用稻壳灰制造的新水泥
- 格式:pdf
- 大小:84.40 KB
- 文档页数:1
稻壳和稻壳灰的利用稻壳是大米加工的副产品,约占稻谷的22%。
我国东北三江平原盛产大米,大量的稻壳在米业公司堆积成山,最普遍的消耗利用方式是作为冬季取暖的燃料。
在丹东等沿海地区,则被用来作为冰垛保温材料,大量储存的冰块可供渔船出海捕捞全年所需。
更有人将稻壳作为生产饲料的原料,以此谋利。
最近十多年以来,水稻集中产区有了稻壳发电的利用方式,虽是国家所提倡的新能源开发,但一次投资大、相关产业补贴政策不到位、原料供应不稳定、收购价格难受控等诸多因素,始终得不到推广。
其实,稻壳和稻壳灰的利用方式还有很多。
稻壳作酿酒辅料稻壳质地疏松,吸水性强,具有使用量少而使发酵界面增大的特点。
稻壳中含有的多缩戊糖和果胶质,在酿酒过程中生成糠醛和甲醇的物质。
稻壳是酿制大曲酒的主要辅料,也是麸曲酒的上等辅料,是一种优良的填充剂,生产中用量的多少和质量的优劣,对产品的产量、质量影响很大。
江苏农垦集团下属几个农场的大米加工厂、湖南长沙的“亮之星”米业公司就是利用稻壳酿制优质白酒,以此消耗大量的稻壳。
稻壳做化妆品据报道,日本企业使用稻壳制造美容化妆品,受到女性消费者的欢迎。
日本自古以来就知道如何利用糙米后的废弃物--稻壳,如加盐后用于腌咸菜,烧成灰加水过滤后用来洗涤物品等。
日本一些企业已用它制造香波、香皂及美容的化妆品和化妆水等,颇受女性消费者的青睐。
其特点是有明显的保湿作用,可清除肌肤上的污垢,并且对皮肤的刺激性较小,此外,还有抑制黑色素生成,减少皱纹、斑雀等的功效。
据研究,稻壳中含有各种维生素、酶及食物纤维,对促进皮肤的新陈代谢有一定效果;稻壳中的另一种有用成分--肌醇可预防直肠癌及乳腺癌等;γ-谷维素对自律神经失调症和更年期障碍也有疗效。
使用稻壳制造化妆品有百余年历史的里阿尔公司的科研人员说,稻壳中还有许多未知的成分,用它在各种领域开发新商品还有充分的余地。
稻壳砖稻壳内含20%左右优良的无定型硅石,是制砖的好原料。
在日本,将稻壳类与水泥、树脂混和均匀后,经快速模压制成砖块,具有防火、防水及隔热性能,重量轻,且不易碎裂。
高温稻壳灰对水泥水化的影响研究
陈耀华;刘杰胜;冯博文;魏靖;张一迪;谭晓明
【期刊名称】《武汉轻工大学学报》
【年(卷),期】2022(41)3
【摘要】为了防止水泥基材料中水泥水化产生二氧化碳等加重温室效应,同时减小稻壳对环境的污染问题,将稻壳在800℃高温条件下煅烧成稻壳灰,将稻壳灰掺入水泥砂浆中,通过水化试验研究了高温稻壳灰对水泥水化的影响,并通过力学强度试验以及微观结构分析,进一步验证了高温稻壳灰对水泥水化的影响。
试验结果表明,高温煅烧的稻壳灰能够促进水泥水化程度,且随稻壳灰掺量的增加,对水泥水化影响越大,随着养护龄期的增加,促进作用逐渐减小。
【总页数】5页(P71-75)
【作者】陈耀华;刘杰胜;冯博文;魏靖;张一迪;谭晓明
【作者单位】武汉轻工大学土木工程与建筑学院
【正文语种】中文
【中图分类】TU525
【相关文献】
1.硅灰对水泥-减水剂体系水化早期Zeta电位的影响研究
2.稻壳灰对固井水泥石性能影响研究
3.稻壳灰/丙烯酸钙复合改性水泥强度及水化放热性能研究
4.城市生活垃圾焚烧飞灰对水泥水化过程的影响研究
5.稻壳灰对水泥基及混凝土性能影响的试验研究
因版权原因,仅展示原文概要,查看原文内容请购买。
稻壳灰的作用及使用方法
稻壳灰是一种常见的天然矿物质资源,具有多种重要作用和使用方法。
稻壳灰的作用包括:
1. 净化水质:稻壳灰可以去除水中的铅、汞等有害物质,净化水质,提高水质的安全性。
2. 土壤改良:稻壳灰可以增强土壤的肥力,改善土壤结构,提高
土壤质量,促进植物生长。
3. 防腐蚀:稻壳灰可以防止食物中的细菌、病毒以及霉菌生长,保护食品的卫生安全。
