当前位置:文档之家› UPS工频机高频机的定义和原理分析

UPS工频机高频机的定义和原理分析

UPS工频机高频机的定义和原理分析
UPS工频机高频机的定义和原理分析

UPS工频机高频机的定义和原理分析UPS通常分为工频机和高频机两种。工频机由可控硅SCR(晶闸管)整流器,IGBT(绝缘栅双极晶体管)逆变器,旁路和工频升压隔离变压器组成。因其整流器和变压器工作频率均为工频50Hz,顾名思义叫工频UPS。

典型的工频UPS拓扑如下:

图1:典型工频UPS拓扑

主路三相交流输入经过换相电感接到三个SCR桥臂组成的整流器之后变换成直流电压。通过控制整流桥SCR的导通角来调节输出直流电压值。由于SCR属于半控器件,控制系统只能够控制开通点,一旦SCR导通之后,即使门极驱动撤消,也无法关断,只有等到其电流为零之后才能自然关断,所以其开通和关断均是基于一个工频周期,不存在高频的开通和关断控制。

由于SCR整流器属于降压整流,所以直流母线电压经逆变输出的交流电压比输入电压低,要使输出相电压能够得到恒定的220V电压,就必须在逆变输出增加升压隔离变压器。同时,由于增加了隔离变压器,系统输出零线可以通过变压器与逆变器隔离,显著减少了逆变高频谐波给输出零线带来的干扰。

同时,工频机的降压整流方式使电池直挂母线成为可能。工频机典型母线电压通常为300V~500V之间,可直接挂接三十几节电池,不需要另外增加电池充电器。

按整流器晶阐管数量的不同,工频机通常分为6脉冲和12脉冲两种类型。6脉冲指以6个可控硅(晶闸管)组成的全桥整流,由于有6个开关脉冲对6个可控硅分别控制,所以叫6脉冲整流。6脉冲整流拓扑如下:

图二、典型6脉冲拓扑

12脉冲是指在原有6脉冲整流的基础上,在输入端增加移相变压器后再增加一组6脉冲整流器,使直流母线由12个可控硅整流完成,因此又称为12脉冲整流。

下图所示两个三相整流电路就是通过变压器的不同联结构成12相整流电路。

图三:典型12脉冲整流器示意图

6脉冲和12脉冲的详细技术分析可参见:

《大功率UPS 6脉冲与12脉冲可控硅整流器原理与区别》。

高频机通常由IGBT高频整流器(注意:工频是SCR整流、IGBT逆变),电池变换器,逆变器和旁路组成,IGBT可以通过控制加在其门极的驱动来控制IGBT的开通与关断,IGBT整流器开关频率通常在几K到几十KHz,甚至高达上百KHz,相对于50Hz工频, 称之为高频UPS。典型的高频机拓扑如下:

图2:高频UPS拓扑图

高频UPS整流属于升压整流模式,其输出直流母线的电压一定比输入线电压的峰峰值高,一般典型值为800V左右,如果电池直接挂接母线,所需要的标配电池节数达到67节,这样给实际应用带来极大的限制。因此一般高频UPS会单独配置一个电池变换器,市电正常的时候电池变换器把母线800V的母线电压降压到电池组电压;市电故障或超限时,电池变换器把电池组电压升压到800V的母线电压。从而实现电池的充放电管理。由于高频机母线电压为800V左右,所以逆变器输出相电压可以直接达到220V,逆变器之后就不再需要升压变压器。

二、工频机和高频机的性能对比

随着电力电子技术的发展和高频功率器件不断问世。中小功率段的UPS产品正逐步高频化,高频UPS有功率密度大、体积小、重量轻的特点。但在高频UPS功率段向中大功率过渡推进的过程中。高频拓扑UPS在使用过程中暴露出一些固有缺点,并影响到UPS的安全使用和运行。

1)零偏故障。

某型号大容量三相高频UPS拓扑如下:

图3:某型号四桥臂高频机拓扑

从图3可知,UPS主路输入是三相四线(相线+零线),整流器为四桥臂变换器。A、B、C三相和零线均通过IGBT整流。此种变换器存在先天缺陷:零线在主路工作时不能断开。当A、B、C三相闭合,零线断开时。如果UPS输出端接不平衡负载,当零点参考点突然消失,将造成严重的UPS输出零偏故障,进而导致UPS后端负载设备的损坏,输出闪断等重大故障。如果A、B、C、零线同时中断。这种情况往往会发生在市电和发电机切换过程,此种拓扑的高频机因零线缺失而必须转旁路工作,在特定工况下(电压过零点,非同步切换时)可能造成负载闪断的重大故障。而工频机因整流器不需要零线参与工作,在零线断开时,UPS可以保持正常供电。

2)零地电压抬升和电池架带电问题。

从图2和图3可以看到,大功率三相高频机零线会引入整流器并做为正负母线的中性点,, , , 此种结构不可避免的造成整流器和逆变器高频谐波耦合在零线上,抬升零地电压,造成负载端零地电压抬高,很难满足IBM,HP等服务器厂家对零地电压小于1V的场地需求。

某型号高频UPS的电池变换器采用高频Buck/Boost拓扑结构,变换器缺少必要的滤波装置。因此充电电压和电流耦合大量高频分量,FLUKE仪表在现场实测数据如下图:

可以明显看到频率12.5KHz的高频分量,实测电池正极与大地浮置电压有325V,断开电池架接地,电池架与大地间有100多伏浮置电压。接通电池架与大地,电池架与大地漏电流高达110mA。按照行业标准(GB13870.1-93 《电流通过人体的效应》),50mA的电流就可以致人死亡。该型号UPS在电池架未与大地短接时,人体触摸到电池架有明显被电击的感觉。原因是充电回路中高频分量通过人体与大地形成通路,造成人体触电。同时,此高频谐波严重干扰了外置的UPS电池单体电压监控系统,使电池电压监控测试仪无法正常工作。

3)可靠性降低。

自1947年底首个晶体管问世,随后不到十年,可控硅整流器(SCR,现称晶闸管)在晶体管渐趋成熟的基础上问世,至今晶阐管已历时半个多世纪的发展和革新,耐受高电压,大电流晶阐管技术已非常成熟,其抗电流冲击能力非常强。晶阐管是半控器件,不会出现直通,误触发等故障。相比而言,80年代初问世的IGBT(绝缘栅双极晶体管)有许多优点,其开关频率可在几K至几百KHz之间,是目前高频UPS主要功率器件。但是,IGBT工作时有严格的电压,电流工作区域,抗冲击能力有限。在可靠性方面,IGBT一直比晶阐管差。根据大量的数据统计,采用晶阐管的整流器故障率远远低于IGBT整流器的故障率,前者大约为后者的1/4。

工频机通常采用SCR整流器,而高频机多采用IGBT整流器。因此,工频机在可靠性方面优于高频机。而大功率UPS可靠性是用户关注的第一要素。目前市面上销售的多款国际知名品牌工频机产品在用户端都有很好的口碑。并通过了长时间和复杂电网的实际验证。高频大功率UPS还有诸多缺点,总结如下,详见附件:

附:大功率工频UPS和高频UPS技术对比表:

高频机工频机

其他资料总结

一、工频UPS工作原理存在的优越性 1. 工频UPS,用数字信号处理技术确保测量数据快速、灵活,从而产生快速的控制变量,确保对充电器及逆变的实时控制。 2. 工频UPS比高频UPS具有更强大的短路保护能力及更强大的过载能力。 3. 由于中国市电环境的极不稳定和易受到一些外部情况的干扰,所以对短路能力及过载能力的要求也更高。采用工频UPS,将极大地提高负载设备的安全性与稳定性。

