A 静止在P 处,B 静止在Q 处,现给A 一个向右的初速度v 0=8m/s ,A 运动一段时间后与B 发生弹性碰撞,设A 、B 与传送带和水平面PQ 、MN 间的动摩擦因数均为μ=0.15,A 与挡板的碰撞也无机械能损失.取重力加速度g =10m/s 2,求:(1)A 、B 碰撞后瞬间的速度大小;(2)若传送带的速率为v =4m/s ,试判断A 、B 能否再相遇,若能相遇,求出相遇的位置;若不能相遇,求它们最终相距多远.解析:(1)设A 与B 碰撞前的速度为v A ,由P 到Q 过程,由动能定理得:-μmgx =12mv 2A -12mv 20①A 与B 碰撞前后动量守恒,有mv A =mv A ′+Mv B ′②由能量守恒定律得:12mv 2A =12mv A ′2+12Mv B ′2③联立①②③式得v A ′=-4m/s ,v B ′=3m/s碰后A 、B 的速度大小分别为4m/s 、3m/s(2)设A 碰撞后运动的路程为s A ,由动能定理得:-μmgs A =0-12mv A ′2④s A =163m 所以A 与挡板碰撞后再运动s A ′=s A -x =13m ⑤设B 碰撞后向右运动的距离为s B ,则-μMgs B =0-12Mv B ′2⑥解得s B =3m<L ⑦故物块B 碰后不能滑上MN ,当速度减为0后,B 将在传送带的作用下反向加速运动,B 再次到达Q 处时的速度大小为3m/s.在水平面PQ 上,B 再运动s B ′=s B =3m 停止,s B ′+s A ′<5m ,所以A 、B 不能再次相遇.最终A 、B 的距离s AB =x -s A ′-s B ′=53m.答案:(1)4m/s 3m/s (2)不能相遇53m 2.如图所示,质量为6m 、长为L 的薄木板AB 放在光滑的平台上,木板B 端与台面右边缘齐平.B 端上放有质量为3m 且可视为质点的滑块C ,C 与木板之间的动摩擦因数为μ=13,质量为m 的小球用长为L 的细绳悬挂在平台右边缘正上方的O 点,细绳竖直时小球恰好与C 接触.现将小球向右拉至细绳水平并由静止释放,小球运动到最低点时细绳恰好断裂,小球与C 碰撞后反弹速率为碰前的一半.(1)求细绳能够承受的最大拉力;(2)若要使小球落在释放点的正下方P 点,平台高度应为多大;(3)通过计算判断C 能否从木板上掉下来.解析:(1)设小球运动到最低点的速率为v 0,小球向下摆动过程,由动能定理mgL =12mv 20得,v 0=2gL 小球在圆周最低点时拉力最大,由牛顿第二定律得:F T -mg =m v 20R解得:F T =3mg由牛顿第三定律可知,小球对细绳的拉力:F T ′=F T即细绳能够承受的最大拉力为:F T ′=3mg (2)小球碰撞后做平抛运动:竖直位移h =12gt 2水平分位移:L =v 02t 解得:h =L(3)小球与滑块C C 组成的系统动量守恒,设C 碰后速率为v 1,依题意有mv 0=m -v 023mv 1假设木板足够长,在C 与木板相对滑动直到相对静止过程中,设两者最终共同速率为v 2,由动量守恒得:3mv 1=(3m +6m )v 2由能量守恒得:12·3mv 21=12(3m +6m )v 22+μ·3mgs 联立解得:s =L 2由s <L 知,滑块C 不会从木板上掉下来.答案:(1)3mg (2)h =L (3)不能3.光滑水平面上有一质量m 车=1.0kg 的平板小车,车上静置A 、B 两物块。
