爆生气体作用下岩石裂纹的扩展机理
- 格式:pdf
- 大小:1.43 MB
- 文档页数:6
爆破破岩机理【转发】:一、爆生气体膨胀压力作用破坏论Kutter和Hagan从静力学的观点出发,提出了“气楔作用”(PneumaticWedgtng)这种假说,认为炸药爆炸后产生的高温高压的气体,由于膨胀而产生的推力作用在炸药周围的岩壁上,引起岩体质点的径向位移,从而在岩体中形成剪切应力。
当这种剪切应力超过岩体的极限抗剪强度时,就会引起岩体的破坏。
当爆生气体的膨胀推力足够大时,还会引起自由面附近的岩体隆起、鼓开并沿径向方向抛掷。
这种假说认为,动能仅占炸药总能量的5%~15%,绝大部分能量包含在爆生气体产物中,另一方面,岩体爆破时岩石发生破裂和破碎所需的时间小于爆生气体作用于岩体的时间。
二、应力波反射拉伸作用破坏论以Coates和Hin。
为代表的这种假说,从爆轰动力学的观点出发,认为炸药爆炸后,强大的冲击波冲击和压缩周围的岩体,在岩体中激发出强烈的压缩应力波。
当压缩应力波传播到自由面时,从自由面处反射而形成拉伸波。
当拉伸波的强度超过岩体的极限抗拉强度时,从自由面处开始向爆源方向产生拉伸片裂作用。
三、应力波和爆生气体联合作用破坏论以Fairhurst为代表的这种假说认为,爆破时岩体的破坏是应力波和爆生气体共同作用的结果。
但在解释破碎岩体的主导原因时存在不同观点。
一种观点认为,应力波在破碎岩体时不起主导作用,只是在形成初始径向裂隙时起先锋作用,岩体的破碎主要依靠爆生气体的膨胀推力和尖劈作用;另一种观点则认为,爆破时破碎岩体的主导作用取决于岩体的性质,即取决于岩体的波阻抗。
对于波阻抗为(10一15)× 10^5g/(cm^2.s)的高波阻抗的岩体,即极致密坚韧的岩体,爆炸应力波在其中的传播性能好,波速高。
爆破时岩体的破碎主要由应力波引起。
对于波阻抗为(2一5)× 10^5 g/(cm^2. s) 低波阻抗的松软而具有塑性的岩体,爆炸应力波在其中的传播性能较差,波速低,爆破时岩体的破碎主要依靠爆生气体的膨胀压力;对于波阻抗为(5~10)× 10 ^5g/〈cm^2.S )的中等波阻抗的中等坚硬的岩体,应力波和爆生气体同样起重要作用。
培训笔记(三)——破岩机理一、破岩过程一阶段:炸药爆炸阶段二阶段:冲击波反射阶段三阶段:气体膨胀阶段二、破岩理论1.爆炸气体产物膨胀压力破坏理论:岩石主要由于装药空间内爆炸气体产物的压力作用而破坏。
2.冲击波引起应力波反射破坏理论:岩石的破坏主要是由自由面上应力波反射转变成的拉应力波造成的。
3.爆炸气体膨胀压力和冲击波所引起的应力波共同作用理论:爆破时岩石的破坏是爆炸气体和冲击波共同作用的结果,它们各自在岩石破坏过程的不同阶段起重要作用。
三、波阻抗:即岩石密度与冲击波在岩石中传播速度的乘积。
岩石按波阻抗值分为三类:1、岩石波阻抗为10X105~25X105(g/cm2·s);2、岩石波阻抗为5X105~10X105(g/cm2·s);3、岩石波阻抗为2X105~5X105(g/cm2·s)。
四、爆破内部作用1.压缩区受到爆炸冲击波的强动作用,炮孔壁周围的介质被粉碎或强烈压缩,形成压缩区或粉碎区成压缩区或粉碎区。
2.破碎区爆炸冲击波在岩石中形成新鲜裂纹或激活原生裂纹,爆炸气体的高压气楔作用,对裂纹进行扩展,形成破碎区。
3.震动区在破坏区以外的岩体,只发生弹性震动。
五、爆破漏斗:当药包产生外部作用时,在地表会形成一个爆破坑,称为爆破漏斗。
1、爆破漏斗的构成要素(1)自由面;(2)最小抵抗线;(3)爆破漏斗底圆半径;(4)爆破作用半径;(5)爆破漏斗深度;(6)爆破漏斗可见深度;(7)爆破漏斗张开角。
图7-6 爆破漏斗2、爆破作用指数n=r/W在最小抵抗线相同的情况下,爆破作用愈强,爆破漏斗底圆半径愈大。