二、工频UPS硬件配置存在的优越性1.从技术上,工频UPS比高频UPS多增加了输入和输出变压器(1). 工频UPS独有标配的输入/输出变压器,使电流隔离免受输入干扰。在工业环境中,有些外部设备是大的干扰输入,如泵、发动机等等。这些干扰容易造成电流波动,影响负载的安全,因此,电流隔离对于这领域尤为重要。(2). 高频UPS为了降低产品成本则不含这些组件,相应的电流稳定性就不如工频UPS。2.工频UPS设备零部件设计的优越性(1). 工频UPS的零部件可根据客户的规格和需要设计,每个零部件都能承受较高的额定功率且具有较长的寿命,旨在确保用户设备操作过程的安全与持久。(2). 高频UPS在设计上旨在降低成本,所以其零部件仅符合最低的额定功率要求。3.对工业的苛刻环境有极强的适应性工频UPS主要设计在苛刻的工业环境下使用,防护等级达到了IP54,而高频UPS不具备这种适应能力。(1). 工频UPS 设计的定位就是在工业环境中工作,如石化、电力、交通运输行业等等。应用于各种苛刻的工业室外环境,防止外部输入干扰,如高温、高湿、粉尘、震动、腐蚀、爆炸危险型气体及一些无法预测的环境。(2). 工频UPS可适应高温环境0~55℃,相对湿度0%~95%,防尘、防雨水。诸如中国海洋石油公司,中国石化公司这样规模的大公司选择使用的工频UPS产品,就是因为它具备高可靠的苛刻工业室外环境适应能力。(3). 高频UPS不是专为工业环境设计,所以只能安装在清洁的、较安全的、可预测的环境中。如安装于空调房、低温、无尘等环境。4.工频UPS设备寿命的优越性工频UPS设计寿命超过20年,而高频UPS设计寿命为3~5年。(1). 根据工频UPS销售经验,许多设备都能正常工作15至30年(2). 工频UPS的设计方向就是延长系统持续工作的寿命,以符合需要长寿命保障的一些应用领域,如石化厂或电站。所以,即便是工频UPS早期的投入较高频UPS大,但在20年以上的时间内其产品都无需要更换设备,而且备品备件在停产后的后备储存期也相对的比高频UPS长很多。(3). 高频UPS设计寿命仅为3~5年,5年后设备就需要更换。而且备品备件的储备也极其有限。5.方便的前端维护工频UPS 系统自行维护时间很长,而高频UPS系统自行维护时间较短。(1). 工频UPS设计有方便的前端维护,并可在系统停产后长时间的提供备品备件,方便维护。且工频UPS使用和维护服务期都超过20年。(2). 高频UPS的购买、使用及更换时间相对较短。

三、工频UPS输出的电源质量存在的优越性1.工频UPS独有的输入输出变压器。使电流隔离免受输入干扰的同时,也将提高最终电源输出的质量。在像石化领域一类的恶劣工业环境中,输出电源质量的优劣,将直接影响整个工厂设备、人员的安全性及生产能力。2.商务型的UPS并不具备上述组件,所以也不具备如此强大的功能。

四、工频UPS过载切换存在的优越性强大的过载能力工频UPS设计有强大的过载能力。当设备过载时,由于其具有的过载能力强,所以UPS切换至旁路运行的可能性很小。这将大大增加系统的安全性。因为当切换至旁路运行时,同则意味着负载不再由逆变器或蓄电池供电。高频UPS的过载能力相对工频UPS较低,当发生意外过载时,容易由UPS切换至旁路运行,这将会把系统置于一个极不稳定的状态,增加了旁路开关因瞬时过载而跳闸的可能性,影响了系统的安全性。

一、定义

1、高频机:利用高频开关技术,以高频开关元件替代整流器和逆变器中的工频变压器的UPS,俗称高频机,高频机体积小、效率高。

2、工频机:采用工频变压器作为整流器与逆变器部件的UPS俗称工频机,主要特点是主功率部件稳定可靠、过负荷能力和抗冲击能力强。

二、主要区别

1、高频机不带隔离变压器,其输出零线存在高频电流,主要来自市电电网的谐波干扰、UPS整流器和高频逆变器脉动电流、负载的谐波干扰等,其干扰电压不仅数值高而且难以消除。而工频机的输出零地电压更低,而且不存在高频分量,对于计算机网络的通信安全来讲,更加重要。

2、高频机输出没有变压器隔离,如果逆变功率器件发生短路,则直流母线(DC BUS)上的高直流电压直接加到负载上,这是安全隐患,而工频机则不存在此问题。

3、工频机的抗负载冲击能力较强。

UPS工频与高频的区别

UPS按设计电路工作频率来分,可分为工频机和高频机。工频机是以传统的模拟电路原理来设计,机器内部电力器件(如变压器、电感、电容器等)都较大,一般在带载较大运行时存在较小噪声,但该机型在恶劣的电网环境条件中耐抗性能较强,可靠性及稳定性均比高频机强。而高频机是以微处理器(CPU蕊片)作为处理控制中心,是将繁杂的硬件模拟电路烧录于微处理器中,以软件程序的方式来控制UPS的运行。因此,体积大大缩小,重量大大降低,制造成本低,售价相对低。高频机逆变频率一般在20KHZ以上。但高频机在恶劣的电网及环境条件下耐受能力差,较适用于电网比较稳定及灰尘较少、温/湿度合适的环境。 高频机与工频机比较而言:尺寸小、重量轻、运行效率高(运行成本低)、噪音低,适合于办公场所,性价比高(同等功率下,价格低),对空间、环境影响小,相对而言,高频UPS 对复印机、激光打印机和电动机引起的冲击(SPIKE)和暂态响应(TRANSIENT)易受影响,由于工频机的变压器把市电与负载隔离,对市电恶劣的环境下,工频机比高频机能提供更安全和可靠的保护,在某些场合如医疗等,要求U PS有隔离装置,因此,对工业、医疗、交通等应用,工频机是较好的选择。两者的选择要根据客户的不同、安装环境、负载情况等条件权衡考虑。 工频机的特点是简单,存在的问题是: 1)输入输出变压器尺寸大; 2)用于消除高次谐波的输出滤波器尺寸大; 3)变压器和电感产生音频噪声; 4)对负载和市电变化的动态响应性能较差。 5)效率低; 6)输入无功率因数矫正,对电网污染较严重; 7)成本高,特别对于小容量机型,无法与高频机相比。 工频机与高频机的可靠性比较: 1,高频机不可靠是站不住脚的,世界知名UPS厂商在技术选型和将来发展趋势上都是以高频为绝对主力方向,30KVA及以下的机器都以高频机为主,这与高频机负载动态响应速度快,能量密度高,体积小,噪声小,价格低(特别是小机)有很大关系,特别是高频机可以作到输入有源功率因数矫正,真正代表将来绿色电源的发展趋势。 2,凡是对高频机可靠性提出质疑的,可以肯定,是国内的杂牌小UPS厂商。他们本身技术力量有限,测试设备不足。因此在开发高频机的过程中受开发水平的限制无法完善机身性能,从而只能在引进80年代末台湾厂商的技术的基础上完善工频机。工频机向高频机的发展很重要的一点是高频开关控制的抗干扰问题,而这个问题已随着Avansys/Huawei安圣/山特/华为使用DSP全数字控制技术而得到解决。