习题课:动量和能量的综合应用课后篇巩固提升必备知识基础练1.如图所示,木块A 、B 的质量均为2 kg,置于光滑水平面上,B 与一轻质弹簧的一端相连,弹簧的另一端固定在竖直挡板上,当A 以4 m/s 的速度向B 撞击时,由于有橡皮泥而粘在一起运动,那么弹簧被压缩到最短时,弹簧具有的弹性势能大小为( )A.4 JB.8 JC.16 JD.32 J、B 在碰撞过程中动量守恒,碰后粘在一起共同压缩弹簧的过程中机械能守恒。
由碰撞过程中动量守恒得m A v A =(m A +m B )v ,代入数据解得v=m A vAm A +m B=2 m/s,所以碰后A 、B 及弹簧组成的系统的机械能为12(m A +m B )v 2=8 J,当弹簧被压缩至最短时,系统的动能为0,只有弹性势能,由机械能守恒得此时弹簧的弹性势能为8 J 。
2.(多选)如图甲所示,在光滑水平面上,轻质弹簧一端固定,物体A 以速度v 0向右运动压缩弹簧,测得弹簧的最大压缩量为x 。
现让弹簧一端连接另一质量为m 的物体B (如图乙所示),物体A 以2v 0的速度向右压缩弹簧,测得弹簧的最大压缩量仍为x ,则( )A.A 物体的质量为3mB.A 物体的质量为2mC.弹簧达到最大压缩量时的弹性势能为32mv 02 D.弹簧达到最大压缩量时的弹性势能为m v 02,设物体A 的质量为M ,由机械能守恒定律可得,弹簧压缩量为x 时弹性势能E p =12Mv 02;对题图乙,物体A 以2v 0的速度向右压缩弹簧,A 、B 组成的系统动量守恒,弹簧达到最大压缩量时,A 、B 二者速度相等,由动量守恒定律有M×(2v 0)=(M+m )v ,由能量守恒定律有E p =12M×(2v 0)2-12(M+m )v 2,联立解得M=3m ,E p =12M×v 02=32mv 02,A 、C 正确,B 、D 错误。
3.如图所示,带有半径为R 的14光滑圆弧的小车的质量为m 0,置于光滑水平面上,一质量为m 的小球从圆弧的最顶端由静止释放,求小球离开小车时,小球和小车的速度。
高中物理动量定理及其解题技巧及练习题(含答案)及解析一、高考物理精讲专题动量定理1.2022年将在我国举办第二十四届冬奥会,跳台滑雪是其中最具观赏性的项目之一.某滑道示意图如下,长直助滑道AB 与弯曲滑道BC 平滑衔接,滑道BC 高h =10 m ,C 是半径R =20 m 圆弧的最低点,质量m =60 kg 的运动员从A 处由静止开始匀加速下滑,加速度a =4.5 m/s 2,到达B 点时速度v B =30 m/s .取重力加速度g =10 m/s 2. (1)求长直助滑道AB 的长度L ;(2)求运动员在AB 段所受合外力的冲量的I 大小;(3)若不计BC 段的阻力,画出运动员经过C 点时的受力图,并求其所受支持力F N 的大小.【答案】(1)100m (2)1800N s ⋅(3)3 900 N 【解析】(1)已知AB 段的初末速度,则利用运动学公式可以求解斜面的长度,即2202v v aL -=可解得:221002v v L m a-==(2)根据动量定理可知合外力的冲量等于动量的该变量所以01800B I mv N s =-=⋅(3)小球在最低点的受力如图所示由牛顿第二定律可得:2Cv N mg m R-= 从B 运动到C 由动能定理可知:221122C B mgh mv mv =-解得;3900N N =故本题答案是:(1)100L m = (2)1800I N s =⋅ (3)3900N N =点睛:本题考查了动能定理和圆周运动,会利用动能定理求解最低点的速度,并利用牛顿第二定律求解最低点受到的支持力大小.2.图甲为光滑金属导轨制成的斜面,导轨的间距为1m l =,左侧斜面的倾角37θ=︒,右侧斜面的中间用阻值为2R =Ω的电阻连接。