根据n的大小爆破漏斗分为:(1)标准抛掷(n=1);(2)加强抛掷(n>1);(3)减弱抛掷(0.75<n<1);(4)松动爆破(0<n<0.75)。
爆炸的动静作用破岩与动态裂纹扩展机理研究岩石的爆破理论包括两部分:一是爆炸应力波的动态作用,二是爆生气体的准静态作用。
目前我们认为岩石的爆炸破岩是两者共同作用的结果,只是在不同的爆破参数和装药条件下两者各自的作用程度不同而已。
因此,在研究岩石爆破破岩机理时必须同时考虑到两者对岩石破碎的不同贡献,提高精细化控制爆破效果,深化爆破理论。
基于上述考虑,本文单独分别对爆炸应力波的动作用和爆生气体的准静态作用进行试验研究,同时结合DLSM数值模拟,对动态裂纹的扩展过程进行分析。
课题的研究成果将为定向断裂控制爆破提供理论基础。
本文的研究内容主要包括以下几个方面:1.基于NSCB测试方法,利用霍普金森杆试验系统,同时结合高速摄影、DLSM数值分析、SEM电镜扫描、P波波速测量等技术手段,研究了砂岩等几种典型岩石类材料的在常规及特殊状态下的动态断裂韧度,发现:岩石类材料的动态断裂韧度表现出明显的加载率依赖性,随着加载率的增大,岩石的动态断裂韧度呈逐渐增大的趋势。
试验中发现,相同加载率的条件下,花岗岩的断裂韧度最高,煤的断裂韧度最低,砂岩和泥岩较为接近,有机玻璃的断裂韧度低于3种岩石但高于煤。
DLSM数值分析也得到与试验类似的结果,但加载面对测试结果有着重要的影响,理想的线性加载并不适用于岩石类材料动态断裂韧度测试研究,自由面加载和5mm面加载时的数值计算结果能够与试验较好的吻合。
同时,底端支座的约束条件也会对测试产生影响。
高温处理后砂岩的断裂韧度测试中发现,在同一个热处理温度时,断裂韧度随加载率的变化成线性增加的趋势。
特别的,加载率较低时,各个热处理温度时的断裂韧度值较为接近,但加载率较高时,断裂韧度值则有较大差别,断裂韧度-加载率曲线的斜率随热处理温度的升高而减小。
含层理煤的动态断裂韧度测试发现,随着节理倾角的增大,“动态断裂韧度”有减小的趋势,但并不是呈线性递减的关系。
天然的层理结构分布并不均匀,其赋存状态及其矿物构成不一,这些都会对测试结果带来影响。
1.岩石爆破破坏原因的理论学说和破坏过程。
理论1“爆生气体膨胀作用理论:炸药爆炸引起岩石破坏,主要是高温高压气体产物对岩石膨胀做功的结果;2爆炸应力波反射拉伸作用理论:岩石的破坏主要是由于岩石中爆炸应力波在自由面反射后形成反射拉伸波的作用,岩石中的拉应力大于其抗拉强度二产生的,岩石是被拉断的;3爆生气体和应力波综合作用理论:实际爆破中,爆生气体膨胀和爆炸应力波都对岩石破坏起作用,不能绝对分开,而应该是两种作用综合的结果,因而加强了岩石破碎效果,比如冲击波对岩石的破碎,作用时间短,而爆生气体的作用时间长,爆生气体膨胀促进了裂隙的发展,同样,反射拉伸波也同样加强了径向裂隙的扩展。
过程1.炮孔周围岩石的压碎作用2.景象裂隙作用3。
卸载引起的岩石内部环状裂隙作用 4。
反射拉伸引起的“片落”和引起径向裂隙的延伸 5。
爆炸气体扩展应力波所产生的裂隙。
2。
巷道掘进爆破中炮眼形式:掏槽眼:用于爆出新自由面,为辅助眼/周边眼爆破创造有利条件,直接影响循环进尺,掘进效果;周边眼:控制爆破后的巷道断面形状、大小和轮廓,使之符合设计要求;(顶眼、底眼、周边眼)辅助眼:破碎岩石的主要炮眼,利用掏槽眼爆破后创造的平行于炮眼的自由面,爆破条件大大改善;3.中深孔爆破设计的基本内容:确定台阶高度,网孔参数,装药结构,装填长度,起爆方法,起爆顺序,炸药的单位消耗量4炸药爆炸与燃烧区别燃烧与爆炸传播速度截然不同,燃烧几毫米到几百米每秒,亚音速,爆炸通常几千米每秒1。