UPS工频机和高频机的区别

UPS工频机和高频机的区别 1.在结构上 工频机设有内置逆变器输出隔离变压器,UPS输出与负载是隔离的. 高频机没有此变压器,逆变器模块直接与负载连接. 1.1逆变器部分的区别: 工频机的逆变器采用的是全桥式结构(四个逆变器),逆变器工作时,其中一组桥臂的驱动频率是50HZ(即工频),配有输出变压器. 高频机的逆变器采用的是半桥式结构(两个逆变器),逆变器工作时,逆变器都是由PWM高频信号驱动,一般不配输出变压器,而是用电感线圈代替. 相比较而言,工频机抗干扰能力强,过载容量大. 1.2整流器部分的区别: 工频机整流部分采用传统的晶闸管或二极管桥式整流,直流总线电压为310V左右,在整流部分前加入输入变压器或者大容量的电感线圈滤波. 高频机整流部分采用含PFC电路的升压整流电路,直流总线电压为+410V和410V. 高频机采用PFC电路提高了输入功率因数,降低了输入干扰,但控制电路比工频机复杂,可靠性低.相反工频机为了降低输入干扰,采用了增加硬件的办法,可靠性高,但是成本也高,体积大. 1.3 DC/DC(即电池到直流总线电路)部分的区别: 工频机DC/DC采用一个晶闸管或二极管来控制电池正极与直流总线的通断; 高频机DC/DC采用BOOST开关电源电路来使电池电压转换为+410V和410V的直流总线电压 工频机线路简单,只有一个晶闸管和二极管的压降(相当于电池直接连接到直流总线),电池能耗少;相反高频机线路复杂,需要在电池和直流总线之间增加高频开关电路,电池能量损耗大. 2.在性能上: 2.1工频机有隔离直流功能: 此变压器能有效将逆变器输出的直流分量与负载隔离,很好保护负载的安全,特别对于开关类以及感性类负载时很有必要的.而高频机没有:由于没有此变压器,当UPS逆变器中点电压发生飘移时,逆变器输出的直流分量直接送给负载,对于开关类及感性类负载造成短路烧毁负载及UPS的逆变器模块.特别当UPS IGBT故障击穿时其直流母线电压直接加在负载上是非常危险的.

工频UPS和高频UPS原理

摘要:本文通过大容量工频UPS和高频UPS进行原理分析、拓扑对比、实测数据分析和性能对比,全面总结了大功率工频UPS和高频UPS的优缺点和选配原则。 一、工频机和高频机的定义和原理分析 UPS通常分为工频机和高频机两种。工频机由可控硅SCR整流器,IGBT逆变器,旁路和工频升压隔离变压器组成。因其整流器和变压器工作频率均为工频50Hz,顾名思义叫工频UPS。 典型的工频UPS拓扑如下: 图1:典型工频UPS拓扑 主路三相交流输入经过换相电感接到三个SCR桥臂组成的整流器之后变换成直流电压。通过控制整流桥SCR的导通角来调节输出直流电压值。由于SCR属于半控器件,控制系统只能够控制开通点,一旦SCR导通之后,即使门极驱动撤消,也无法关断,只有等到其电流为零之后才能自然关断,所以其开通和关断均是基于一个工频周期,不存在高频的开通和关断控制。 由于SCR整流器属于降压整流,所以直流母线电压经逆变输出的交流电压比输入电压低,要使输出相电压能够得到恒定的220V电压,就必须在逆变输出增加升压隔离变压器。同时,由于增加了隔离变压器,系统输出零线可以通过变压器与逆变器隔离,显著减少了逆变高频谐波给输出零线带来的干扰。 同时,工频机的降压整流方式使电池直挂母线成为可能。工频机典

型母线电压通常为300V~500V之间,可直接挂接三十几节电池,不需要另外增加电池充电器。 按整流器晶阐管数量的不同,工频机通常分为6脉冲和12脉冲两种类型。6脉冲指以6个可控硅(晶闸管)组成的全桥整流,由于有6个开关脉冲对6个可控硅分别控制,所以叫6脉冲整流。6脉冲整流拓扑如下: 图 典型6脉冲拓扑 12脉冲是指在原有6脉冲整流的基础上,在输入端增加移相变压器后再增加一组6脉冲整流器,使直流母线由12个可控硅整流完成,因此又称为12脉冲整流。 下图所示两个三相整流电路就是通过变压器的不同联结构成12相整流电路。 图 典型12脉冲整流器示意图 6脉冲和12脉冲的详细技术分析可参见《大功率UPS6脉冲与12脉冲可控硅整流器原理与区别》。 高频机通常由IGBT高频整流器,电池变换器,逆变器和旁路组成,IGBT可以通过控制加在其门极的驱动来控制IGBT的开通与关断,IGBT整

工频VS高频(完全版)

工频UPS与高频UPS的区别 1、高频机与工频机定义 1、高频机:利用高频开关技术,以高频开关元件替代整流器和逆变器中的工 频变压器的UPS,俗称高频机,高频机体积小、效率高。 2、工频机:采用工频变压器作为整流器与逆变器部件的UPS俗称工频机,主要特 点是主功率部件稳定可靠、过负荷能力和抗冲击能力强。 2、高频机VS工频机 2-1 高频机不带隔离变压器,其输出零线存在高频电流,主要来自市电电网的谐波干扰、UPS整流器和高频逆变器脉动电流、负载的谐波干扰等,其干扰电压不仅数值高而且难以消除。而工频机的输出零地电压更低,而且不存在高频分量,对于计算机网络的通信安全来讲,更加重要。 2-2 高频机输出没有变压器隔离,如果逆变功率器件发生短路,则直流母线(DC BUS)上的高直流电压直接加到负载上,这是安全隐患,而工频机则不存在此问题。 2-3 工频机的抗负载冲击能力较强。 3、性能比较 序号比较的指标、性能高频UPS 工频UPS 1 过载能力一般较强 2 抗输入浪涌能力一般较强 3 输出抗冲击、短路能力一般较强 4 输入PF值0.99 0.7 5 整机效率85~90% 75~85% 6 功率密度高小 7 零地电压相对较差,有高频分量相对较好 8 输出级元器件多少 9 功率器件容量小大 10 故障时器件损坏程度高低 11 可靠性一般好 12 可维护性较复杂简易 13 重量轻重

14 体积小大 15 与发电机适应力较差好 从以上的比对中可以清晰的看出工频机在很多的方面优于高频机。对于可靠性要求较高的一些重要、关键部位的电源保护方案还应以工频机为首选。 工频机与高频机性能比较 电源是位于市电与负载之间,向负载提供优质电能的供电设备,是工业的基础。电源技术是一种应用功率半导体器件,综合电力变换技术、现代电子技术、自动控制技术的多学科的边缘交叉技术。 随着电源事业的不断发展,高频变换是电源技术发展的主流。但由于高频器件的限制,高频线路结构以及高频技术的不够成熟,使得现有市场上高频机的整体性能及稳定性都不如工频机。工频机与市面上常见的高频机比较,优势主要表现如下几点: 隔离方面 工频机带有全隔离工频变压器,输入输出可以做到全隔离,组成自己的小供电系统。市电上的任何干扰、杂波、尖峰都可通过隔离变压器消除干净,甚至可以抵抗小电流的雷击冲击,因此负载安全可靠。而高频机输入输出均无隔离,输入输出直通无变压器缓冲,因此负载的安全性较低。 带载方面 由于有了隔离变压器,工频机带载能力特强,可带各种性质的负载,而高频机只能带电脑等一些整流性负载,如:负载中有电动机类(感性负载),则高频机UPS容易损坏,因此高频机带载能力较工频机脆弱得多,这就是高频机功率很难做大的原因之一。抗冲击及抗短路方面 由于高频机采用了无输入、输出变压器的逆变器,使得高频机在获得体积小、重量轻的优点的同时,所付出的代价是:高频机在抗阶跃性负载"冲击"的能力和抗短路能力都有相当的下降。显然,这十分不利于提高高频机UPS的整机性能。 对于UPS来说,它经常被用户置于这种状态下运行,即上班带载开机和下班带载关机。大量的运行实践证实:UPS电源的故障"高发区"是发生在带载开机和带载关机以及UPS 在执行交流旁路供电和逆变器供电切换的操作期间。基于上述原因,高抗冲击和高抗短路能力的工频机在保障用户设备及数据的安全方面优于高频机。