在左侧斜面区域存在垂直斜面向下的匀强磁场,磁感应强度大小为10.5T B =,右侧斜面轨道及其右侧区域中存在竖直向上的匀强磁场,磁感应强度为20.5T B =。
动量和能量一、知识扫描(1)统动量守恒的条件是系统所受,系统机械能守恒的条件是。
(2)系统内的物体发生两次或两次以上相互作用时,只要系统所受合外力为零,在任一相互作用过程中,系统的动量均守恒。
系统的初动量和末动量一定相等,但每次相互作用均可能有动能损失,因而往往要逐次研究相互作用中的动能变化。
(3)系统沿x轴方向所受合外力为零,而沿y轴(y⊥x)方向合外力不为零时,系统总动量,但沿x轴方向,系统动量。
二、好题精析例1.如图6-4-1所示,在光滑的水平杆上套者一个质量为m的滑环,滑环上通过一根不可伸缩的轻绳悬吊着质量为M的物体(可视为质点),绳长为L。
将滑环固定时,给物块一个水平冲量,物块摆起后刚好碰到水平杆,若滑环不固定,仍给物块以同样的水平冲量,求物块摆起的最大高度。
图6-4-1例2.质量为m的子弹,以水平初速度v0射向质量为M的长方体木块。
(1)设木块可沿光滑水平面自由滑动,子弹留在木块内,木块对子弹的阻力恒为f,求弹射入木块的深度L。
并讨论:随M的增大,L如何变化?(2)设v0=900m/s,当木块固定于水平面上时,子弹穿出木块的速度为v1=100m/s。
若木块可沿光滑水平面自由滑动,子弹仍以v0=900m/s的速度射向木块,发现子弹仍可穿出木块,求M/m的取值范围(两次子弹所受阻力相同)。
例3.如图6-4-3,在光滑水平桌面上,物体A和B用轻弹簧连接,另一物体C靠在B左侧未连接,它们的质量分别为m A=0.2kg,m B=m C=0.1kg。
现用外力将B、C和A压缩弹簧,外力做功为7.2J,弹簧仍在弹性限度内然后由静止释放。
试求:(1)弹簧伸长最大时弹簧的弹性势能;(2)弹簧从伸长最大回复到自然长度时,A 、B 速度的大小。
例4.如图6-4-4所示,有一半径为R 的半球形凹槽P ,放在光滑的水平地面上,一面紧靠在光滑墙壁上,在槽口上有一质量为m 的小球,由A 点静止释放,沿光滑的球面滑下,经最低点B 又沿球面上升到最高点C ,经历的时间为t ,B 、C 两点高度差为0.6R ,求(1)小球到达C 点的速度。
动量和能量观念在力学中的应用1.如图甲所示,质量m=6 kg的空木箱静止在水平面上,某同学用水平恒力F推着木箱向前运动,1 s 后撤掉推力,木箱运动的v .t图像如图乙所示,不计空气阻力,g取10 m/s2。
下列说法正确的是()A.木箱与水平面间的动摩擦因数μ=0。
25B.推力F的大小为20 NC.在0~3 s内,木箱克服摩擦力做功为900 JD.在0.5 s时,推力F的瞬时功率为450 W解析撤去推力后,木箱做匀减速直线运动,由速度—时间图线知,匀减速直线运动的加速度大小a2=错误! m/s2=5 m/s2,由牛顿第二定律得,a2=错误!=μg,解得木箱与水平面间的动摩擦因数μ=0.5,故A错误;匀加速直线运动的加速度大小a1=错误! m/s2=10 m/s2,由牛顿第二定律得,F-μmg=ma1,解得F=μmg+ma1=0。
5×60 N+6×10 N=90 N,故B错误;0~3 s内,木箱的位移x=错误!×3×10 m=15 m,则木箱克服摩擦力做功W f=μmgx=0。
5×60×15 J=450 J,故C错误;0。
5 s时木箱的速度v=a1t1=10×0。
5 m/s=5 m/s,则推力F的瞬时功率P=Fv=90×5 W=450 W,故D正确.答案D2.(2019·湖南株洲二模)如图,长为l的轻杆两端固定两个质量相等的小球甲和乙(小球可视为质点),初始时它们直立在光滑的水平地面上。
后由于受到微小扰动,系统从图示位置开始倾倒。