从传播连续进行的机理来看,燃烧的能量通过热传导,辐射和气体产物的扩散传到下一层炸药,激起未反应炸药产生化学反应,是燃烧连续进行,爆炸,能量以压缩波的形式提供给前沿冲击波,维持前沿冲击波的强度,然后前沿冲击波冲击压缩激起下一层炸药进行化学反应,是爆轰连续进行;2从反应产物的压力来看,燃烧产物压力很低,对外界显示不出力的作用,爆炸产物有强烈的力效应3从反应产物质点运动方向,燃烧产物质点运动方向与燃烧传播的方向相反,二爆炸产物质点运动方向与爆炸传播方向相同;4从炸药本身条件,燃烧随装药密度的增加,燃烧速度下降,而爆轰速度随密度增加而增加;5从外界条件,燃烧易受外界压力和初温影响,爆炸基本不受外界条件影响;5氧平衡:指炸药中所含的氧用以完全氧化其所含的可燃元素后氧的剩余情况的衡量指标。
定向断裂控制爆破技术的应用摘要:文中介绍了岩石定向断裂控制爆破技术的研究成果, 提出爆破参数的设计要点,及其操作要点关键词:爆破技术断裂裂纹中图分类号: p633.2文献标识码: a 文章编号:前言在爆破作用的前期控制微裂纹的数量和优势的发展方向, 在实际应用中还不能消除对巷道周边围岩的破坏, 仍存在一些较严重的超欠挖现象, 浪费大量爆破和喷浆材料, 影响掘进效率, 增加工程成本。
采用聚能管改变周边眼装药方式和方法的定向断裂控制爆破技术克服了以上不足。
( 1)传统的光面爆破对围岩有较大的破坏作用, 普遍存在巷道成形效果差, 围岩破坏严重, 严重影响岩巷掘进的循环进尺及岩巷掘进成本。
( 2)应用岩巷定向断裂控制爆破技术, 合理确定周边眼的眼距和装药量, 通过科学合理的施工组织, 可有效地控制巷道成形, 保护围岩, 并降低工程成本, 加快工程进度。
一、技术原理( 1)传统的光面爆破对围岩有较大的破坏作用, 普遍存在巷道成形效果差, 围岩破坏严重, 严重影响岩巷掘进的循环进尺及岩巷掘进成本。
( 2)应用岩巷定向断裂控制爆破技术, 合理确定周边眼的眼距和装药量, 通过科学合理的施工组织, 可有效地控制巷道成形, 保护围岩, 并降低工程成本, 加快工程进度。
在爆破作用的前期控制微裂纹的数量和优势的发展方向, 在实际应用中还不能消除对巷道周边围岩的破坏, 仍存在一些较严重的超欠挖现象, 浪费大量爆破和喷浆材料, 影响掘进效率, 增加工程成本。
采用聚能管改变周边眼装药方式和方法的定向断裂控制爆破技术克服了以上不足。
定向断裂控制爆破技术原理, 就是利用聚能管改变巷道周边眼装药方式及方法, 以获得好的爆破效果。
即在周边眼装药时, 将炸药放在利用abs 塑料制成的聚能管内, 对炮孔实行不耦合装药, 使聚能管本身对爆轰力产生瞬时抑制和导向作用, 并通过切缝提供瞬态卸压空间, 使爆轰压力在切缝处形成高能流, 集中在巷道轮廓线方向优先产生裂隙并定向扩展, 形成断裂面, 从而实现周边眼的控制爆破获得良好的爆破效果。
爆生气体作用下岩石开裂机理数值模拟研究的开题报告一、研究背景和意义近年来,随着能源需求的不断增加,地下储层的开采成为了一项重要的任务。
在开采过程中,需要使用各种技术手段来加速储层的释放和采集。
其中,岩石开裂技术是一种非常有效的采集技术,已经得到了广泛的应用。
然而,在岩石开裂技术中,爆炸生气体作用是一种非常重要的物理过程。
它的目的就是通过爆炸产生的高压气体波来破坏储层中的岩石,使得采矿更加容易。
为了更好地理解这一过程,需要对爆生气体作用下岩石开裂机理进行深入的研究和数值模拟。
本研究的意义在于探究爆生气体作用下岩石开裂机理的数值模拟过程。
通过模拟,可以得到不同爆炸参数下的岩石裂缝分布情况和裂缝形态,为相关工程提供参考。
二、研究内容和关键步骤本研究的主要内容是爆生气体作用下岩石开裂机理的数值模拟。
具体研究步骤如下:1.建立数学模型。
根据爆炸生气体作用的物理机制,建立合理的数学模型。
对岩石材料的力学特性进行分析,确定相关参数。
2.选择数值模拟方法。
通过对比分析不同的计算方法(如有限元法、粒子法等),选择最适合该研究的数值模拟方法。
3.模拟和分析。