工频UPS与高频UPS的区别和优势

工频UPS与高频UPS的区别和优势 1、工频UPS工作原理存在的优越性 1.1 工频UPS采用数字信号处理技术确保测量数据快速、灵活,从而产生快速的控制变量,确保对充电器及逆变的实时控制。 1.2 工频UPS比高频UPS具有更强大的短路保护能力及更强大的过载能力。 1.3 由于中国市电环境的极不稳定和易受到一些外部情况的干扰,所以对短路保护能力及过载能力的要求也更高。采用工频UPS将极大地提高负载设备的安全性与稳定性。 2、工频UPS硬件配置存在的优越性 2.1 从技术上考虑,工频UPS比高频UPS多增加输出变压器 (1) 工频UPS独有标配的输出变压器,使电流隔离免受输入干扰。在计算机机房环境中,有些外部设备存在大的干扰输入,这些干扰容易造成电流波动,影响负载的安全。因此,电流隔离对于这些领域尤为重要。 (2) 高频UPS为了降低产品成本则不含这些组件,相应的电流稳定性就不如工频UPS。 2.2 工频UPS设备零部件设计的优越性 (1) 工频UPS的零部件可根据客户的规格和需要设计,每个零部件都能承受较高的额定功率且具有较长的寿命,旨在确保用户设备操作过程的安全与持久。 (2) 高频UPS在设计上旨在降低成本,所以其零部件仅符合最低的额定功率要求。 2.3 工频UPS设备寿命的优越性 中大功率工频UPS单机系统的平均无故障时间为20万小时,并机系统将超过50万小时,而高频UPS的平均无故障时间均不超过5万小时。 (1) 根据工频UPS销售经验,许多单机系统都能正常工作15年以上的时间。 (2) 工频UPS的设计方向就是延长系统持续工作的寿命,以符合需要长寿命保障的一些应用领域。所以,即便是工频UPS早期的投入较高频UPS大,但在15年以上的时间内都无需要更换设备,而且备品备件在停产后的后备储存期也相对的比高频UPS长很多。 (3) 高频UPS设计寿命仅为3~5年,5年后大部分设备就需要更换。而且备品备件的储备也极其有限。 2.4 方便的前端维护 工频UPS系统自行维护时间很长,而高频UPS系统自行维护时间较短。 (1) 工频UPS设计有方便的前端维护,并可在系统停产后长时间的提供备品备件,方便维护。且工频UPS使用和维护服务期都超过20年。 (2) 高频UPS的购买、使用及更换时间相对较短。

UPS工频机和高频机对比

工频机与高频机的区别 1、定义 1、高频机:利用高频开关技术,以高频开关元件替代整流器和逆变器中的工频变压器的UPS,俗称高频机,高频机体积小、效率高。 2、工频机:采用工频变压器作为整流器与逆变器部件的UPS俗称工频机,主要特点是主功率部件稳定可靠、过负荷能力和抗冲击抗干扰能力强、带负载能力强。 2、高频机与工频机的比较 高频机不带隔离变压器,其输出零线存在高频电流,主要来自市电电网的谐波干扰、UPS 整流器和高频逆变器脉动电流、负载的谐波干扰等,其干扰电压不仅数值高而且难以消除。而工频机的输出零地电压更低,而且不存在高频分量,对于计算机网络的通信安全来讲,更加重要。 高频机输出没有变压器隔离,如果逆变功率器件发生短路,则直流母线(DC BUS)上的高直流电压直接加到负载上,这是安全隐患,而工频机则不存在此问题。 工频机的抗冲击抗干扰能力较强,EAST(易事特)EA800/EA880/EA860/EA890系列UPS 为工频机。 3、性能比较 序号比较的指标、性能高频UPS 工频UPS 1 过载能力一般较强 2 抗输入浪涌能力一般较强 3 输出抗冲击、短路能力一般较强 4 输入PF值0.99 0.9 5 整机效率90~98% 85~95%

6 功率密度高小 7 零地电压较差相对较好 8 输出级元器件多少 9 功率器件容量小大 10 故障时器件损坏程度高低 11 可靠性一般好 12 可维护性较复杂简易 13 重量轻重 14 体积小大 15 与发电机适应力较差好 1. 从以上的比对中可以清晰的看出工频机在很多的方面优于高频机。对于可靠性要求较高的一些重要、关键部位的电源保护方案还应以工频机为首选。也正因为此,现在工频机呈现需求上升的趋势。高频机由于逆变频率为50KHz不适合重要性负载,因为它有一定的射频干扰,计算机类负载对射频干扰较敏感。而工频机不存在这个问题,特别是采用了PFC (功率因素校正)技术的工频机。 2. 高频机带非线性负载能力较差,其原因也是因为其逆变频率高输入/输出不隔离,对负载要求较为严格。工频机因采用低频逆变,且变压器隔离耦合输出,对负载要求不严格,能适应于一切非阻性负载(计算机就是非阻性负载)。 3. 高频机体积小、重量轻,价格低适合单个工作点的小功率设备保护,对干扰不敏感的设备和可靠性要求不很高的场合。而工频机适合所有设备保护,无论是网点设备还是IDC(数据中心),可靠性较高,但工频机有体积大、重量重、价格高等缺点。 4. 其智能化、网络化没有区别,都具有相同的软件监控功能。

UPS工频机与高频机的比较

UPS工频机与高频机的比较 1、高频机与工频机的特点 UPS按设计电路工作频率分为工频机和高频机,工频机和高频机的结构特点如下。 (1)工频机:以传统的模拟电路原理来设计,机器内部电力器件(如变压器、电感、电容器等)都较大,一般在带载较大运行时存在较小噪声,但该机型在恶劣的电网环境条件中耐抗性能较强,可靠性及稳定性均比高频机强。 (2)高频机:利用高频开关技术,高频机逆变频率一般在20kHz 以上。但高频机在恶劣的电网及环境条件下耐受能力差,较适用于电网比较稳定及灰尘较少、温/湿度合适的环境。UPS发展的方向是高频化、小型化、智能化和绿色化。因为小型化可以节省投资、提高效率、节约空间等。小型化的前提是高频化,只有高频化才可实现小型化。小型化的第一个目标就是取消输入/输出隔离变压器。以前由于技术、器件和材料的原因,给UPS加入了输入/输出隔离变压器,使得产品笨重、性能差、耗能大而且价格贵。后来由于新器件的问世,