当小球甲刚要落地时,其速度大小为()A.错误!B.错误!C.错误!D.0解析甲、乙组成的系统水平方向动量守恒,以向右为正方向,在水平方向,由动量守恒定律得mv-mv′=0,由于甲球落地时,水平方向速度v=0,故v′=0,由机械能守恒定律得错误!mv错误!=mgl,解得v甲=2gl,故A正确.答案A3。
高考物理知识归纳(三) ---------------动量和能量1.力的三种效应:力的瞬时性(产生a )F=ma 、⇒运动状态发生变化⇒牛顿第二定律 时间积累效应(冲量)I=Ft 、⇒动量发生变化⇒动量定理 空间积累效应(做功)w=Fs ⇒动能发生变化⇒动能定理2.动量观点:动量:p=mv=KmE 2 冲量:I = F t动量定理:内容:物体所受合外力的冲量等于它的动量的变化。
公式: F 合t = mv ’一mv (解题时受力分析和正方向的规定是关键)I=F 合t=F 1t 1+F 2t 2+---=∆p=P 末-P 初=mv 末-mv 初动量守恒定律:内容、守恒条件、不同的表达式及含义:'p p =;0p =∆;21p -p ∆=∆P =P ′ (系统相互作用前的总动量P 等于相互作用后的总动量P ′) ΔP =0(系统总动量变化为0)如果相互作用的系统由两个物体构成,动量守恒的具体表达式为P 1+P 2=P 1′+P 2′ (系统相互作用前的总动量等于相互作用后的总动量) m 1V 1+m 2V 2=m 1V 1′+m 2V 2′ ΔP =-ΔP '(两物体动量变化大小相等、方向相反)实际中应用有:m 1v 1+m 2v 2='22'11v m v m +; 0=m 1v 1+m 2v 2 m 1v 1+m 2v 2=(m 1+m 2)v 共原来以动量(P)运动的物体,若其获得大小相等、方向相反的动量(-P),是导致物体静止或反向运动的临界条件。
即:P+(-P)=0注意理解四性:系统性、矢量性、同时性、相对性矢量性:对一维情况,先选定某一方向为正方向,速度方向与正方向相同的速度取正,反之取负,把矢量运算简化为代数运算。
相对性:所有速度必须是相对同一惯性参照系。
同时性:表达式中v 1和v 2必须是相互作用前同一时刻的瞬时速度,v 1’和v 2’必须是相互作用后同一时刻的瞬时速度。
高三高考物理二轮复习资料2 动量和能量动量和能量是高三物理二轮复习的重要内容之一。
本文将详细介绍动量和能量的概念、公式和应用,并提供一些复习资料供参考。
一、动量的概念和公式动量是物体运动状态的量度,表示物体运动的惯性大小。
动量的公式为:动量(p)= 质量(m) ×速度(v)。
动量的单位是千克·米/秒(kg·m/s)。
二、动量守恒定律动量守恒定律是指在没有外力作用下,一个系统的总动量在运动过程中保持不变。
这意味着系统中各个物体的动量之和保持恒定。
根据动量守恒定律,我们可以解决一些与碰撞有关的问题。
三、碰撞碰撞是指物体之间发生直接接触或间接作用力的过程。
根据碰撞过程中动量守恒定律,我们可以分为完全弹性碰撞和完全非弹性碰撞。
1. 完全弹性碰撞完全弹性碰撞是指碰撞后物体之间没有能量损失的碰撞。
在完全弹性碰撞中,动量守恒定律和动能守恒定律同时成立。
根据动量守恒定律和动能守恒定律,我们可以解决完全弹性碰撞问题。
2. 完全非弹性碰撞完全非弹性碰撞是指碰撞后物体之间有能量损失的碰撞。
在完全非弹性碰撞中,动量守恒定律成立,但动能守恒定律不成立。
根据动量守恒定律,我们可以解决完全非弹性碰撞问题。
四、能量的概念和公式能量是物体具有的做功能力,是物体运动和变化的基本原因。
常见的能量形式包括动能和势能。
1. 动能动能是物体由于运动而具有的能量。