根据建立的数学模型和选择的数值模拟方法,对爆生气体作用下岩石开裂过程进行模拟。
对结果进行分析,包括裂缝形态、裂缝数量等参数,以及与实际工程需求的匹配情况。
4.优化和改进。
通过对模拟结果的分析,不断优化和改进数学模型和计算方法,提高模拟精度和可靠性。
三、预期研究成果本研究预期的成果为:1.建立了针对爆生气体作用下岩石开裂机理的数学模型,并选择了最适合该研究的数值模拟方法。
2.通过数值模拟,得到不同爆炸参数下的岩石裂缝分布情况和裂缝形态。
从中可以确定最适合实际工程需求的爆炸参数。
3.通过对模拟结果的分析和不断改进,提高了数值模拟的可靠性和精度,为相关工程提供了较为准确的参考。
四、研究计划和时间安排本研究的时间大致分为以下几个阶段:第一阶段(3个月):查阅相关文献,了解爆炸生气体作用下岩石开裂机理研究的国内外现状,建立初步的研究框架和数学模型。
关于岩石爆破破碎机理及影响爆破作用的因素班级:____________姓名:____________学号:____________指导教师:__________关于岩石爆破破碎机理及影响爆破作用的因素摘要:岩石爆破破坏是一个高温、高压、高速的瞬态过程,在几十微秒到几十毫秒之内即完成。
使得研究岩石爆破破碎机理变得困难,所提出的各种破岩理论还只能算是假说。
关键词:岩石爆破、压力膨胀、冲击波1.岩石爆破破碎机理研究的问题1.1岩石爆破破碎机理研究的主要内容(1)炸药爆炸释放的能量是通过何种形式作用在岩石上;(2)岩石在这种能量作用下处于什么样的应力状态;(3)岩石在这种应力状态中怎么发生破坏、变形和运动的。
(4)影响岩石破坏的因素。
(5)炸药装药量和爆破效果关系。
1.2岩石爆破破碎机理研究存在的主要困难(1)炸药爆炸荷载复杂性:高速、高温、高压、高能量密度荷载(2)岩体本身的复杂性:不均质性,各向异性,非连续,非线性(3)爆破施工工艺多样性2.岩石爆破破碎的主因破碎岩石时炸药能量以两种形式释放出来,一种是冲击波,一种是爆炸气体。
但是,岩石破碎的主要原因是冲击波作用的结果还是爆炸气体作用的结果,由于认识和掌握资料的不同,便出现了不同的结果。
2.1爆炸气体产物膨胀压力破坏理论2.1.1爆炸气体产物膨胀压力破坏理论基本观点1953年以前,该派观点在爆破界极为流行。
从静力学观点出发,认为药包爆炸后,产生大量高温、高压气体,这种气体膨胀时所产生的推力作用在药包周围的岩壁上,引起岩石质点的径向位移,由于作用力不等引起的不同径向位移,导致在岩石中形成剪切应力。
当这种剪切应力超过岩石的极限抗剪强度时就会引起岩石的破裂。
当爆炸气体的膨胀推力足够大时,还会引起自由面附近的岩石隆起、鼓开并沿径向方向推出。
它在很大程度上忽视了冲击波的作用。
后来经过村田勉等人的努力,利用近代观点重新做了解释,形成了一个完整的体系。
2.1.2理论依据(1)炸药爆炸→气体产物(高温,高压)→在岩中产生应力场→引起应力场内质点的径向位移→径向压应力→切向拉应力→岩石产生径向裂纹(2)如果存在自由面,岩石质点速度在自由面方向上最大,位移阻力各方向上的不等,产生剪切应力,通过剪切破坏岩石。
第20卷 第3期爆炸与冲击Vol.20,No.3 2000年7月EXPLOSION AND SHOC K WAVE S Jul.,2000文章编号:1001-1455(2000)03-0247-06岩石爆破损伤断裂的细观机理杨小林1,王树仁2(1.焦作工学院,河南焦作 454100;2.中国矿业大学北京校区,北京 100083)摘要:基于现有岩石爆破机理和岩石细观损伤力学,认为岩石爆破损伤断裂过程包含有爆炸应力波的初期动态损伤演化阶段和后期爆生气体作用下的准静态损伤演化阶段,并分别建立了这两个阶段的损伤模型和断裂准则,阐述了岩石爆破损伤断裂的细观理论。
