γ〉2时欧拉-泊松方程组平衡解的存在唯一性
- 格式:pdf
- 大小:216.11 KB
- 文档页数:8
泊松方程推导泊松方程(Poisson's Equation)是数学中的一种偏微分方程,描述了标量场在无源情况下的分布。
它在物理学、工程学和其他领域中有着广泛的应用,尤其在电场和重力场的研究中起着重要的作用。
泊松方程是由法国数学家西蒙·泊松(Siméon Denis Poisson)于19世纪初提出的,它描述了一个标量函数在空间中的分布情况。
泊松方程可以用来解决各种物理问题,如电场分布、热传导等。
它的一般形式可以表示为:∇²φ = -ρ/ε₀其中,φ是待求的标量场,ρ是源项,ε₀是真空介电常数。
这个方程描述了标量场的拉普拉斯算子(Laplacian)与源项之间的关系。
泊松方程的解可以通过数值计算或解析解得到。
在一些简单的情况下,可以通过分离变量法、格林函数法等方法求解。
然而,在实际问题中,往往需要借助计算机进行数值求解。
泊松方程的数值求解方法包括有限差分法、有限元法等。
其中,有限差分法是一种常用的数值求解方法。
它将空间离散化为网格,并通过近似计算网格点上的函数值和导数值。
有限差分法的核心思想是将微分方程转化为代数方程,通过求解代数方程组得到解。
在有限差分法中,泊松方程的离散形式可以表示为:φᵢ₊₁ⱼ + φᵢ₋₁ⱼ + φᵢⱼ₊₁ + φᵢⱼ₋₁ - 4φᵢⱼ = -ρᵢⱼ/ε₀其中,i和j分别表示网格点的索引,φᵢⱼ表示网格点上的函数值,ρᵢⱼ表示源项的值。
通过求解代数方程组,可以得到网格点上的函数值,从而得到整个空间中的标量场分布。
泊松方程的求解涉及到边界条件的选择。
边界条件是指在边界上给定的条件,用于确定解的唯一性。
常见的边界条件有:第一类边界条件(Dirichlet边界条件)和第二类边界条件(Neumann边界条件)。
第一类边界条件是指在边界上给定函数值,第二类边界条件是指在边界上给定导数值。
根据具体问题的要求和边界条件的给定,可以选择合适的边界条件进行求解。
调和⽅程调和⽅程狄利克雷内外问题的唯⼀性及稳定性。
(1)原理 3.1 (极值原理)对于不恒等于常数的调和函数),,(z y x u ,其在区域Ω的任何内点上的值不可能达到它在Ω上的上界或下界。
推论1 在有限区域Ω内调和、在Γ?Ω上连续连续的函数必在边界Γ上取得最⼤值和最⼩值;推论2 设v u 及都是区域Ω内的调和函数,且在Γ?Ω上连续。
如果在Ω的边界Γ上成⽴着不等式v u ≤,那么在Ω内上述不等式也成⽴;并且只有在v u =时,在Ω内才会有等式成⽴的可能。
(2)调和⽅程狄利克雷内问题==++=Γ)2.3...(....................)1.3......(0222222g u z uy u x u u 现在证明解如果存在必是唯⼀的,⽽且连续的依赖于所给定的边界条件.f证:假设有两个调和函数),,(),,(21z y x u z y x u 和,它们在有界区域Ω的边界Γ上完全相同,则它们的差21u u u -=在Ω中也满⾜⽅程(3.1),⽽在Γ上等于零。
于是按照极值原理的推论1,函数u 在区域Ω上最⼤值及最⼩值均为零,即.0≡u 因此21u u ≡,即狄利克雷内问题的解是唯⼀的。
其次,设在区域Ω的边界Γ上给定了函数*f f 和,⽽且在Γ上处处成⽴ε≤-*f f ,这⾥ε是⼀个给定的正数。
设*u u ,分别是⽅程(3.1)在区域Γ上以*f f 和为边界条件的狄利克雷内问题的解,那么调和函数*-u u 在Γ上取值*-f f 。
由极值原理的推论1得到,在Ω上各点有.)(min )(min ,)(max )(max εε-≥-=-≤-=-*Γ*ΓΩ*Γ*ΓΩf f u u f f u u因此在Ω上各点有,ε≤-≤-*Γ设函数21,u u 是狄利克雷外问题的解,令21u u v -=,则调和函数v 满⾜.0),,(l i m 00==→Γz y x v v r 及如果v 不恒等于零,则⼀定存在⼀点M ,使,0)(≠M v 不妨设0)(>M v 。