动能的公式为:动能(KE)= 1/2 ×质量(m) ×速度的平方(v²)。
动能的单位是焦耳(J)。
2. 势能势能是物体由于位置或形状而具有的能量。
常见的势能形式包括重力势能、弹性势能和化学能等。
势能的公式根据具体情况而定。
五、能量守恒定律能量守恒定律是指在一个封闭系统中,能量总量在运动过程中保持不变。
根据能量守恒定律,我们可以解决一些与能量转化和能量损失有关的问题。
六、动量和能量的应用动量和能量的概念和公式在实际生活中有广泛的应用。
八、动量与能量一、知识网络1.动量2.机械能二、画龙点睛规律1.两个“定理”(1)动量定理:F·t=Δp矢量式(力F在时间t上积累,影响物体的动量p)(2)动能定理:F·s=ΔE k 标量式(力F在空间s上积累,影响物体的动能E k)动量定理与动能定理一样,都是以单个物体为研究对象.但所描述的物理内容差别极大.动量定理数学表达式:F合·t=Δp,是描述力的时间积累作用效果——使动量变化;该式是矢量式,即在冲量方向上产生动量的变化.例如,质量为m的小球以速度v0与竖直方向成θ角打在光滑的水平面上,与水平面的接触时间为Δt,弹起时速度大小仍为v0且与竖直方向仍成θ角,如图所示.则在Δt内:以小球为研究对象,其受力情况如图所示.可见小球所受冲量是在竖直方向上,因此,小球的动量变化只能在竖直方向上.有如下的方程:F′·Δt-mgΔt=mv0cosθ-(-mv0cosθ)击小球水平方向上无冲量作用,从图中可见小球水平方向动量不变.综上所述,在应用动量定理时一定要特别注意其矢量性.应用动能定理时就无需作这方面考虑了.Δt内应用动能定理列方程:W合=mυ02/2-mυ02 /2 =02.两个“定律”(1)动量守恒定律:适用条件——系统不受外力或所受外力之和为零公式:m1v1+m2v2=m1v1′+m2v2 ′或p=p′(2)机械能守恒定律:适用条件——只有重力(或弹簧的弹力)做功公式:E k2+E p2=E k1+E p1或ΔE p= -ΔE k3.动量守恒定律与动量定理的关系动量守恒定律的数学表达式为:m1v1+m2v2=m1v1′+m2v2′,可由动量定理推导得出.如图所示,分别以m1和m2为研究对象,根据动量定理:F1Δt= m1v1′- m1v1①F2Δt= m2v2′- m2v2②F1=-F2③∴m1v1+m2v2=m1v1′+m2v2′可见,动量守恒定律数学表达式是动量定理的综合解.动量定理可以解决动量守恒问题,只是较麻烦一些.因此,不能将这两个物理规律孤立起来.4.动能定理与能量守恒定律关系——理解“摩擦生热”(Q=f·Δs) 设质量为m2的板在光滑水平面上以速度υ2运动,质量为m1的物块以速度υ1在板上同向运动,且υ1>υ2,它们之间相互作用的滑动摩擦力大小为f,经过一段时间,物块的位移为s1,板的位移s2,此时两物体的速度变为υ′1和υ′2由动能定理得:-fs 1=m 1υ1′2/2-m 1υ12/2 ①fs 2=m 2υ2′2/2-m 2υ22/2 ②在这个过程中,通过滑动摩擦力做功,机械能不断转化为内能,即不断“生热”,由能量守恒定律及①②式可得:Q =(m 1υ12/2+m 2υ22/2)-(m 1υ1′2/2-m 2υ2′2/2)=f (s 1-s 2)= f ·Δs ③由此可见,在两物体相互摩擦的过程中,损失的机械能(“生热”)等于摩擦力与相对位移的乘积。
特别要指出,在用Q = f ·Δs 计算摩擦生热时,正确理解是关键。
这里分两种情况:(1)若一个物体相对于另一个物体作单向运动,Δs 为相对位移;(2)若一个物体相对于另一个物体作往返运动,Δs 为相对路程。