关键词:岩石爆破;应力波;爆生气体;损伤机理中图分类号:TD235 1+1 文献标识码:A1 引 言以往采用的经典固体力学方法解释岩石在爆炸载荷作用下的力学行为,无法揭示岩石爆破破碎的全过程,也难以确定岩石内的损伤和破坏程度;而采用细观力学方法则是深入了解岩石内部从损伤到破碎全过程的有效手段。
岩石爆破损伤断裂过程包含有爆炸应力波动作用和爆生气体准静态作用两个阶段,由于岩石对动态和静态加载的响应差别较大,因此其损伤断裂机理也有所不同;而且爆生气体对岩石的损伤断裂作用在爆破近区和中远区又不相同。
在爆破近区气体可能要渗入岩石内部裂纹中,裂纹的扩展以气体驱动下的模式扩展;而在爆破中远区的微裂纹扩展是在气体膨胀压力场和原岩应力作用下发生的。
现有的岩石爆破损伤模型[1~2]只考虑了应力波作用下的岩石内部由于微裂纹扩展所造成的损伤问题,显然不能全面合理地反映岩石爆破损伤断裂的实际情况。
在现有岩石爆破损伤模型和岩石细观损伤力学的基础上,我们探讨了岩石在爆炸应力波和爆生气体作用下损伤断裂的基本理论。
2 岩石爆破损伤断裂过程岩石爆破损伤断裂的细观机理是以岩石爆破机理和岩石细观损伤力学为理论基础的。
岩石爆破理论包含两部分内容:一是爆炸应力波的动作用机理;二是爆生气体的准静态作用机理。
第36卷第3期2008年5月 石 油 钻 探 技 术PETROL EUM DRILL IN G TECHN IQU ESVol136,No13May,2008收稿日期:20071217;改回日期:20080229基金项目:中国石油化工股份有限公司科研项目“水力裂缝层内爆炸提高采收率技术基础研究”(编号:P03051)部分研究成果作者简介:林英松(1964—),女,山东乳山人,1987年毕业于华东石油学院钻井专业,1993年获石油大学硕士学位,2007年获中国科学院力学研究所博士学位,副教授,主要从事岩石力学在石油工程中应用方面的研究工作。
联系电话:(0546)8399080!钻井与完井#爆生气体作用下孔壁岩石开裂的机理及影响因素研究林英松1 张宝康1 蒋金宝1 刘兆年1 丁雁生2(11中国石油大学(华东)石油工程学院,山东东营 257061;21中国科学院力学研究所,北京 100081)摘 要:开发低渗透油气田最有效的手段是改善低渗透储层物性,但目前常用的水力压裂、酸化和高能气体压裂等措施也各有其不足,因此对岩石具有应力波和爆生气体双重作用的“层内爆炸”方法应运而生。
针对爆生气体作用下孔壁岩石的开裂问题,通过分析试验数据,建立了考虑试样惯性的力学模型,并从动力学角度对动态载荷作用下孔壁岩石产生多裂缝的机制做了数值模拟研究。
试验及数值模拟结果表明,爆生气体动态载荷作用下孔壁岩石产生多裂缝的实质是试样对动态载荷的结构响应,孔壁岩石能否产生多裂缝主要取决于载荷、约束、结构和材料属性等因素的影响。
此外还得到了不同加载速率和初始损伤条件下孔壁岩石开裂的一般规律。
关键词:爆炸压裂;裂纹;数值模拟;应力分析中图分类号:TE21 文献标识码:A 文章编号:10010890(2008)03005005 随着石油勘探的日益深入,低渗油田的储量还会增多,怎样来提高该类油田的开发效果是一个迫在眉睫的问题[1]。
改善低渗储层物性是开发低渗透油气田最有效的手段。
第28卷 第4期 岩 土 工 程 学 报 Vol.28 No.4 2006年 4月 Chinese Journal of Geotechnical Engineering Apr., 2006 爆生气体驱动岩石裂缝动态扩展分析李 宁1,陈莉静1,张 平2(1. 西安理工大学岩土工程研究所,陕西 西安 710048;2. 湖南大学岩土工程研究所,湖南 长沙 410082)摘 要:爆燃产生的气体压力以脉冲荷载形式随裂缝扩展作用于裂缝表面,不仅使裂缝壁岩体产生动态响应,而且爆生气体随裂缝扩展而发生动态变化,进而对岩体的劈裂过程产生耦合影响,这一机理的数值仿真分析尚未见报道。