4. 建筑材料:稻壳灰可以作为建筑材料的灰粉,用于墙体、地面、屋顶等的修补和装饰。
稻壳灰的使用方法包括:
1. 水质净化:将稻壳灰送入水处理系统,与其他成分一起作用,
可以净化水质。
2. 土壤改良:将稻壳灰加入土壤中,可以增强土壤的肥力,改善土壤结构。
3. 防腐蚀:将稻壳灰洒在腐蚀区域,或者作为涂层的原材料,可以防止食品、衣物、设备等物品的腐蚀。
4. 建筑材料:将稻壳灰混合水泥、沙子等原材料,可以制备成建筑材料,用于墙体、地面、屋顶等场合。
需要注意的是,使用稻壳灰时需要注意安全问题,避免吸入粉尘或其他有害物质。
同时,稻壳灰在生产和储存时需要严格遵守相关规定,避免对环境造成污染。
安徽理工大学大学生节能减排社会实践与科技竞赛作品名称:以稻壳为原料制备白炭黑材料学院名称: 材料科学与工程学院团队名称:开源团队指导教师:刘银副教授目录摘要 (2)一、稻壳 (3)1.1稻壳产量概况 (3)1.2稻壳简介 (3)1.2.1 稻壳的主要组成 (3)1.2.2 稻壳的特性 (3)1.3稻壳的现状与用途 (4)1.3.1 稻壳的现状简析 (4)1.3.2 稻壳的用途 (4)二、以稻壳为原料制备白炭黑 (6)2.1白炭黑的名称及种类 (6)2.2白炭黑的性质 (6)2.3目前制备白炭黑的主要方法 (7)2.3.1 传统方法 (7)2.3.2 新方法 (7)2.4利用稻壳制备白炭黑 (8)2.4.1实验步骤 (8)2.4.2 实验结果图 (10)2.4.3 白炭黑用途 (11)三、结论 (12)参考文献 (13)以稻壳为原料制备白炭黑的研究摘要我国稻壳资源相当丰富(4500万吨/年),但利用率很低,大部分作为废物丢弃或作为低级燃料用,造成了环境污染。
实现稻壳资源化利用,增加其附加值,变废为宝,对促进稻壳资源循环高效利用具有重要的现实意义。
因此本作品对稻壳的成分和利用现状进行了详细地调研和分析,进行了以稻壳为原料制备白炭黑的研究。
稻壳最主要的特点是硅含量高,稻壳灰的质量约是稻壳质量的20%,稻壳灰主要成分是二氧化硅(87%-97%),本作品总体思路是通过对稻壳的酸化以及热处理,提高稻壳内的二氧化硅的含量,初步得到较纯的二氧化硅即白炭黑。
此工艺较为简单、能耗低、生产成本相对较低,一定程度解决了稻壳利用率低的问题,减少对环境的污染,还能够廉价地合成纯度相对较高的白炭黑,克服了传统方法以石英砂和纯碱为原料制备白炭黑能耗大,成本高的缺点。
此外本作品还探索使用微波烧结工艺,以及改变实验温度等其他条件,观察生成的白炭黑的组成和结构的不同。
我国可再生能源越来越受到重视和政策扶持,以稻壳制备白炭黑拓宽了稻壳的使用范围,具有非常可观的前景。
稻壳灰对混凝土性能的影响郑传宝;丁华柱;都增延;潘战雄;刘强;文庆军【摘要】该文所述试验以充分利用稻谷壳为目的,对稻谷壳进行煅烧粉磨后作为矿物掺合料掺入水泥和混凝土中,研究其对水泥标准稠度用水量、凝结时间、水泥胶砂强度和混凝土抗压强度的影响.结果表明:稻壳灰会增加水泥的标准稠度用水量,以及凝结时间,随稻壳灰掺量的增加,水泥标准稠度用水量逐渐升高,凝结时间逐渐增长.稻壳灰掺量在10%~20%内对混凝土的抗压强度有利,特别是混凝土的后期抗压强度.【期刊名称】《重庆建筑》【年(卷),期】2018(017)003【总页数】3页(P58-60)【关键词】稻壳灰;混凝土;抗压强度【作者】郑传宝;丁华柱;都增延;潘战雄;刘强;文庆军【作者单位】重庆佳施乐节能科技有限公司,重庆 400020;重庆市綦江区朝野混凝土有限公司,重庆 401420;重庆建工建材物流有限公司,重庆 401122;河池永固混凝土有限责任公司,广西河池 547000;仪陇县旭峰建材有限公司四川南充 637615;重庆市璧山区峰智混凝土有限公司,重庆 402760【正文语种】中文【中图分类】TU528.00 引言混凝土用量急剧增加,水泥用量同样快速增长,高用量的水泥不利于环保发展;同时,优质矿物掺合料也越来越少。