5.相互作用中的动量与能量,三类碰撞中能量的变化:(1)完全非弹性碰撞:动量守恒,机械能损失最大(2)完全弹性碰撞:动量守恒,机械能也守恒。
设两物体发生完全弹性碰撞,其中m 1以v 1匀速运动,m 2静止。
据⎪⎩⎪⎨⎧++=+=''''222211211221111212121v m v m v m v m v m v m可得⎪⎪⎩⎪⎪⎨⎧+='+-='2112121212m m m v m m m m v 讨论:(a)当m 1>m 2时,v 1′与v 1方向一致;(b)当m 1=m 2时,v 1′=0,v 2′=v 1,即m 1与m 2交换速度(c)当m 1<m 2时,v 1′反向,v 2′与v 1同向。
(3)非完全弹性碰撞:为一般情况,只有动量守恒,机械能有损失,损失量不最大,亦不最小。
6. 功和能的关系例题: 质量为M 的楔形物块上有圆弧轨道,静止在水平面上。
质量为m 的小球以速度v 1向物块运动。
不计一切摩擦,圆弧小于90°且足够长。
求小球能上升到的最大高度H 和物块的最终速度v 。
解析: 解析:系统水平方向动量守恒,全过程机械能也守恒。
在小球上升过程中,由水平方向系统动量守恒得:()v m M mv '+=1 由系统机械能守恒得:()mgH v m M mv +'+=2212121 解得()g m M Mv H +=221全过程系统水平动量守恒,机械能守恒,得12v m M m v +=本题和上面分析的弹性碰撞基本相同,唯一的不同点仅在于重力势能代替了弹性势能。
例题:动量分别为5kg ∙m/s 和6kg ∙m/s 的小球A 、B 沿光滑平面上的同一条直线同向运动,A 追上B 并发生碰撞后。
若已知碰撞后A 的动量减小了2kg ∙m/s ,而方向不变,那么A 、B 质量之比的可能范围是什么? 解析:A 能追上B ,说明碰前v A >v B ,∴B A m m 65>;碰后A 的速度不大于B 的速度, B A m m 83≤;又因为碰撞过程系统动能不会增加,B A B A m m m m 282326252222+≥+,由以上不等式组解得:7483≤≤B A m m 此类碰撞问题要考虑三个因素:①碰撞中系统动量守恒;②碰撞过程中系统动能不增加;③碰前、碰后两个物体的位置关系(不穿越)和速度大小应保证其顺序合理。
例题:设质量为m 的子弹以初速度v 0射向静止在光滑水平面上的质量为M 的木块,并留在木块中不再射出,子弹钻入木块深度为d 。
求木块对子弹的平均阻力的大小和该过程中木块前进的距离。
解析:子弹和木块最后共同运动,相当于完全非弹性碰撞。
从动量的角度看,子弹射入木块过程中系统动量守恒:()v m M mv +=0从能量的角度看,该过程系统损失的动能全部转化为系统的内能。
设平均阻力大小为f ,设子弹、木块的位移大小分别为s 1、s 2,如图所示,显然有s 1-s 2=d对子弹用动能定理:22012121mv mv s f -=⋅ ……① 对木块用动能定理:2221Mv s f =⋅ ……② ①、②相减得:()()2022022121v m M Mm v m M mv d f +=+-=⋅ ……③ 这个式子的物理意义是:f d 恰好等于系统动能的损失;根据能量守恒定律,系统动能的损失应该等于系统内能的增加;可见Q d f =⋅,即两物体由于相对运动而摩擦产生的热(机械能转化为内能),等于摩擦力大小与两物体相对滑动的路程的乘积(由于摩擦力是耗散力,摩擦生热跟路径有关,所以这里应该用路程,而不是用位移)。
由上式不难求得平均阻力的大小:()d m M Mmv f +=220至于木块前进的距离s 2,可以由以上②、③相比得出:d m M m s +=2从牛顿运动定律和运动学公式出发,也可以得出同样的结论。