1980年由美国IPM公司首先推出的新方案成功地取消了输入隔离变压器,近几年由于技术的进一步发展和成熟,推出了半桥逆变器变换方案,又成功地取消了输出隔离变压器,使UPS的性能又有了很大程度的提高,这就是人们所说的高频机,它进一步使UPS缩小了体积、改善了性能、减轻了重量、提高了效率、降低了成本和提高了可靠性。所以国际上的知名公司大都放弃了带有输出隔离变压器UPS的生产。 2、高频机与工频机比较 高频机与工频机比较而言:尺寸小、重量轻、运行效率高(运行成本低)、噪声低,适合于办公场所,性价比高(同等功率下价格低),对空间、环境影响小,相对而言,高频UPS对复印机、激光打印机和电动机引起的冲击(SPIKE)和暂态响应(TRANSIENT)易受影响,由于工频机的变压器把市电与负载隔离,在市电恶劣的环境下,工频机比高频机能提供更安全和可靠的保护,在某些场合如医疗等,要求UPS有隔离装置,因此,对工业、医疗、交通等应用,工频机是较好的选择。两者的选择要根据用户的不同、安装环境、负载情况等条件权衡考虑。

UPS工频机和高频机的区别

一UPS工频机和高频机的区别 1.在结构上:工频机设有内置逆变器输出隔离变压器,UPS输出与负载是隔离的.高频机没有此变压器,逆变器模块直接与负载连接. 1.1逆变器部分的区别:工频机的逆变器采用的是全桥式结构(四个逆变器),逆变器工作时,其中一组桥臂的驱动频率是50HZ(即工频),配有输出变压器。高频机的逆变器采用的是半桥式结构(两个逆变器),逆变器工作时,逆变器都是由PWM高频信号驱动,一般不配输出变压器,而是用电感线圈代替.相比较而言,工频机抗干扰能力强,过载容量大. 1.2整流器部分的区别:工频机整流部分采用传统的晶闸管或二极管桥式整流,直流总线电压为310V左右,在整流部分前加入输入变压器或者大容量的电感线圈滤波.高频机整流部分采用含PFC电路的升压整流电路,直流总线电压为+410V和410V.高频机采用PFC电路提高了输入功率因数,降低了输入干扰,但控制电路比工频机复杂,可靠性低.相反工频机为了降低输入干扰,采用了增加硬件的办法,可靠性高,但是成本也高,体积大. 1.3 DC/DC(即电池到直流总线电路)部分的区别:工频机DC/DC采用一个晶闸管或二极管来控制电池正极与直流总线的通断;高频机DC/DC采用BOOST开关电源电路来使电池电压转换为+410V和410V的直流总线电压工频机线路简单,只有一个晶闸管和二极管的压降(相当于电池直接连接到直流总线),电池能耗少;相反高频机线路复杂,需要在电池和直流总线之间增加高频开关电路,电池能量损耗大. 2.在性能上: 2.1工频机有隔离直流功能: 此变压器能有效将逆变器输出的直流分量与负载隔离,很好保护负载的安全,特别对于开关类以及感性类负载时很有必要的.而高频机没有:由于没有此变压器,当UPS逆变器中点电压发生飘移时,逆变器输出的直流分量直接送给负载,对于开关类及感性类负载造成短路烧毁负载及UPS的逆变器模块.特别当UPSIGBT故障击穿时其直流母线电压直接加在负载上是非常危险的.

商宇工频UPS和某品牌比较

深圳市商宇电子科技有限公司 商宇工频机和其他品牌机器 技术对比 技术参数商宇S3000-R系列其他某特品牌是否符合区别 所属机型工频机高频机某品牌没工频机、不带 隔离变压器工频机带隔离变压器 工作原理采用IGBT逆变加工频变压器作为逆变器部件,由可控硅组成整流桥的 UPS俗称工频机,主要特点是主功率 部件稳定可靠、过负荷能力和抗冲击 能力强,适用于环境恶劣、IT设备及 工业控制设备等负载。利用高频开关技术,以高频开关元件替代可控硅整流器及直流升压和逆变器中的工频变压器的UPS,俗称高频机,高频机优势是体积小、效率高,适用于数据中心IT设备等。 防腐蚀、抗干扰性能采用工业三防技术,防尘、防腐蚀、抗干 扰性能强,适用于环境恶劣的工业环境 元器件高度密集,体积小,对环境要求高, 适用于恒温恒湿的数据中心环境。 某品牌不符合高频容易被污浊环 境腐蚀 是否三防漆所有PCBA板三防漆处理元器件密集,喷覆三防漆将导致散热不良 等。 某品牌没加,故障率高容易故障 稳定性能非常稳定一般某品牌一般高频机不稳定

深圳市商宇电子科技有限公司整流方式12脉冲整流高频整流12脉冲的抗冲击和 回流更强 抗负载能力工频机的抗负载冲击能力非常强强较弱某品牌不符合工频机可以通过变 压器过滤掉谐波 对负载的保护工频机的输出零地电压更低,而且不 存在高频分量,对于计算机网络的通 信安全来讲,更加重要。 高频机不带隔离变压器,其输出零 线存在高频电流,主要来自市电电 网的谐波干扰、UPS整流器和高频逆 变器脉动电流、负载的谐波干扰等, 其干扰电压不仅数值高而且难以消 除。 某品牌不符合工频机更加可靠 安全隐患工频机则不存在此问题高频机输出没有变压器隔离,如果 逆变功率器件发生短路,则直流母 线(DC BUS)上的高直流电压直接 加到负载上,这是安全隐患。 某品牌存在安装隐患工频机更安全

工频UPS电源与高频UPS电源的区别和优势缺点比较

工频UPS电源与高频UPS电源的区别和优势缺点比较 一、工频UPS工作原理存在的优越性 1.工频UPS,用数字信号处理技术确保测量数据快速、灵活,从而产生快速的控制变量,确保对充电器及逆变的实时控制。 2.工频UPS比高频UPS具有更强大的短路保护能力及更强大的过载能力。 3.由于中国市电环境的极不稳定和易受到一些外部情况的干扰,所以对短路能力及过载能力的要求也更高。采用工频UPS,将极大地提高负载设备的安全性与稳定性。 二、工频UPS硬件配置存在的优越性 1.从技术上,工频UPS比高频UPS多增加了输入和输出变压器 (1).工频UPS独有标配的输入/输出变压器,使电流隔离免受输入干扰。在工业环境中,有些外部设备是大的干扰输入,如泵、发动机等等。这些干扰容易造成电流波动,影响负载的安全,因此,电流隔离对于这领域尤为重要。 (2).高频UPS为了降低产品成本则不含这些组件,相应的电流稳定性就不如工频UPS。 2.工频UPS设备零部件设计的优越性 (1).工频UPS的零部件可根据客户的规格和需要设计,每个零部件都能承受较高的额定功率且具有较长的寿命,旨在确保用户设备操作过程的安全与持久。(2).高频UPS在设计上旨在降低成本,所以其零部件仅符合最低的额定功 率要求。 3.对工业的苛刻环境有极强的适应性 工频UPS主要设计在苛刻的工业环境下使用,防护等级达到了IP54,而高频UPS 不具备这种适应能力。 (1).工频UPS设计的定位就是在工业环境中工作,如石化、电力、交通运输行业等等。应用于各种苛刻的工业室外环境,防止外部输入干扰,如高温、高湿、粉尘、震动、腐蚀、爆炸危险型气体及一些无法预测的环境。 (2).工频UPS可适应高温环境0~55℃,相对湿度0%~95%,防尘、防雨水。诸如中国海洋石油公司,中国石化公司这样规模的大公司选择使用的工频UPS产品,就是因为它具备高可靠的苛刻工业室外环境适应能力。