面对绿色可持续发展的要求,寻找新的矿物掺合料是大趋势。
农业废弃物稻壳作为一种生物可持续资源在国外已经逐步开始应用在混凝土行业中。
稻谷是我国南方的主要农作物,每年的谷壳产量约计4千多万吨[1-2],而传统的处理办法一般是将谷壳直接烧掉,不能充分利用谷壳资源。
稻壳是稻谷的主要农业副产品,其中含有50%的纤维素、25%~30%的木质素,其中SiO2的含量一般达到15%~20%,将稻壳进行燃烧后,稻壳中的纤维素和木质素被燃烧,所得稻壳灰中SiO2的含量一般达到90%左右,与硅灰中SiO2的含量相当。
因此,从理论上稻壳灰作为矿物掺合料具有良好的活性效应[3-7]。
不同细度稻壳灰对混凝土强度及自收缩的影响袁继峰;刘彬;董晓进【摘要】研究4种细度的稻壳灰在5%~30%的掺量下对混凝士的强度和早期自收缩的影响.结果表明,混凝土的28d抗压强度与保证混凝土抗压强度比不小于1oo%的最大掺量均随稻壳灰的特征粒径D50的减小而增大;稻壳灰孔结构的吸水性可对混凝土的强度发展和早期自收缩产生影响,且D50越大影响越明显;D50在2.96~21.06 μm时,稻壳灰可不同程度地抑制混凝土的早期自收缩,且其抑制程度随D50和掺量的增大而增大.【期刊名称】《兰州理工大学学报》【年(卷),期】2015(041)006【总页数】5页(P143-147)【关键词】混凝土;稻壳灰;自收缩;抗压强度【作者】袁继峰;刘彬;董晓进【作者单位】南京理工大学泰州科技学院土木工程学院,江苏泰州225300;中建三局技术中心,湖北武汉430000;南京理工大学泰州科技学院土木工程学院,江苏泰州225300【正文语种】中文【中图分类】TU528.01随着煤炭、石油、天然气等资源的日渐枯竭,越来越多的生态电厂开始使用稻壳作为燃料进行发电.稻壳燃烧后产生的稻壳灰已经成为了国内外研究的热点.稻壳灰含有大量的活性SiO2[1],是一种理想的混凝土掺合料,其在水泥基材料中的应用研究已经相当广泛.欧阳东等[2-3]研究表明,稻壳灰的活性与烧结温度有关,低烧稻壳灰的SiO2活性不亚于硅灰的反应活性.稻壳灰对水泥基胶凝体系的增强作用极大地推动了稻壳灰在混凝土中的应用研究,相关研究[4-6]表明,稻壳灰可以改善新拌混凝土的和易性,增强硬化混凝土的力学性能和耐久性.Zhang,Malhotra[7]的研究表明,在混凝土中掺入30%的稻壳灰,混凝土的7、14、28、90 d的抗压强度都高于基准混凝土.Bhanumathidas等[8]将稻壳灰掺量提高到40%,结果表明稻壳灰混凝土90 d强度仍然比基准混凝土高.多篇文献也报道了稻壳灰的不足.I. K. Pong等[9]研究了稻壳灰对不同强度等级混凝土工作性能的影响,结果表明在达到相同工作性能时,掺入稻壳灰的混凝土需要更多的水,混凝土设计强度提高,稻壳灰混凝土的需水量也提高.Gemma Rodriguez de Sensale等[10]也认为,稻壳灰会影响混凝土的工作性能,要达到与基准混凝土相同的流动性,必须多添加0.3%~0.4%的高效减水剂.还有部分研究表明,稻壳灰对混凝土自收缩具有一定的抑制作用.Gemma Rodríguez de Sensale[11]等采用5%和10%的稻壳灰取代水泥,研究表明稻壳灰降低水泥浆体自收缩.叶光和V.T.Nguyen[12]的研究表明,添加20%平均粒径为5.6 μm的RHA可以抵消水化15 d后的超高性能混凝土的自收缩.虽已有大量稻壳灰在混凝土中的应用研究,但相关研究仍缺乏系统性和全面性,尤其是不同细度的稻壳灰对混凝土性能影响的规律仍需要进一步的研究.本文研究主要针对不同细度的稻壳灰,研究其在不同掺量时对混凝土的抗压强度和早期自收缩的影响规律,为稻壳灰的研究及应用提供一定的参考.