由于子弹和木块都在恒力作用下做匀变速运动,位移与平均速度成正比:()d m M m s m m M v v s d v v v v v v s d s +=+==∴+=+=+2020022,,2/2/一般情况下m M >>,所以s 2<<d 。
这说明,在子弹射入木块过程中,木块的位移很小,可以忽略不计。
这就为分阶段处理问题提供了依据。
象这种运动物体与静止物体相互作用,动量守恒,最后共同运动的类型,全过程动能的损失量可用公式:()202v m M Mm E k +=∆…④ 当子弹速度很大时,可能射穿木块,这时末状态子弹和木块的速度大小不再相等,但穿透过程中系统动量仍然守恒,系统动能损失仍然是ΔE K = f d (这里的d 为木块的厚度),但由于末状态子弹和木块速度不相等,所以不能再用④式计算ΔE K 的大小。
做这类题目时一定要画好示意图,把各种数量关系和速度符号标在图上,以免列方程时带错数据。
以上所列举的人、船模型的前提是系统初动量为零。
如果发生相互作用前系统就具有一定的动量,那就不能再用m 1v 1=m 2v 2这种形式列方程,而要利用(m 1+m 2)v 0= m 1v 1+ m 2v 2列式。
例题:在距地面高为h ,同时以相等初速V 0分别平抛,竖直上抛,竖直下抛一质量相等的物体m ,当它们从抛出到落地时,比较它们的动量的增量△P ,有[ ]A .平抛过程较大B .竖直上抛过程较大C .竖直下抛过程较大D .三者一样大的。
解析:1.由动量变化图中可知,△P 2最大,即竖直上抛过程动量增量最大,所以应选B 。
2、由动量定理可知I 合=ΔP ,而I 合=mgt ,竖起上抛过程t 2为最大)(22h H g g v t m o ++=,而mg 均相同。
所以ΔI 2为最大。
正确答案为B【小结】 对于动量变化问题,一般要注意两点:(1)动量是矢量,用初、末状态的动量之差求动量变化,一定要注意用矢量的运算法则,即平行四边形法则。
(2) 由于矢量的减法较为复杂,如本题解答中的第一种解法,因此对于初、末状态动量不在一条直线上的情况,通常采用动量定理,利用合外力的冲量计算动量变化。
如本题解答中的第二种解法,但要注意,利用动量定理求动量变化时,要求合外力一定为恒力。
例题: 向空中发射一物体.不计空气阻力,当物体的速度恰好沿水平方向时,物体炸裂为a,b 两块.若质量较大的a 块的速度方向仍沿原来的方向则 [ ]A .b 的速度方向一定与原速度方向相反B .从炸裂到落地这段时间里,a 飞行的水平距离一定比b 的大C .a ,b 一定同时到达地面D .炸裂的过程中,a 、b 中受到的爆炸力的冲量大小一定相等 解析: 物体炸裂过程发生在物体沿水平方向运动时,由于物体沿水平方向不受外力,所以沿水平方向动量守恒,根据动量守恒定律有:(m A +m B )v = m A v A +m B v B当v A 与原来速度v 同向时,v B 可能与v A 反向,也可能与v A 同向,第二种情况是由于v A 的大小没有确定,题目只讲的质量较大,但若v A 很小,则m A v A 还可能小于原动量(m A +m B )v 。
这时,v B 的方向会与v A 方向一致,即与原来方向相同所以A 不对。
a ,b 两块在水平飞行的同时,竖直方向做自由落体运动即做平抛运运动,落地时间由g ht 2 决定。
因为h 相等,所以勤务地时间一定相等,所以选项C 是正确的由于水平飞行距离x = v ·t ,a 、b 两块炸裂后的速度v A 、v B 不一定相等,而落地时间t又相等,所以水平飞行距离无法比较大小,所以B不对。