不间断电源高频与工频的区别

一、概述: 采用工频变压器做为整流器和逆变器部件的UPS俗称工频机,主要特点是主功率部件稳定、可靠、过负荷能力和抗冲击能力强。工频机是以模拟电路原理来设计,机器内部的电力器件(如变压器、电感、电容器等)部分基本采用大型功率元件,但其控制系统及网络通讯都是采用了成熟的、高集成速度快的数据运算处理芯片,在数据跟踪及调整方面非常精确。该机型在恶劣的电网环境条件中耐抗性能较强,可靠性及稳定性均比高频机强。 利用高频开关技术,以高频开关元件替代整流器和逆变器中的工频变压器的UPS 俗称高频机。其将众多的功率元器件及模拟电路压制于较小的芯片中,所以体积较小。高频机需要较高的频率驱动,一般在20KHZ以上,运行频率高,所以在生产中对工艺要求很高,对元件的质量要求也高,整体调整稍有误差就会在使用中出现爆机现象。其直流母线电压必须远远高于输出交流电压峰值,才能通过逆变器开关斩波满足输出额定电压,也对元器件质量要求很高。因此上,高频机体积相对较小,重量较轻,制造成本低,售价相对低,但在恶劣的电网及环境条件下耐受能力差,较适用于电网比较稳定及灰尘较少、温/湿度合适的环境。相对于工频机而言,高频机还对复印机、激光打印机、电动机及大功率电器(如大功率的功放机)引起的冲击(SPIKE)和暂态响应(TRANSIENT)易受影响。直接的现象就是频繁报警、跳旁路、突然停机、甚至爆机。 工频机实际上现在都采用了先进的IGBT逆变技术,脉宽调整技术,同时变压器把市电与负载隔离,对市电恶劣的环境下,工频机比高频机能提供更安全和可靠的保护。在某些场合如医疗等,要求电力逆变电源有隔离装置,因此,对大型弱电机房,电力、工业、智能会议、航空、航天、医疗、交通等应用,工频机是较好的选择。 因此,两者的选择要根据客户的不同、安装环境、负载情况等条件权衡考虑。 7.2、比较 高频机 优点:集成度较高、体积较小、重量较低、可以作到输入有源功率因数矫正,是将来绿色电源的发展趋势 缺点:市电输入范围窄、对电网的谐波处理能力较差、不耐负载的峰值冲击、抗瞬间输出短路能力低、运行环境要求高、运行稳定性差、维护成本高。 工频机

大功率UPS不间断电源工频机与高频机修订版

大功率U P S不间断电源工频机与高频机 集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

大功率UPS不间断电源工频机与高频机 用户在购买大功率的时候,常常面临在工频机和高频机之间进行选择的困惑。就方面而言,当然都认为是自己的好,“公说公有理,婆说婆有理”。提供的厂商说工频机稳定性和可靠性高;提供的厂商会说高频机节省空间,成本相对较低等诸如此类的说法。其实,工频机和高频机到底孰优孰劣,很难一概而论,可以说各有利弊。用户应当在全面认识这两种UPS机型的基础上,客观审视自身的应用和需求,选择适合自己需要的产品。 1 工频机和高频机的原理分析 工频机和高频机是按UPS的设计电路工作频率来区分的。工频机是以传统的模拟电路原理设计,由晶闸管(SCR)整流器、IGBT逆变器、旁路和工频升压组成。因其整流器和变压器工作频率均为工频50Hz,顾名思义叫工频UPS。高频机通常由IGBT高频整流器、变换器、逆变器和旁路组成。IGBT可以通过控制加在门极的驱动来控制其开通与关断,IGBT整流器开关频率通常在几千赫到几十千赫,甚至高达上百千赫,远远高于工频机,因此称为高频UPS。 在工频UPS电路中,主路三相交流输入经过换相电感,接到三个SCR桥臂组成的整流器之后变换成直流电压,通过控制整流桥SCR的导通角来调节输出直流电压值。由于SCR属于半控器件,控制系统只能控制开通点,一旦SCR导通之后,即使门极驱动撤消,也无法关断,只有等到其电流为零之后才能自然关断,所以其开通和关断均是基于一个工频周期,不存在高频的开通和关断控制。由于SCR整流器属于降压整流,所以直流母线电压经逆变输出的交流电压比输入交流电压低,要使输出相电压能够得到恒定的220V电压,就必须在逆变输出增加升压隔离变压器。 相比而言,高频UPS整流属于升压整流,其输出直流母线的电压比输入线电压的峰值高,一般典型值为800V左右,如果电池直接挂接母线,所需要的标配电池节数需要67节,这样给实际应用带来极大的限制。因此一般高频UPS会单独配置一个电池电压变换器,市电正常的时候电池变换器把 800V的母线电压降到电池组电压;市电故障或超限时,电池变换器把电池组电压升高到800V的母

高频ups与工频ups的区别

目前,UPS通常分为工频机结构UPS和和高频机结构UPS两种。以下就这两种UPS 的定义和区别做一简单介绍。 1.工频机结构UPS与高频机结构UPS的定义 工频机结构UPS和高频机结构UPS是按其设计电路工作频率来区分的。工频机结构UPS是以传统的模拟电路原理设计,由可控硅SCR整流器、IGBT逆变器、旁路和工频升压隔离变压器组成。因其整流器和变压器工作频率均为工频50Hz,顾名思义叫工频UPS。 而高频机结构UPS通常由IGBT高频整流器、电池变换器、逆变器和旁路组成。IGBT可以通过控制加在门极的驱动来控制其开通与关断,IGBT整流器开关频率通常在几k到几十kHz,甚至高达上百kHz,远远高于工频机,因此称为高频UPS。 2.工频机结构UPS与高频机结构UPS的区别 (1)电路结构的区别 在工频机结构UPS电路中,主路三相交流输入经过换相电感接到三个SCR 桥臂组成的整流器之后变换成直流电压。通过控制整流桥SCR的导通角来调节输出直流电压值。由于SCR属于半控器件,控制系统只能够控制开通点,一旦SCR 导通之后,即使门极驱动撤消,也无法关断,只有等到其电流为零之后才能自然关断,所以其开通和关断均是基于一个工频周期,不存在高频的开通和关断控制。由于SCR整流器属于降压整流,因此直流母线电压经逆变输出的交流电压比输入电压低,要使输出相电压能够得到恒定的220V电压,就必须在逆变输出增加升压隔离变压器。 相比而言,高频机结构UPS整流属于升压整流,其输出直流母线的电压比输

入线电压的峰值高,一般典型值为800V左右,如果电池直接挂接母线,所需要的标配电池节数达到67节,这样给实际应用带来极大的限制。因此一般高频机结构UPS会单独配置一个电池变换器,市电正常的时候电池变换器把800V的母线电压降压到电池组电压;市电故障或超限时,电池变换器把电池组电压升压到800V的母线电压。由于高频机母线电压为800V左右,所以逆变器输出相电压可以直接达到220V,逆变器之后就不再需要升压变压器。因此,隔离变压器是工频机与高频机在组成上的主要区别。 工频机结构UPS都有输出变压器,在多机并联时就会出现多个变压器的并联。变压器的并联是电力行业尽量避免的情况,因为变压器并联时的环流不可避免,环流的长期存在将导致设备寿命缩短。而高频机结构UPS因没有输出变压器,所以几乎没有环流。 有的用户认为变压器可以起到具有抗干扰和缓冲负载突变的作用,其实并非如此。UPS负载的用电要求必须有零线,如果没有工频结构UPS没有输出隔离变压器,将一根火线硬性接零线,就会导致UPS的工作不正常。因此说,输出隔离变压器是工频机结构UPS必不可少的为了变压和隔离零线的目的而接入的一部分,而不具备为用户负载隔离干扰和缓冲负载突变的功能。 (2)性能指标的区别 能耗是各行业数据中心和机房面临的难题,因此节能减排的负载和供电设备,而当前的工频机结构UPS和高频机结构UPS在节能减排上主要有以下区别: ①输入功率因数 中大功率的三相工频机结构UPS在6脉冲整流的情况下输入功率因数约为0.8,不但对外有干扰,而且要求前面的发电机功率要3倍于UPS容量,即使在12脉冲整流选配谐波滤波器的条件下输入功率因数也低于0.95,而且增加设备