水泥采用亚东水泥厂生产的P·O 42.5水泥,稻壳灰由试验室经580 ℃烧制而成,其化学组成如表1所示.将烧制的稻壳灰磨制成4种细度的磨细稻壳灰R1、R2、R3、R4,其粒度分布如图1所示,其平均粒径D50分别为21.06、12.84、7.13、2.96μm.1.2.1 胶砂试验按照GB/ T17671—1999 《水泥胶砂强度检验方法》进行水泥胶砂试验,并将磨细稻壳灰R1、R2、R3、R4均按照5%、10%、15%、20%、25%和30%的质量百分比取代水泥,检测其7 d和28 d的抗压强度.1.2.2 混凝土配制试验采用如表2所示的基准配合比,将磨细稻壳灰R1、R2、R3、R4均按照5%、10%、15%、20%、25%和30%的质量百分比取代水泥,检测混凝土拌合物的初始扩展度.混凝土试块成型规格为100 mm×100 mm×100 mm,检测其7 d和28 d 的抗压强度.1.2.3 混凝土自收缩测定采用由中国建筑科学研究院和舟山市博远科技开发有限公司开发的CABR-NES型非接触式混凝土收缩变形测定仪测定混凝土的早期自收缩,测试方法依据GB/T 50082—2009 《普通混凝土长期性能和耐久性能试验方法标准》进行,试验测定时间从混凝土初凝开始.测试过程中,混凝土表面由塑料薄膜密封,具体分为如下2套试验方案.1) 按照表2中的基准配合比,进行混凝土自收缩对比试验,其中,R1、R2、R3、R4均按照15%的质量百分比取代水泥,分2次进行测定,分别为:基准1、R1、R2;基准2、R3、R4.2) 按照表3所示的配合比进行试验,对比R2与矿粉(S95级,密度2.87 g/cm3,勃氏比表面积为4 500 cm2/g)、粉煤灰(Ⅰ级,密度2.51 g/cm3,45 μm筛余2.8%)对混凝土自收缩影响的差异,其中,稻壳灰与粉煤灰按照20%的质量百分比取代水泥.1.2.4 稻壳灰微观结构使用JSM-5610LV型扫描电子显微镜对未经粉磨的稻壳灰与粉磨后磨细稻壳灰进行微观形貌分析.为便于准确表征不同细度稻壳灰对混凝土抗压强度的影响规律,同时进行与混凝土试验相平行的胶砂的流动度和抗压强度试验.图2a、图2b分别为稻壳灰胶砂的7 d抗压强度比和28 d抗压强度比;图2c、图2d分别为稻壳灰混凝土的7 d抗压强度比和28 d抗压强度比.由图2可见,磨细稻壳灰对胶砂抗压强度比的影响与其对混凝土抗压强度比的影响规律基本一致.以磨细稻壳灰掺量为变量,抗压强度比曲线呈类抛物线形状,在水化28 d时磨细稻壳灰对抗压强度比的影响较为显著.由图2a可以看出,R1、R2、R3、R4的类抛物线顶点分别出现在掺量为20%、15%、10%、5%,而图2b反映出的混凝土28 d抗压强度比曲线的顶点分别出现在20%、15%、10%、10%,两者规律性基本一致.以上规律说明,保持抗压强度比不小于100%的情况下,磨细稻壳灰取代水泥的用量,根据其不同的细度,具有不同的最大取代量.由于R4的平均粒径较小,其取代量从5%~20%增加时,28 d混凝土抗压强度比呈逐渐增大的趋势;取代量达到30%时,其抗压强度比仍大于100%.R1和R2的平均粒径较大,其取代量大于10%时,随着掺量的增加,抗压强度比逐渐减小.因此,稻壳灰的掺量和细度是影响稻壳灰混凝土强度发展的重要因素.由图2a和图2c可见,在7 d龄期时,磨细稻壳灰掺量大于15%时,不同细度磨细稻壳灰的胶砂和混凝土抗压强度比,由大到小依次为R4、R3、R2、R1.由图2b和图2d可见,在28 d龄期、磨细稻壳灰掺量大于10%时,也表现出了同样的规律.说明磨细稻壳灰越细,其化学反应活性越高,对胶凝体系强度的提高程度越大;反之,当磨细稻壳灰的平均粒径较大时,甚至会降低胶凝体系的强度.由图2c可见,当磨细稻壳灰掺量为10%时,其7 d抗压强度比由大到小依次为R1、R2、R3、R4,与其掺量大于15%时的规律完全相反.