压力泊松方程的推导答:压力泊松方程是描述流体在压力作用下泊松效应的数学模型。
它对于理解流体动力学、流体力学等领域具有重要意义。
压力泊松方程的推导过程,包括受力分析、建立数学模型、求解方程、考虑边界条件和得出结论等方面。
一、受力分析在推导压力泊松方程之前,我们需要对受力进行分析。
假设流体在某区域受到压力作用,该区域受到的压力可以表示为P(x,y,z)。
其中,x、y、z分别表示流体在三个方向上的坐标。
由于流体是连续的,因此该区域内的压力分布是连续的。
二、建立数学模型根据受力分析,我们可以建立压力泊松方程的数学模型。
在二维平面上,泊松方程可以表示为:▽²u = ρf/η 其中,▽²表示拉普拉斯算子,u表示位移场,ρ表示流体密度,f表示作用力密度,η表示流体的粘度。
三、求解方程求解泊松方程需要采用适当的数值方法。
常用的数值方法包括有限元法、有限差分法等。
这些方法可以根据实际问题选择合适的边界条件和初始条件,从而得到近似解。
四、考虑边界条件在求解泊松方程时,需要考虑边界条件。
边界条件可以根据实际情况确定,例如流体与固体边界的接触条件、流体的进出口条件等。
这些条件对于求解泊松方程具有重要影响。
五、得出结论通过以上步骤,我们可以得到压力泊松方程的近似解。
该解可以用于描述流体在压力作用下的泊松效应,为流体力学和流体动力学等领域的研究提供理论支持。
需要注意的是,求解泊松方程可能存在数值误差和边界条件选择不当等问题,因此得到的解可能具有一定的近似性。
为了获得更精确的解,可以采用更高级的数值方法和更准确的边界条件。
《电磁场》复习题A一、填空题1、描述电场对于电荷作用力的物理量叫做______________。
2、E线和等位面之间的关系是______________,和电场强度关系是______________。
3、静电场中的折射定律是______________。
4、静电场边界条件中的自然边界条件是______________。
5、静电场中,虚位移法求静电力的两个公式是______________、______________。
6、恒定磁场中的分界面衔接条件是______________、______________。
7、恒定磁场的泊松方程为______________。
8.材料能够安全承受的最大电场强度称为___________。
9.平板电容器的板面积增大时,电容量___________。
10.在均匀媒质中,电位函数满足的偏微分方程称为___________。
11.深埋于地下的球形导体接地体,其半径越大,接地电阻越___________。
12.多匝线圈交链磁通的总和,称为___________。
13.恒定磁场中的库仑规范就是选定矢量磁位A的散度为___________。
14.磁通连续性定理的微分形式是磁感应强度B的散度等于___________。
15.正弦电磁波在单位长度上相角的改变量称为___________。
16.电磁波的传播速度等于___________。
17.电场能量等于电场建立过程中外力所做的___________。
二、选择题1.两点电荷所带电量大小不等,则电量大者所受作用力()A.更大B.更小C.与电量小者相等D.大小不定2.静电场中,场强大处,电位()A.更高B.更低C.接近于零D.高低不定3.A 和B 为两个均匀带电球,S 为与A 同心的球面,B 在S 之外,则S 面的通量与B 的( )A .电量及位置有关B .电量及位置无关C .电量有关、位置无关D .电量无关、位置有关4.一中性导体球壳中放置一同心带电导体球,若用导线将导体球与中性导体球壳相联,则导体球的电位( )A .会降低B .会升高C .保护不变D .变为零5.相同场源条件下,均匀电介质中的电场强度值为真空中电场强度值的() A .ε倍 B .εr 倍C .倍ε1D .倍r1ε6.导电媒质中的恒定电流场是( )A .散度场B .