spss多元统计分析 第一章:回归分析
- 格式:ppt
- 大小:2.48 MB
- 文档页数:45
回归分析在商品的需求量分析中的运用摘要:本文结合多元统计分析理论中关于多元线性回归分析的应用,对商品需求量与商品价格和人均月收入的关系的线性方程进行探索研究。
回归分析的基本思想是描述若干个变量间的统计关系,以研究一个或多个自变量与因变量之间的内在联系。
而回归分析研究又包括线性回归和非线性回归。
本文就是运用线性回归来分析商品需求量和商品价格,人均月收入之间的关系的。
关键词:线性回归线性方程商品需求量一.引言随着我国经济的快速发展,人们的物质生活条件越来越好,各种各样的商品出现在人们的日常生活中。
随着人们收入水平的不断变化,随着商品价格的不断变化,人们对某种商品的需求量也不同。
如果生产的商品量大于商品的需求量,则会导致资源浪费,商品的价格下降;反之如果商品的生产量少于商品的需求量,则会导致商品供应不足,价格上涨。
以上两种情况都会对经济发展造成不利的影响。
因此,对商品需求量的预测是必要的。
那么,应该如何预测商品的需求量呢?为此,本文在参阅相关文献的基础上,根据东方财富网所提供的某地1996~2995年10年间对某品牌的手表需求量和商品价格,人均月收入的数据采用线性回归的方法进行回归分析,并对模型进行检验,预测。
二.经济理论分析、所涉及的经济变量(1)经济理论分析:1.需求:是指在各种不同价格水平下,消费者愿意且能够购买的商品或服务的数量;2.需求与价格之间存在这需求规律,即“在其它条件不变的条件下,一种商品的价格上升会引起该商品的需求量减少,价格下降会引起该商品的需求量增多”;由此我们引出需求的价格弹性的概念,它是指需求量对价格变动的反应程度,是需求量变化的百分比除以价格变化 的百分比,即公式:价格变动率需求量变得率需求的价格弹性系数=3.同理,需求与收入的关系可以用需求的收入弹性分析,它表示某一商品的需求量对收入变化的反应程度,即公式: 收入变动率需求量变得率需求的收入弹性系数=(2)变量的设定:在经济生活中,我们不难发现价格和收入水平的高低对商品需求量有着直接且密切的影响,故所建立的模型是一个回归模型!其中“商品价格”与“消费者平均收入”分别是自变量x1、x2,“商品需求量”是因变量y 。
简单易懂的SPSS回归分析基础教程章节一:SPSS回归分析基础概述SPSS(Statistical Package for the Social Sciences,社会科学统计软件包)回归分析是一种常用的统计方法,用于研究自变量对因变量的影响程度以及变量之间的关系。
本章将介绍SPSS回归分析的基本概念和目的,以及相关的统计指标。
SPSS回归分析的目的是建立一个数学模型,描述自变量与因变量之间的关系。
通过这个模型,我们可以预测因变量的变化,以及各个自变量对因变量的贡献程度。
回归分析包括简单回归分析和多元回归分析,本教程主要讲解简单回归分析。
在SPSS回归分析中,我们需要了解一些统计指标。
其中,相关系数(correlation coefficient)用于衡量自变量与因变量之间的线性关系强度。
回归系数(regression coefficient)描述自变量对因变量的影响程度,可用于建立回归方程。
残差(residual)表示实际观测值与回归模型预测值之间的差异。
下面我们将详细介绍SPSS回归分析的步骤。
章节二:数据准备和导入在进行SPSS回归分析之前,我们需要准备好数据集,并将数据导入SPSS软件。
首先,我们需要确定因变量和自变量的测量水平。
因变量可以是连续型数据,如身高、体重等,也可以是分类数据,如满意度水平等。
自变量可以是任何与因变量相关的变量,包括连续型、分类型或二元变量。
其次,我们需要收集足够的样本量,以获取准确和可靠的结果。
在选择样本时,应该遵循随机抽样的原则,以保证样本的代表性。
最后,我们将数据导入SPSS软件。
通过依次点击“File”、“Open”、“Data”,选择数据文件,并设置变量类型、名称和标签等信息。
完成数据导入后,我们就可以开始进行回归分析了。
章节三:简单回归分析步骤简单回归分析是一种研究一个自变量与一个因变量之间关系的方法。
下面将介绍简单回归分析的步骤。
第一步,我们需要确定自变量和因变量。
spss多元回归分析的报告怎么做:怎么做回归报告分析s pss 多元线性回归spss操作spss回归分析结果解释spss多元线性回归结果篇一:SPSS多元线性回归分析实例操作步骤SPSS 统计分析多元线性回归分析方法操作与分析实验目的:引入1998~2008年上海市城市人口密度、城市居民人均可支配收入、五年以上平均年贷款利率和房屋空置率作为变量,来研究上海房价的变动因素。
实验变量:以年份、商品房平均售价(元/平方米)、上海市城市人口密度(人/平方公里)、城市居民人均可支配收入(元)、五年以上平均年贷款利率(%)和房屋空置率(%)作为变量。