原因分析:由稻壳灰粉磨前的微观形貌和粉磨后的微观形貌(图3)可以看出,稻壳灰在粉磨前,具有大量的孔结构,但经过机械粉磨后,大量孔结构被破坏.稻壳灰平均粒径越小,孔结构破坏越严重,即4种磨细稻壳灰的内部孔结构含量由大到小依次为R1、R2、R3、R4.稻壳灰的孔结构能够吸收浆体中的水分,导致浆体的有效水胶比降低,从而混凝土的工作性能和强度发展受到影响.由表4的数据可以看出,4种细度的磨细稻壳灰随着掺量的增大,混凝土的工作性能逐渐变差.磨细稻壳灰的平均粒径越小,其对混凝土工作性的影响就越小;反之,磨细稻壳灰的平均粒径越大,其对混凝土工作性的影响就越大.说明较粗的稻壳灰对水分的吸收较大,减少了拌合初期浆体中自由水的含量,降低了浆体的有效水胶比.因此,在水化7 d内,磨细稻壳灰的化学活性发挥程度尚较小,在磨细稻壳灰掺量较小时,有效水胶比起到了影响混凝土强度的主要作用.图2中胶砂强度比在磨细稻壳灰掺量为5%时也表现出了相同的规律.平均粒径较小的磨细稻壳灰的填充效果较好,有利于改善胶凝体系的密实度,因此,在水化7 d内,当磨细稻壳灰的掺量增加至15%以上时,浆体的密实度逐渐成为影响混凝土强度的主要因素,磨细稻壳灰对抗压强度比的影响规律也随之发生变化.综上分析可知,随着磨细稻壳灰细度、掺量以及混凝土养护龄期的变化,磨细稻壳灰对混凝土强度发展的影响也发生变化,甚至会出现规律性的颠倒.磨细稻壳灰对混凝土强度的影响机理主要有3个方面:磨细稻壳灰自身的化学活性、不同细度的填充性能和降低浆体有效水胶比.图4a为基准混凝土与掺加4种细度稻壳灰的混凝土在28 d龄期内的自收缩,其中,2个基准为2次测量的结果.图4b为单掺稻壳灰(R2)、矿粉和粉煤灰20%时混凝土早期自收缩的对比图.由图4a可以看出,掺加15%磨细稻壳灰的混凝土的早期自收缩均低于基准混凝土,说明D50在2.96~21.06 μm的磨细稻壳灰均可抑制混凝土的早期自收缩.掺加4种磨细稻壳灰的混凝土早期自收缩大小与其细度大小顺序一致,平均粒径越大,自收缩越小.原因分析:如2.1节中的分析,磨细稻壳灰平均粒径越大,其内部孔结构越多,稻壳灰的孔隙可将浆体中的部分水分吸收.在混凝土养护过程中,浆体中的水分逐渐被消耗,稻壳灰中储存的水分逐渐被释放,有效地降低了混凝土内部自干燥的速率和程度,从而有效地降低了混凝土的早期自收缩.R1的平均粒径最大,内部孔结构最多,因此其较R2、R3、R4储存的水分多,对混凝土内部自干燥的缓解较好,使混凝土早期自收缩较小;反之,R4的平均粒径最小,其早期自收缩最大.由图4中R2曲线对比可知,磨细稻壳灰R2掺量为20%时的混凝土早期自收缩较其掺量为15%时的早期自收缩小,说明增加磨细稻壳灰的掺量可降低混凝土的早期自收缩.由图4b可见,当取代水泥量为20%时,R2和粉煤灰对混凝土的早期自收缩均有抑制作用,且掺加R2的混凝土早期自收缩较掺加粉煤灰的小;但通过图4曲线对比可知,当R3和R4的掺量为15%时,其对混凝土早期自收缩的抑制程度较粉煤灰掺量为20%时的小.1) 混凝土28 d强度随磨细稻壳灰的特征粒径D50的减小而增大,并且以磨细稻壳灰掺量为变量,抗压强度比曲线呈类抛物线形状.在抗压强度比不小于100%的情况下,磨细稻壳灰越细,其最大掺量越大.2) 磨细稻壳灰的孔结构可吸收浆体中的水分,降低浆体有效水胶比,对混凝土的强度发展和早期自收缩产生影响;且D50越大,影响越明显.3) 磨细稻壳灰的特征粒径D50在2.96~21.06 μm时,可不同程度地抑制混凝土的早期自收缩,抑制效果与其细度和掺量有关.磨细稻壳灰越粗、掺量越大,对混凝土早期自收缩的抑制效果越明显.磨细稻壳灰D50>12.84 μm时,其对混凝土早期自收缩的抑制效果优于粉煤灰.【相关文献】[1] 欧阳东.稻壳新出路:制备混凝土用纳米SiO2 [J].