无散场C .旋度场D .无旋场7.在恒定电场中,电流密度的闭合面积分等于( )A .电荷之和B .电流之和C .非零常数D .零8.电流从良导体进入不良导体时,电流密度的切向分量( )A .不变B .不定C .变小D .变大9.磁感应强度B 的单位为( )A .特斯拉B .韦伯C .库仑D .安培10.如果在磁媒介中,M 和H 的关系处处相同,则称这种磁媒质为( )A .线性媒质B .均匀媒质C .各向同性媒质D .各向异性媒质三、名词解释1、非极性分子2、体电流密度3、恒定磁场4、时变场5、动生电动势四、简答题1、什么是唯一性定理?2、什么是传导电流、什么是运流电流,什么是位移电流。
第5节静电场的边界条件及解的唯一性简单电荷分布的静电场的可用两个静电场性质和叠加原理来进行分析。
但实际静电场常常电荷分布不对称以及复杂的边界条件,因此需要寻求复杂静电场问题的一般分析方法,那就泊松方程或拉普拉斯方程结合边界条件来得到场的确定解。
复杂静电场的边界条件可归于几类,在一定边界条件下的具体静电场的解是唯一的。
1导体表面静电平衡条件静电场因电荷静止而产生稳定的电场,达到静电平衡状态。
导体上的电荷是自由电荷,内部不能有电场,否则无法达到静电平衡状态。
因此导体上的电荷只能分布在表面。
例如如图5.1所示,一导体表面分布有自由电荷,对外产生电场,如果电场既有法向分量E n又有切线分量E t,那么切向方向的电场强度E t会使表面电荷移动,这不符合静电平衡原理。
因此分布有面电荷的导体表面的切向方向没有电场强度,即E n≠0,E t=0因此导体表面只有法向方向电场强度,或者说导体表面电场强度垂直于导体表面。
由此也证明了导体是个等位体,即φ|球面=C,(C为常数)——导体表面的边界条件2两种介质交界面边界条件如图5.2所示两种介电常数分别为ε1和ε2的介质,电力线从介质ε1入射进入介质ε2。
那么在交界面上,电位函数不可以突变,否则根据E⃗=−∇φ电场强度会无限大。
因此,在两种介质交界面上有φ1|S12=φ2|S12——介质交界面满足的方程1S12——介质ε1和介质ε2的交界面即在两种介质交界面上电位是连续的。
上述边界方程也是静电场性质2的应用结果。
将静电场性质1高斯定理∮D⃗⋅ⅆS=q应用于边界上,如图所示,两介质交界面上的自由电荷面密度为σ,取微小圆柱面,左右圆柱面ΔS n1=ΔS n2=ΔS n关于交界面对称且无限靠近,则圆柱侧面积趋向为零,那么D⃗在侧面的通量为零。
则∮D⃗⋅ⅆS=−D n1ΔS n+D n2ΔS n=σΔS nD n2−D n1=σ不同介质交界面上电位移矢量的法向分量之差为交界面自由电荷面密度。
静电唯一性定理我们将证明,如果我们得到了满足给定边界条件的泊松方程的解,那么,这个解是唯一的。
这就是静电唯一性定理。
下面我们证明这一定理并初步介绍它的应用。
在由边界面s 包围的求解区域V 内,若:1) 区域V 内的电荷分布给定;2) 在边界面s 上各点,给定了电势s ϕ,或给定了电势法向偏导数s n ϕ∂∂, 则V 内的电势唯一确定。
以上的表述就是静电唯一性定理。
下面,我们用反证法证明静电唯一性定理。
证: 假定在区域V 内的电荷密度分布为ρ(x ),且有两个不同的解φ1和φ2满足泊松方程及给定边界条件(给定的电势值s ϕ或电势法向偏导数s n ϕ∂∂)。
即: 2212,ρρϕϕεε∇=-∇=- 并有12s s s ϕϕϕ==或12ss s n n n ϕϕϕ∂∂∂==∂∂∂ 式中s ϕ和sn ϕ∂∂为给定的边界条件。
令φ = φ1 – φ2,则在区域V 内各点: 2212()0φϕϕ∇=∇-= (2-2-1)及在边界s 上各点:120s s s φϕϕ=-= (2-2-2)或120s s sn n n ϕϕφ∂∂∂=-=∂∂∂ (2-2-3) 利用公式22d d ()d V V sV V φφφφφ∇+∇=∇⎰⎰⎰s 将式(2-2-1)带入上式得:2d ()d d V ss V s n φφφφφ∇=∇∂=∂⎰⎰⎰s (2-2-4)若在边界s 上各点无论是给定了电势或给定了电势法向偏导数均有:2d 0V V φ∇=⎰ (2-2-5)因|∇φ|2 ≥ 0,满足上式的条件只能是在求解区域V 内各点∇φ = 0。