UPS工频机高频机的定义和原理分析

UPS工频机高频机的定义和原理分析UPS通常分为工频机和高频机两种。工频机由可控硅SCR(晶闸管)整流器,IGBT(绝缘栅双极晶体管)逆变器,旁路和工频升压隔离变压器组成。因其整流器和变压器工作频率均为工频50Hz,顾名思义叫工频UPS。 典型的工频UPS拓扑如下: 图1:典型工频UPS拓扑 主路三相交流输入经过换相电感接到三个SCR桥臂组成的整流器之后变换成直流电压。通过控制整流桥SCR的导通角来调节输出直流电压值。由于SCR属于半控器件,控制系统只能够控制开通点,一旦SCR导通之后,即使门极驱动撤消,也无法关断,只有等到其电流为零之后才能自然关断,所以其开通和关断均是基于一个工频周期,不存在高频的开通和关断控制。 由于SCR整流器属于降压整流,所以直流母线电压经逆变输出的交流电压比输入电压低,要使输出相电压能够得到恒定的220V电压,就必须在逆变输出增加升压隔离变压器。同时,由于增加了隔离变压器,系统输出零线可以通过变压器与逆变器隔离,显著减少了逆变高频谐波给输出零线带来的干扰。 同时,工频机的降压整流方式使电池直挂母线成为可能。工频机典型母线电压通常为300V~500V之间,可直接挂接三十几节电池,不需要另外增加电池充电器。 按整流器晶阐管数量的不同,工频机通常分为6脉冲和12脉冲两种类型。6脉冲指以6个可控硅(晶闸管)组成的全桥整流,由于有6个开关脉冲对6个可控硅分别控制,所以叫6脉冲整流。6脉冲整流拓扑如下: 图二、典型6脉冲拓扑

12脉冲是指在原有6脉冲整流的基础上,在输入端增加移相变压器后再增加一组6脉冲整流器,使直流母线由12个可控硅整流完成,因此又称为12脉冲整流。 下图所示两个三相整流电路就是通过变压器的不同联结构成12相整流电路。 图三:典型12脉冲整流器示意图 6脉冲和12脉冲的详细技术分析可参见: 《大功率UPS 6脉冲与12脉冲可控硅整流器原理与区别》。 高频机通常由IGBT高频整流器(注意:工频是SCR整流、IGBT逆变),电池变换器,逆变器和旁路组成,IGBT可以通过控制加在其门极的驱动来控制IGBT的开通与关断,IGBT整流器开关频率通常在几K到几十KHz,甚至高达上百KHz,相对于50Hz工频, 称之为高频UPS。典型的高频机拓扑如下: 图2:高频UPS拓扑图 高频UPS整流属于升压整流模式,其输出直流母线的电压一定比输入线电压的峰峰值高,一般典型值为800V左右,如果电池直接挂接母线,所需要的标配电池节数达到67节,这样给实际应用带来极大的限制。因此一般高频UPS会单独配置一个电池变换器,市电正常的时候电池变换器把母线800V的母线电压降压到电池组电压;市电故障或超限时,电池变换器把电池组电压升压到800V的母线电压。从而实现电池的充放电管理。由于高频机母线电压为800V左右,所以逆变器输出相电压可以直接达到220V,逆变器之后就不再需要升压变压器。

UPS的“致命弱点”

高频机型UPS的几个“致命弱点”论值得 商榷 目前已进入高频机UPS逐步代替工频机UPS的年代,当然替代的过程并不是一帆风顺。人们使用了几十年的工频机UPS,已经熟悉了这种电源形式,突然要换机型还不能一下子适应,所以对那些为工频机UPS的赞歌听着比较顺耳,同时对高频机UPS的一些指责也容易接受,就这样一拍即合。岂不知在一定程度上损害了用户的利益,也有勃于当今的国策。 常常会听到这样的说法:高频机UPS是好东西,但由于我们的系统非常重要,要求供电的可靠性非常高,所以还是用工频机UPS可靠。言下之意,高频机UPS不可靠。岂不知可靠性是设计出来的,即一台机器的可靠性如何取决于采用了哪一级可靠性标准。举一个简单的例子,一个UPS中常用的120 120的轴流风机,有十几元一只的,也有上百元一只的,价格差了近10倍,哪一个可靠性高呢?不言而喻,当然是上百元一只的可靠性高。又如某品牌的9315系列UPS,人称“标王”,意思说每次投标它的价格最高,但运行起来可靠性也最高,被人称为“铁机”——就是不出故障;而同一品牌的同功率PB4000系列就便宜得多,而故障也多。 当然用户对高频机型UPS的这种担心不是没根据,其根据就是来自某些方面的误导宣传。甚至有的将这些宣传材料上升为“高频机结构UPS的致命弱点”。虽然问题的提出者只是少数,但影响颇大,在网上粘来粘去,就好像写此文章的人很多,确实影响了不少用户,甚至有些技术人员也受了传染。为了将这些问题搞清楚,使人们对产品有一个科学的看法,下面就这几个方面进行讨论。 (一)IGBT整流器可靠性偏低 持这种看法的“根据”有两个: 1. 认为IGBT器件的过载能力不如可控硅(SCR)高 为了证明这个论点,有的就举出两种器件过载能力的例子:SCR可过载到10倍额定电流20ms,而IGBT过载到10倍额定电流时只能坚持20 s,就是说过载能力差了1000倍。就根据这一点说IGBT器件的可靠性不如SCR是不是公平呢?这要追索到它们的过载能力为什么不同,难道说IGBT的过载能力只能是10倍20 s吗?当然不是。器件设计者是根据其必要性而选定的。SCR不是全控器件,即一般在交流电路中只能控制其开启而不能控制其关断,可控硅一旦开启只有等到电压或电流过零时才自动关断,

UPS主机选型工频还是要高频

UPS主机,选型工频还是要高频? 摘要:相信各位机房设计人员对设计UPS时碰到UPS选型问题而困扰,下面我就为大家介绍一篇文章,从比较客观的角度来讲述机房UPS选型中的评价!当然了很多时候不光是产品功能满足要求,也要看商务方面是否支持!标签:主机选型还是 中讯邮电咨询设计院有限公司电源处高级工程师侯永涛 企业在购买大功率UPS设备的过程中,常常会遇到在工频机和高频机之间进行选择的困惑。从设备厂商方面讲,当然都认为是自己的好,“公说公有理,婆说婆有理”。提供工频机的说工频机稳定性和可靠性高,提供高频机的会说高频机节省空间,成本相对较低,等等。其实,工频机和高频机到底孰优孰劣,很难一概而论,可以说各有利弊。企业应当在全面认识这两种机型的基础上,客观审视自身的应用需求,选择恰如所需的产品。 工频机和高频机的原理分析 工频机和高频机是按UPS的设计电路工作频率来区分的。工频机是以传统的模拟电路原理设计,由可控硅SCR整流器、IGBT逆变器、旁路和工频升压隔离变压器组成。因其整流器和变压器工作频率均为工频50Hz,顾名思义叫工频UPS。高频机通常由IGBT高频整流器、电池变换器、逆变器和旁路组成。IGBT 可以通过控制加在门极的驱动来控制其开通与关断,IGBT整流器开关频率通常在几K到几十KHz,甚至高达上百KHz,远远高于工频机,因此称为高频UPS。 在工频UPS电路中,主路三相交流输入经过换相电感接到三个SCR桥臂组成的整流器之后变换成直流电压。通过控制整流桥SCR的导通角来调节输出直流电压值。由于SCR属于半控器件,控制系统只能够控制开通点,一旦SCR导通之后,即使门极驱动撤消,也无法关断,只有等到其电流为零之后才能自然关断,所以其开通和关断均是基于一个工频周期,不存在高频的开通和关断控制。由于SCR整流器属于降压整流,所以直流母线电压经逆变输出的交流电压比输入电压低,要使输出相电压能够得到恒定的220V电压,就必须在逆变输出增加升压隔离变压器。 相比而言,高频UPS整流属于升压整流,其输出直流母线的电压比输入线电压的峰值高,一般典型值为800V左右,如果电池直接挂接母线,所需要的标配电池节数达到67节,这样给实际应用带来极大的限制。因此一般高频UPS会单独配置一个电池变换器,市电正常的时候电池变换器把800V的母线电压降压到电池组电压;市电故障或超限时,电池变换器把电池组电压升压到800V的母线电压。由于高频机