模型中用特殊的裂缝单元模拟裂缝张开和闭合,用Newmark法求解反映接触问题的动态有限元方程,并采用与时间相关的爆生气体压力分布模型,模拟爆生气体驱动下裂缝扩展过程。
分析结果指出:①爆生气体在压裂过程中起主要作用,弹性应力波的劈裂作用范围很小;②地应力值越大起裂越晚,且裂缝扩展速度越小;③初始裂缝越长裂缝起裂越早,裂缝扩展速度也越大;④钻井中气体升压越快起裂相对时刻越晚,但对裂缝扩展速度没有明显影响。
而裂缝起裂时刻越早以及裂缝扩展速度越快,可以得到更长的裂缝长度。
关键词:爆生气体;裂缝扩展;动态响应;油井压裂中图分类号:TU45 文献标识码:A 文章编号:1000–4548(2006)04–0460–04作者简介:李 宁(1959– ),男,教授,博士生导师,主要岩体动力学、冻土力学及岩土工程数值仿真分析等方面的教学与研究工作。
Dynamic analysis for fracturing progress by detonation gasLI Ning1,CHEN Li-jing1,ZHANG Ping2(1. Geotechnical Engineering Institute, Xi’an University of Technology, Xi’an 710048, China; 2. Geotechnical Engineering Institute ofHunan University, Changsha 410082, China)Abstract:When detonation gas pressure acts on crack surface of an oil well, the surrounding rock is subjected to dynamic response, and gas pressure varies with fracturing process, then the fracturing process is influenced by gas pressure variation.Special crack element was used in the proposed model to simulate the opening and closing process of crack. Such a dynamic FEM equation involving contact problem was solved by Newmark method, and the proposed gas distribution function was also considered. The numerical result shows: ①detonation gas had a major role in the fracturing rock comparing with elastic stress wave; ②crack growth velocity was smaller as the initial tectonic stress was greater; ③crack growth velocity was lager as the initial crack length was longer; ④crack initiated relatively later as pressure rose fast, which meant a slowly rising gas pressure would produce a longer crack.Key words:detonation gas; fracturing progress; dynamic response; oil well crack0 前 言复合射孔二次爆燃产生气体,对油井壁岩石劈裂产生裂缝以增加渗油量的方法,近年有了较快发展。