中国农业科技导报,2003,5(5):62-65.[2] 欧阳东.纳米SiO2低温稻壳灰用于混凝土的研究 [J].新型建筑材料,2003,30(8):7-9.[3] FENG Qingge,YAMAMICHI H,SHOYA M,et al.Study on the pozzolanic properties of rice husk ash by hydrochloric acid pretreatment [J].Journal of Colloid and Interface Science,2004,34(3):521-526.[4] UZAL B,TURANLI L,YUCEL H,et al.Pozzolanic activity of clinoptilolite:A comparative study with silica fume,fly ash and non-zeolitic natural puzzling [J].Cement and Concrete Research,2010,40(3):398-404.[5] RAO G A.Development of strength with age of mortars containing silica fume [J].Cement and Concrete Research,2001,31(8):1141-1146.[6] 韩建国,阎培渝.凝聚态硅灰对低工作性混凝土强度发展历程的影响 [J].混凝土,2008(2):74-76.[7] ZHANG M H,MALHOTRA V M.High-Performance concrete incorporating rice husk ash as supplementary cementing material [J].ACI Matter J,1996,93(6):629-636.[8] BHANUMATHIDAS N,MEHTA P K.Concrete mixtures made with ternary blended cements containing fly ash and rice husk ash [C]//MALHOTRA V M.International conference proceeding seventh CANMENT.Chennai,India:CANMENT,2004:379-391. [9] PONG I K,OKPALA D C.Strength characteristics of medium workability ordinary Portland cement-rice husk ash concrete [J].Building and Envionment,1992,27(1):105-111.[10] SENSALE G R D.Strength development of concrete with rice-husk ash [J].Cement and Concrete Composites,2006,28(2):158-160.[11] SENSALE G R D,RIBEIRO A B,GONCALVES A.Effects of RHA on autogenous shrinkage of Portland cement pastes [J].Cement and Concrete Composites,2008,30(10):892-897. [12] 叶光,NGUYEN V T.稻壳灰抑制超高性能混凝土的自收缩机理分析 [J].硅酸盐学报,2012,40(2):212-216.。
稻壳灰的作用及使用方法
稻壳灰是一种常见的农业废弃物,它不仅可以用来做肥料,还有很多其他的用途。
下面我们来了解一下稻壳灰的作用及使用方法。