实验方法:多元线性回归分析法软件:spss19.0操作过程:第一步:导入Excel数据文件1. open data document——open data——open;2. Opening excel data source——OK.第二步:1.在最上面菜单里面选中Analyze——Regression——Linear ,Dependent(因变量)选择商品房平均售价,Independents(自变量)选择城市人口密度、城市居民人均可支配收入、五年以上平均年贷款利率、房屋空置率;Method选择Stepwise.进入如下界面:2.点击右侧Statistics,勾选Regression Coefficients(回归系数)选项组中的Estimates;勾选Residuals(残差)选项组中的Durbin-Watson、Casewise diagnostics默认;接着选择Model fit、Collinearity diagnotics;点击Continue.3.点击右侧Plots,选择*ZPRED(标准化预测值)作为纵轴变量,选择DEPENDNT(因变量)作为横轴变量;勾选选项组中的Standardized Residual Plots(标准化残差图)中的Histogram、Normal probability plot;点击Continue.4.点击右侧Save,勾选Predicted Vaniues(预测值)和Residuals (残差)选项组中的Unstandardized;点击Continue.5.点击右侧Options,默认,点击Continue.6.返回主对话框,单击OK.输出结果分析:1.引入/剔除变量表该表显示模型最先引入变量城市人口密度(人/平方公里),第二个引入模型的是变量(转载于: 写论文网:spss 多元回归分析的报告怎么做)城市居民人均可支配收入(元),没有变量被剔除。
SPSS中多元回归分析实例解析多元回归分析是一种统计方法,用于研究一个因变量与多个自变量之间的关系。
在SPSS中,可以使用该方法来构建、估计和解释多元回归模型。
下面将以一个实例来解析SPSS中的多元回归分析。
假设我们想要研究一个教育投资项目的效果,该项目包括多个自变量,例如教育资金、教育设施、学生人数等,并且我们希望预测该项目对学生学习成绩的影响。
首先,我们需要准备好数据并导入SPSS中。
数据应包含每个教育投资项目的多个观测值,以及与之相关的自变量和因变量。
例如,可以将每个项目作为一个观测值,并将教育资金、教育设施、学生人数等作为自变量,学生学习成绩作为因变量。
在SPSS中,可以通过选择“Analyze”菜单中的“Regression”选项来打开回归分析对话框。
然后,选择“Linear”选项来进行多元回归分析。
接下来,可以将自变量和因变量添加到对话框中。
在自变量列表中,选择教育资金、教育设施、学生人数等自变量,并将它们移动到“Independent(s)”框中。
在因变量框中,选择学生学习成绩。
然后,点击“OK”按钮开始进行分析。
SPSS将输出多元回归的结果。
关键的统计指标包括回归系数、显著性水平和拟合度。
回归系数表示每个自变量对因变量的影响程度,可以根据系数的大小和正负来判断影响的方向。
显著性水平表示自变量对因变量的影响是否显著,一般以p值小于0.05为标准。
拟合度指示了回归模型对数据的拟合程度,常用的指标有R方和调整后的R方。
在多元回归分析中,可以通过检查回归系数的符号和显著性水平来判断自变量对因变量的影响。
如果回归系数为正且显著,表示该自变量对因变量有正向影响;如果回归系数为负且显著,表示该自变量对因变量有负向影响。
此外,还可以使用其他方法来进一步解释和验证回归模型,例如残差分析、模型诊断等。
需要注意的是,在进行多元回归分析时,需要满足一些前提条件,例如自变量之间应该独立、与因变量之间应该是线性关系等。
线性回归分析的SPSS操作本节内容主要介绍如何确定并建立线性回归方程。
包括只有一个自变量的一元线性回归和和含有多个自变量的多元线性回归。
为了确保所建立的回归方程符合线性标准,在进行回归分析之前,我们往往需要对因变量与自变量进行线性检验。
也就是类似于相关分析一章中讲过的借助于散点图对变量间的关系进行粗略的线性检验,这里不再重复。
另外,通过散点图还可以发现数据中的奇异值,对散点图中表示的可能的奇异值需要认真检查这一数据的合理性。
一、一元线性回归分析1.数据以本章第三节例3的数据为例,简单介绍利用SPSS如何进行一元线性回归分析。
数据编辑窗口显示数据输入格式如下图7-8(文件7-6-1.sav):图7-8:回归分析数据输入2.用SPSS进行回归分析,实例操作如下:2.1.回归方程的建立与检验(1)操作①单击主菜单Analyze / Regression / Linear…,进入设置对话框如图7-9所示。