因此,φ1 - φ2= 常数如果在边界上(或部分边界上)给定了电势φ|s ,则因φ1|s = φ2|s ,此常数为零;若全部边界条件给出的不是电势,而是(∂φ/∂n )|s ,此常数不一定为零。
但由式E = -∇φ,区域V 内的电场唯一确定,一个常数并不改变电场的基本特性,通常为了方便,此常数可选择为零。
第3章经典方程的建立和定解条件在讨论数学物理方程的解法以前,我们首先要弄清楚数学物理方程所研究的问题应该怎样提,为此,我们从两方面来讨论,一方面要将一个具体的物理、力学等自然科学问题化为数学问题,即建立描述某种物理过程的微分方程一一数学物理方程,称此方程为泛定方程;另一方面要把一个特定的物理现象本身所具有的具体条件用数学形式表达出来,即列出相应的初始条件和边界条件,两者合称为定解条件•定解条件提出具体的物理问题,泛定方程提供解决问题的依据,作为一个整体称之为定解问题3. 1经典方程的建立在本节,我们将通过几个不同的物理模型推导出数学物理方程中三种典型的方程,这些方程构成我们的主要研究对象•经典方程的导出步骤:(1)确定出所要研究的是哪一个物理量u ;(2)用数学的“微元法”从所研究的系统中分割出一小部分,再根据相应的物理(力学)规律分析邻近部分和这个小部分间的作用(抓住主要作用,略去次要因素,即高等数学中的抓主部,略去高阶无穷小),这种相互作用在一个短的时间间隔是如何影响物理量u(3)把这种关系用数学算式(方程)表达出来,经化简整理就是所需求的数学物理方程•例1弦的振动弦的振动问题,虽然是一个古典问题,但对于初学者仍然具有一定的启发性设有一根均匀柔软的细弦,平衡时沿直线拉紧,而且除受不随时间而变的张力作用及弦本身的重力外,不受外力影响,下面研究弦的微小横向振动,即假定全部运动出现在一个平面上,而且弦上的点沿垂直于x轴的方向运动(图3-1).图3-1设弦上具有横坐标为X的点,在时刻t时的位置为M,位移NM记作u .显然,在振动过程中位移u 是变量X与t的函数u(x,t) •现在来建立位移u满足的方程我们把弦上点的运动先看作小弧段的运动,然后再考虑小弧段趋于零的极限情况•在弦上任取一弧段MM •,其长为ds,设是弦的线密度,弧段MM •两端所受的张力记作T , T ,现在考虑孤段MM在t时刻的受力情况,用牛顿运动定律,作用于弧段上任一方向上的力的总和等于这段孤的质量乘以该方向上的加速度•在x轴方向弧段受力的总和为_T cos T cos,由于弦只作横向振动,所以T cos - T cos = 0 .( 3.1)如果弦的振动很小,并且在振动过程中弦上的切线倾角也很小,即:-:-0^ 0,则由2 4“ a a _ _cos -1 -2! 4!可知,当:为无穷小量时,cos与1的差量是:的高阶无穷小量,可以略去不计,因此当在u方向弧段受力的总和为-T sin驀"T Sin:「:gds,其中「是单位弧段的质量,-gds是弧段MM •的重力又因当:一0,厂0时上式左边方括号内的部分是由于x产生dx的变化而引起的u(x,t)的改变量,可用微代入(3.1)式,便可近似得到COS:1,cos: 1T T .tg:sin:J i +tg2«tg,皿),ex=tg:::u(x dx,t):u(x,t)lx dx.且小弧段在时刻t沿u方向运动的加速度为2:u(x,t)-t2小弧段的质量为'gds,所以-T sin 二"T sin : 一:gds」ds::2u(x, t):t2(3.2)T/^-晋」gds -:2u(x,t)吐2dx,:x分代替,即:x£u(x+dx,t) £u(x,t) ◎「初匕,灯[故 $u(x,t )d x—'ex 1 —x,2 2T j u(x,t) j u(x,t)2 ------- --- --------- + 、x 2:xT”g dx 「'5.x 2t 2 g. 