1. 作为肥料
稻壳灰中含有丰富的钾、钙、镁等元素,可以作为肥料使用。
将稻壳灰撒在土壤中,可以改善土壤结构,增加土壤肥力,提高作物产量。
但是需要注意的是,稻壳灰的使用量不宜过多,否则会对土壤产生不良影响。
2. 作为饲料添加剂
稻壳灰中含有丰富的硅酸盐和微量元素,可以作为饲料添加剂使用。
将稻壳灰加入饲料中,可以促进动物的生长发育,增强免疫力,提高饲料的营养价值。
3. 作为水处理剂
稻壳灰中含有丰富的碱性物质,可以作为水处理剂使用。
将稻壳灰加入水中,可以中和水中的酸性物质,提高水的PH值,净化水质,改善水的口感。
4. 作为建筑材料
稻壳灰可以与水泥、石灰等材料混合使用,制成轻质隔墙板、保温
板等建筑材料。
这些材料具有轻质、保温、隔音等特点,可以广泛应用于建筑领域。
5. 作为工业原料
稻壳灰中含有丰富的硅酸盐和微量元素,可以作为工业原料使用。
将稻壳灰加工成硅酸钙、硅酸铝等化工产品,可以广泛应用于建材、化工、冶金等领域。
稻壳灰是一种非常有用的农业废弃物,可以广泛应用于农业、工业、建筑等领域。
我们应该充分利用稻壳灰,发挥其最大的价值。
v ''w ''w ''x-uNian ( echitectu ee U*onst euction2020 !$ 08 "#$266"<o 08!2020?oe !266NOPmb OQ[< RS[TUVWJ 'K ' L )M(福建省建筑设计研究院有限公司福建福州350001$摘 要:试验研究了不同掺量的稻壳灰对高强混凝土的力学性能和耐久性所产生的效果。
即:设计了 5个配合比,分n g =#L ; 85%%10%%15%%20% 25%8‘ h " 57l 8:;< B %'裂抗拉强度、吸水性能、抗冻融性能、抗氯离子渗透性能进行了相关试验&试验结果表明:当稻壳灰含量在20%以内,稻壳灰含量增加能提高高强混凝土的强度和弹性模量指标,但会降低其比重;随着稻壳灰含量的增加,高强混凝土的\ “] ]<QR ' 稻 灰有 强混凝土的 ” 能 G | 能 &关键词:高强混凝土'稻壳灰;硅灰;抗压强度;耐久性!G:WU5''''''tu :(''''''t ‘ :1004-6135$2020%08-0122-04CR7B;731484=/=/@324=51@/.;2P72.483./E/@.781@7BN54N/531/27899;57?1B136 4=.1D.-235/8D3.@48@5/3/81>3./n,'85#6.)S%$-uNian PeoeinciaePnstituteot(echitectueaeDesign and 1eseaech *o. "Ltd. "-uzhou 350001 %Abstract : In this study ,the effects of ricc husk ash on the mechanical properties and durability of high - strength concrete were experioenataeine9stigatd.5 conce9tmihtue peopoetionsw9e d9sign9d with eic9husk ash o tmass teaction 5 , 10 , 15 ,20 and25% otth9totaec9m9ntia tiousmateiaes.Wh9compe9s ie9stength , spei t ingtnsie stength , wateabsoeption , te99z9-thawe9sistanc9and cheoeid9p9n9teation esista ancc of concrete were determined accordingly. Whe results revealed that : when