从左边变量表列中把因变量y选入到因变量(Dependent)框中,把自变量x选入到自变量(Independent)框中。
在方法即Method一项上请注意保持系统默认的选项Enter,选择该项表示要求系统在建立回归方程时把所选中的全部自变量都保留在方程中。
所以该方法可命名为强制进入法(在多元回归分析中再具体介绍这一选项的应用)。
具体如下图所示:图7-9 线性回归分析主对话框②请单击Statistics…按钮,可以选择需要输出的一些统计量。
如Regression Coefficients(回归系数)中的Estimates,可以输出回归系数及相关统计量,包括回归系数B、标准误、标准化回归系数BETA、T值及显著性水平等。
Model fit项可输出相关系数R,测定系数R2,调整系数、估计标准误及方差分析表。
上述两项为默认选项,请注意保持选中。
设置如图7-10所示。
设置完成后点击Continue返回主对话框。
图7-10:线性回归分析的Statistics选项图7-11:线性回归分析的Options选项回归方程建立后,除了需要对方程的显著性进行检验外,还需要检验所建立的方程是否违反回归分析的假定,为此需进行多项残差分析。
多元回归分析SPSS
SPSS可以进行多元回归分析的步骤如下:
1.导入数据:首先需要将所需的数据导入SPSS软件中。
可以使用SPSS的数据导入功能,将数据从外部文件导入到工作空间中。
2.选择自变量和因变量:在进行多元回归分析之前,需要确定作为自
变量和因变量的变量。
在SPSS中,可以使用变量视图来选择所需的变量。
3.进行多元回归分析:在SPSS的分析菜单中,选择回归选项。
然后
选择多元回归分析,在弹出的对话框中将因变量和自变量输入相应的框中。
可以选择是否进行数据转换和标准化等选项。
4.分析结果的解释:多元回归分析完成后,SPSS将生成一个回归模
型的结果报告。
该报告包括各个自变量的系数、显著性水平、调整R平方
等统计指标。
根据这些统计指标可以判断自变量与因变量之间的关系强度
和显著性。
5.进一步分析:在多元回归分析中,还可以进行进一步的分析,例如
检查多重共线性、检验模型的假设、进一步探索变量之间的交互作用等。
通过多元回归分析可以帮助研究者理解因变量与自变量之间的关系,
预测因变量的值,并且确定哪些自变量对因变量的解释更为重要。
在
SPSS中进行多元回归分析可以方便地进行数值计算和统计推断,提高研
究的科学性和可信度。
总结来说,多元回归分析是一种重要的统计分析方法,而SPSS是一
个功能强大的统计软件工具。
通过结合SPSS的多元回归分析功能,研究
者可以更快速、准确地进行多元回归分析并解释结果。
以上就是多元回归分析SPSS的相关内容简介。
如何使用SPSS进行多元统计分析第一章:SPSS简介SPSS(Statistical Package for the Social Sciences)是一种功能强大且广泛使用的统计分析软件。
它能够处理大量数据,进行各种统计分析和数据挖掘,是研究人员和数据分析师常用的工具。
第二章:设置数据在进行多元统计分析之前,首先需要设置数据。
SPSS支持导入外部数据文件,如Excel、CSV等格式。
用户可以在SPSS中创建新的数据集并录入数据,也可以导入已有数据集。
在设置数据时,需要注意数据的变量类型、缺失值处理以及数据的清洗与转换。
第三章:描述统计分析描述统计分析是理解数据的第一步。
SPSS提供了丰富的描述统计方法,包括平均数、标准差、最小值、最大值、频数分布等。
用户可以通过简单的命令或者界面操作来生成各种描述统计结果,并进一步进行数据的可视化展示。
第四章:相关性分析相关性分析是多元统计分析的常用方法之一。
SPSS提供了丰富的相关性分析工具,如Pearson相关系数、Spearman等。
用户可以通过相关分析来检测不同变量之间的关系,并进一步探索变量之间的线性或非线性关系。
第五章:线性回归分析线性回归分析是一种预测性分析方法,在多元统计分析中应用广泛。
SPSS可以进行简单线性回归分析和多元线性回归分析。
用户可以通过线性回归分析来建立模型,预测因变量与自变量之间的关系,并进行参数估计和显著性检验。
第六章:因子分析因子分析是一种常用的降维技术,用于发现隐藏在数据中的潜在变量。
SPSS提供了主成分分析、最大似然因子分析等方法。
用户可以通过因子分析来降低变量的维度,提取数据中的主要信息。
第七章:聚类分析聚类分析是一种用于将数据样本划分成相似组的方法。
SPSS支持多种聚类算法,如K均值聚类、层次聚类等。
用户可以通过聚类分析来识别数据中的固有模式和群体。
第八章:判别分析判别分析是一种用于将样本分类的方法,常用于研究预测变量对分类变量的影响。