般说来,张力较大时弧振动速度变化很快,即u 要比g 大得多,所以又可以把 g 略去•:t经过这样逐步略去一些次要的量,抓住主要的量, 最后得出u( x, t)应近似地满足方程-2:U 2 a 2 一 t x■2u (3.3)T这里的a.式(3.3)称为一维波动方程.如果在振动过程中,弦上另外还受到一个与弦的振动方向平行的外力,且假定单位长 度所受外力的F(x,t),显然,在这里(3.1)及(3.2)分别为T cos ; " -T cos :二 0, o2 u Fds-Tsin 二■ T sin : -,gds …ds —— ct利用上面的推导方法并略去弦本身的重量,可得弦的强迫振动方程为-2 -.2:U 2: U 亨=口 —-1: Xf(x,t),(3.3)'1其中 f(x,t) F(x,t).方程(3.3)与(3.3)'的差别在于(3.3)'的右端多了一个与未知函数 U 无关的项f(x,t),这个项称为自由项,包含有非零自由项的方程称为非齐次方程,自由项恒等于零的方程称为齐次方程.(3.3)为齐次一维波动方程,(3.3)'为非齐次一维波动方程. 例2传输线方程对于直流电或低频的交流电,电路的基尔霍夫定律指出同一支路中电流相等 .但对于较高频率的电流(指频率还没有高到能显著地幅射电磁波的情况),电路中导线的自感和电容的效应不可忽略,因而同一支路中电流未必相等现考虑一来一往的高频传输线,它被当作具有分布参数的导体(图3-2).在具有分布参数的导体中,电流通过的情况,可以用与电压v来描述,此处i与v都是x,t的函数,记作i(x,t)与v(x,t),以R,L,C,G分别表示下列参数:R――每一回路单位的趾串联电阻,L——每一回路单位的串联电感,C――每单位长度的分路电容,G――每单位长度的分路电导•根据基尔霍夫第二定律,在长度为x的传输线中,电压降应等于电动势之和,即v -(v :-v) = R x i L x而v x,ex故上式可写成Ri - L -(3.4)x 汀另外,由基尔霍夫第一定律,流入节点x的电流应等于流出该节点的电流,即=(i :=i) C x G x v,(3.5) 将方程(3.4)与(3.5)合并,即得i与v 应近似地满足如下方程组这两个方程称为高频传输线方程.X 2=2:V;t 2LC ft 2 , 1;:2V1若令a 2这两个方程与(3.3)完全相同.由此可见,同一个方程可以用来描述不同的LC物理现象,一维波动方程只是波动方程中最简单的情况, 在流体力学、声学及电磁场理论中,还要研究高维的波动方程. 例3电磁场方程从物理学我们知道,电磁场的特性可以用电场强度 E 与磁场强度H 以及电感应强度 D与磁感应强度B 来描述,联系这些量的麦克斯韦(Maxwell)方程组为rotH = J, ct(3.8)cB耐百,(3.9)divB 二 0,(3.10)为了确定函数i 与v ,将方程(3.5)对x 微分,同时在方程(3.4)两端乘以C 后再对t 微分, 并把两个结果相减,即得将(3.4)中的兰代入上式,得CX这就是电流i 近似满足的微分方程,采用类似的方法从( 3.4)与(3.5)中消去i 可得电压V近似满足的方程方程(3.6)或(3.7)称为传输线方程.R, L,C,G 作不同的假定,就可以得到传输线方程的各种特殊形式•例如,在高频传输的情况下,电导与电阻所产生的效应可以忽略不计,也就是 说可令G = R = 0,此时方程(3.6)与(3.7)可简化为;:2i 1;:2i2・X 2iG 兰 一 LC ;x【RC 5, ct :t 2:2i2・i —二 LG X ;t 2 (RC GL)厂 GRi, ct(3.6).2轨LGxV(RC GL)二 GRv, .t :t(3.7)根据不同的具体情况,对参数divD 「.