岩石爆破机理岩石爆破机理是指通过引爆爆炸剂,利用高温高压波来破坏岩石体的一种技术。
岩石爆破主要应用于矿山、铁路、公路等工程领域,在工程建设中具有不可替代的作用。
岩石爆破的机理可以分为三个阶段。
首先是能量释放阶段。
当炸药引爆后,化学反应会产生大量的热能和气体,使炸药的体积瞬间膨胀,形成高压气体。
这些气体以极高的速度向四周扩散,并向岩体传递动能。
其次是能量传递阶段。
高速扩散的气体和爆炸波经过瞬时的相互作用,使高温、高压的爆炸波向周围的岩石体传递能量。
能量在岩石体内迅速传播,导致岩石内部出现严重的应力集中,有些区域的应力值甚至超过了岩石强度的极限。
最后是破裂扩展阶段。
在超过岩石强度极限的作用下,岩石裂缝开始扩展,形成一个新的界面。
裂缝的扩展会引起更多应力集中,导致更多岩石的破碎。
随着裂缝的扩展,岩石的破坏面逐渐增大,最终整个岩体被炸碎成了可便于运输和处理的小块岩石。
需要注意的是,岩石爆破的机理涉及许多参数的影响,如炸药种类和量、爆轰波的能量、岩石强度和裂隙结构等。
合理的设计和选择炸药量以及爆破参数,是保证爆破效果和决定爆破成本的重要因素。
此外,岩石爆破也会对环境产生一定的影响,如爆炸噪声和振动等。
为了避免对环境造成过多的破坏,需要在爆破前进行周围环境的评估和监测,并采取相应的防护措施。
综上所述,岩石爆破机理是应用基本物理原理实现大规模岩石破碎的一种技术。
通过合理的设计和参数选择,可以取得良好的爆破效果,同时也需要注意对环境的保护与治理。
作为一种高效的矿业采石或建筑物拆除方法,岩石爆破在减少劳动力和时间成本上具有重要意义。
2010年第01期(下)岩体在冲击荷载的作用下产生应力波或冲击波,它在岩体中传播,引起岩石变形乃至破坏。
炸药爆炸首先形成应力脉冲,使岩石表面产生变形和运动。
由于爆轰压力瞬间高达数千乃至数万兆帕,从而在岩石表面形成冲击波,并在岩石中传播。
1.爆生气体膨胀作用炸药爆炸生成高温高压气体,膨胀做功引起岩石破坏。
爆生气体膨胀力引起岩石质点的径向位移,由于药包距自由面的距离在各个方向上不一样,质点位移所受的阻力就不同,最小抵抗线方向阻力最小,岩石质点位移速度最高。
正是由于相邻岩石质点移动速度不同,造成了岩石中的剪切应力,一旦剪切应力大于岩石的抗剪强度,岩石即发生剪切破坏。
破碎的岩石又在爆生气体膨胀推动下沿径向抛出,形成一倒锥形的爆破漏斗坑。
2.爆炸应力波反射拉伸作用岩体中爆炸应力波在自由面反射后形成反射拉伸波引起岩石破碎,岩石的破坏形式是拉应力大于岩石的抗拉强度而产生的,岩石是被拉断的。
岩石爆破破碎正是爆生气体和爆炸应力波综合作用的结果。
因为冲击波对岩石的破碎作用时间短,而爆生气体的作用时间长,爆生气体的膨胀促进了裂隙的发展;同样,反射拉伸波也加强了径向裂隙的扩展。
岩体内最初裂隙的形成是由冲击波或应力波造成的,随后爆生气体渗入裂隙并在准静态压力作用下,使应力波形成的裂隙进一步扩展。
爆生气体膨胀的准静态能量是破碎岩石的主要能源。
3.爆破的内部作用———无限介质中的爆破作用岩石内药包中心距自由面的垂直距离称为抵抗线。
对于一定量的装药来说,若抵抗线超过某一临界值时,可以认为药包处在无限岩石介质中。
此时药包爆炸后,在自由面上不会看到爆破的迹象,这种爆破作用叫做爆破的内部作用。
根据岩石的破坏情况,除了在装药处形成扩大空腔外,还将从爆源向外产生压缩粉碎区、破裂区和震动区。
3.1压缩粉碎区炸药爆炸瞬间,产生几千度的高温和几万兆帕的高压,形成每秒数千米的爆炸冲击波,最靠近装药的岩石在此冲击波和高温高压爆生气体的作用下,产生很高的径向和切向压应力,这样大的压应力远远大于岩石的动态抗压强度。