the replacement ratio of rice husk ash was less than 20% , theinceeaseoteicehusk ash contentimpeoeed thesteengthsand eeasticmodueusotthehigh -steength conceete , whieeeeduced itsspeciticgeaeia T ; with the increase replacement ratio of rice husk ash,the saturated water absorption rate of high - strength concrete decreased graduaAy ; eicehusk ash wasbeneticiaetoimpeoeetheteeeze-thaweesistanceand cheoeidepeneteation eesistanceothigh -steength conceete.Keywords : High - strength concrete ; lice husk ash ; Silica fume ; Mechanical properties ; Durability,稻壳灰是稻壳燃烧过程产生的植物灰。
■
-
_
-
… …
I _
_
_
一
一
_
薰
灰复合水泥.则可以引发一
的成分可占到20%。
复合水泥生产厂家还可以和生物质发电厂合
作,把稻壳的热能用来发电,燃烧产生的灰烬则可 以添加到水泥中。 为什么要用稻壳灰来制造水泥,而不用稻草或 者其他农作物的废料呢?水泥的主要成分是硅酸 钙,这种建筑材料的黏性和坚固性都不错。研究人 员表示,制造水泥还得用含硅量高的农作物,而稻 壳中富含二氧化硅,因此可以用来制造水泥。 几十年前,科学家们就已经意识到稻壳作为建 材的潜在价值,但是以往稻壳的焚烧物因为含碳量 过高而一直难以被用作水泥的替代品。近年来,研 囝SCIENCE IN 24 HOURS 文l巧云 究人员已经从技术上较好地 解决了这个问题。新方法是 将稻壳放入熔炉,利用 800。C的高温燃烧,最后剩下 纯度较高的二氧化硅粉末。 采用掺加稻壳灰的水泥会不会降低建筑物的强 度,导致建筑物成为“豆腐渣工程”呢?研究人员表 示,把普通水泥和部分稻壳灰混在一起经特定程序 加工制成的复合水泥,只会让混凝土更加坚固。美 国全国混凝土协会工程部的科林・劳勃说:“这个基 本原理已经存在好几个世纪了,几百年前,罗马人就 开始用火山灰来制造城墙砖了。”罗马人发现,掺一 些维苏威山上的火山灰,能够使水泥更牢固。劳勃 说,如今一些建筑工人使用炼铁剩下的溶渣,或者火
力发电厂剩下的煤灰,能达到同样的效果。
温帕蒂表示,稻壳灰的优势在于它不像煤灰或
者溶渣,稻谷年年种,稻壳灰取之不尽。此外,掺入
稻壳灰还能让制造出的浅色水泥更好地反射阳光,
使用这种水泥的建筑物还可以节省能源。现在,不
少国家提倡利用“把建筑变白”的方法来抵御全球
气候变暖,这种浅色水泥就是一种很好的“把建筑
变白”的建筑材料。由于用来制造水泥的稻壳灰经
高温处理后产生的二氧化硅比较纯,因此掺加了稻
壳灰的水泥更具抗腐蚀性。研究人员表示,修筑摩
天大楼、桥梁或任何近海或水上建筑时,如果能用
稻壳灰复合水泥代替普通水泥,其优势就会大大体
现出来。
温帕蒂的研究团队目前正在进行一项试验,如
果能证明高温燃烧稻壳的方法奏效,他们将开始建
设大型熔炉,计划每年生产约1.5万吨稻壳灰。如果
能大规模地制造稻壳灰,利用美国产生的所有稻壳
每年可制成21O万吨稻壳灰。事实上,对于一些稻
米和混凝土消耗都非常大的发展中国家而言,稻壳
灰的发展潜力更大。
有关专家表示,如果大范围推广稻壳灰复合水
泥,则可以引发一场“绿色建筑”革命。