大功率UPS工频机和高频机性能对比

大功率UPS工频机和高频机性能对比 1 工频机和高频机的定义和原理分析 (1)工频机 UPS通常分为工频机和高频机两种。工频机由可控硅(SCR)整流器,IGBT逆变器,旁路和工频升压隔离变压器组成。因其整流器和变压器工作频率均为工频50Hz,顾名思义叫工频UPS。 典型的工频UPS拓扑如图1所示。 图1 典型工频UPS拓扑 三相交流电输入经过换相电感接到3个SCR桥臂组成的整流器后变换成直流电压。通过控制整流桥SCR的导通角来调节输出直流电压值。由于SCR属于半控器件,控制系统只能够控制开通点,一旦SCR导通之后,即使门极驱动撤消,也无法关断,只有等到其电流为零之后才能自然关断。所以其开通和关断均是基于一个工频周期,不存在高频的开通和关断控制。 由于SCR整流器属于降压整流,所以直流母线电压经逆变输出的交流电压比输入电压低。要使输出相电压能够得到恒定的220V电压,就必须在逆变输出增加升压隔离变压器。同时,由于增加了隔离变压器,系统输出零线可以通过变压器与逆变器隔离,显著减少了逆变高频谐波给输出零线带来的干扰。 同时,工频机的降压整流方式使电池直挂母线成为可能。工频机典型母线电压通常为3 00V~500V之间,可直接挂接30多节电池,不需要另外增加电池充电器。 按整流SCR管数量的不同,工频机通常分为6脉冲和12脉冲两种类型。6脉冲指以6个SCR组成的全桥整流,由于有6个开关脉冲对6个SCR分别控制,所以叫6脉冲整流。6脉冲整流拓扑如图2所示。 图2 典型6脉冲拓扑 12脉冲是指在原有6脉冲整流的基础上,在输入端增加移相变压器后再增加一组6脉冲整流器,使直流母线由12个SCR整流完成,因此又称为12脉冲整流。 下图所示两个3相整流电路就是通过变压器的不同联结构成12相整流电路。

什么是UPS高频机UPS工频机,其工作原理是什么

什么是UPS高频机/UPS工频机,其工作原理是什么 随着UPS技术的不断发展,很多计算机、电力电子领域的新技术、新理念引入到UPS行业。与IT行业的其他产品类似,现在的UPS与从前的产品相比较,无论在主要性能上、外观尺寸上、对现场环境的适应性及可靠性方面,都有了显著的进步,有些指标甚至是质的飞跃,对于大中型UPS来说更是如此。 目前比较流行的大中型UPS结构由原来的老式结构逐渐转向更为合理的新型结构,传统老式结构UPS的基本结构(工频机)如下,基本结构:可控硅整流+电池直接直流母线 IGBT逆变器+升压变压器 新型全IGBT UPS结构(高频机)如下,基本结构:不控整流+DC/DC倍压环节+独立充电器+逆变器

从图中可以看出,工频机与高频机的概念主要是对整流部分而言,工频机是可控整流,传统技术最好可做到12拍整流;而高频机的整流是二极管不控整流+IGBT的高频直流升压环节。对逆变器而言都是IGBT的SPWM高频逆变工作方式(除早期的可控硅逆变工作模式UPS,目前已经淘汰)。另外,工频机的输出变压器必不可少,由于其整流逆变等环节均为降压环节,因此在输出侧必须有升压变压器作为电压的调整。而高频机由于具有DC/DC升压环节,其输出侧不必要加升压环节(升压变压器),对于需要加装隔离变压器的现场,高频机也可按照要求加装隔离变压器选件,其作用也由原来的必要配置转变为可选配置。UPS的电气结构所以发生了更新变化,主要是由于元器件的发展,IGBT作为UPS的主要功率元件技术更加成熟,无论从容量、结构、或是可靠性都大大地提高了,加之UPS数字化程度地不断深入促成了新一代大中型UPS 的主流结构由原来的工频机转向高频机(正如当年可控硅逆变器被大功率晶体管GTR取代,之后又被IGBT逆变器取代一样)。UPS电气结构的更新最直接的效果就是UPS主机体积的缩小,重量的下降,而更重要的是电气性能的提高。下面具体分析两种结构UPS的电气原理及电气性能: 早期大中型UPS主回路结构采用可控硅整流将输入的交流电整为直流,电池直接挂在直流母线上,当输入市电正常时,靠整流可控硅的调节对电池充电,同时为GTR或IGBT结构的桥式逆变器供电,逆变器将直流逆变为交流,最后经过输出变压器的升压及滤波,提供纯正的交流输出。从其结构中可以看出,从整流(从交流变为直流)到逆变(在从直流变为交流)的过程中,每个环节都是将压环节:可控硅整流是为了提供恒定的直流电压而采取的一种整流方式(可通过可控整流的导通角调整来适应输入电压变化,确保输入交流电压变化时整流输出直流电压的恒定),由于可控硅整流只能斩掉一部分输入电,所以其恒定输出电压的代价是将输出电压恒定在底于全波整流输出电压的某个数值上。而逆变环节同样是一个降压环节,从可控整流输入来的直流电在通过逆变器逆变出交流的过程中同样采用的是斩波的做法,其结果同样是输出电压等级的再次降低。正是由于上述的原因,在此种结构的UPS中,必须在输出测加入升压变压器,将逆变输出的较低恒定电压升致合理的输出范围,最终提供了恒定的220/380V输出。 目前较为先进的UPS主回路结构采用不控整流加升压环节,将交流输入通过整流桥全波整流为直流后,采用IGBT元件组成的DC/DC电路直流升压到一个较高的恒定直流电压(与可控硅整流的效果相反,通过这种IGBT整流可以得到一个高于全波整流输出电压的恒定直流电。并将其作为直流母线,为电池充电电路(充电电路也采用IGBT充电技术,可实现电池直接挂母线方式所无法作到的充电效果)及逆变输出部分提供电能。由于直流母线电压足够高,经过IGBT高频逆变调整后,可直接得到恒定的逆变输出电压。此时无须在加一个升压环节,完全可以省掉输出升压变压器。 在上述的两种UPS结构中,后者在所有功率环节均采用了IGBT技术,因此此种结构的UPS又为全IGBT UPS。由于数字技术的引入,大大提高了IGBT元件的开关频率,与前者相比,在很多方面具有显著的优势:

相关主题
文本预览
相关文档 最新文档