(3.11)将(3.9)与(3.13)代入得而 rot rotH 程为rot rotHrot rotHrotE 「rotE, :t21二 grad div - ' H ,且 divH divB = 0,所以最后得到H 所满足的方同理,若消去 H 即得E 所满足的方程2E如果介质不导电(卞-0),则上面两个方程简化为2H 1 k 2Hr H , .t 二(3.15)(3.16)(3.15)与(3.佝称为三维波动方程.若将三维波动方程以标量函数的形式表示出来,则可写成其中J 为传导电流的体密度,「为电荷的体密度.这组方程还必须与下述场的物质方程D =eE,(3.13) (1.14)相联立,其中;是介质的介电常数, 」是导磁率,匚为导电率,我们假定介质是均匀而且是各向同性的,此时;,」,;「均为常数.方程(3.8)与(3.9)都同时包含有 E 与H ,从中消去一个变量,就可以得到关于另一个变 H ,在(3,8)式两端求旋度并利用(3.12)与(3.14)得(3.12) 量的微分方程,例如先消去(3.17)2 2 22- 2『召u d u & u= aJ = a — +一 +一2 , ^c x cy 氐丿 其中a_W ,u 是E 或H 的任意一个分量从方程(3.11)与(3.12)还可以推导出静电场的电位所满足的微分方程 •事实上,以(3.12)代入(3.11)得divD = div ;E = ; div E = ■,而电场强度E 与电位u 之间存在关系E = -gradu,所以可得Pdiv(gradu)= -一z或'、u = - — ,( 3.18)z这个非齐次方程称为泊松(Poisson )方程.如果静电场是无源的,即?=0,则(3.18)变成(3.19)这个方程称为拉普拉斯(Lap lace )方程. 例4热传导方程一块热的物体,如果体内每一点的温度不全一样,则在温度较高的点处的热量就要向 温度较低的点处流动,这种现象就是热传导.在工程技术上有许多传热问题都要归结为求物体内温度的分布,现在我们来推导传热过程中温度所满足的微分方程, 与上例类似,我们不是先讨论一点处的温度,而应该先考虑一个区域的温度.为此,在物体中任取一闭曲面S ,它所包围的区域记作 V (图3-3).假设在时刻t ,区域V 内点M(x,y,z)处的温度为u(x,y,z,t),n 为曲面元素 S 的外法向(从V 内指向V 夕卜).图3-3:t2由传热学可知,在lt,^ t ]时间内,从 S 流入区域V 的热量与时间At ,面积 S ,以及沿曲面的法线方向的温度变化率三者的乘积成正比,即-k(grad u ) S t.其中k 称为物体的热传导系数,当物体为均匀导热体时,k 为常数.于是,从时刻t i 到时刻t 2,通过曲面S 流入区域V 的全部热量为t 2_Q i = tkgrad u1一 S流入的热量使 V 内温度发生了变化,在厶t 时间内区域V 内各点温度从u(x,y,z,t)变化到 u(x,y,z,t+ △ t),则在△ t 内V 内温度升高所需要的热量为I I I c [u(x, y,z,t t)-u(x,y,z,t)]dVV从而从时刻t i 到时刻t 2,由于温度升高所吸收的热量为tJ ■ u二 c dV dt,飞 _ v :t其中C 为物体的比热, '为物体的密度,对均匀物体来说,它们都是常数•由于热量守恒,流入的热量应等于物体温度升高所需吸收的热量,即上2 I.t 2. .:uJ t IJJkgradudS dt= J t | JJJ c°〒dV dt.ti.S _t^V醴—此式左端的由面积分中 S 是封闭曲面,可以利用奥 -高公式将它化为三重积分,即11 kgradudS 二 kdiv(gradu)dVSV因此有由于时间间隔't,r 11及区域V 都是任意取的,并且被积函数是连续的,所以 (3.20)式左 右恒等的条件是它们的被积函数恒等,即= Q= k S = t =cnk(grad udS dt.fu(x, y,z,t)dttdV.Q 2二 k 2udV,V:k 2udVti_ Vt2u IF t 」川 cP^dV dt. V :t(3.20)3(3.21 ).u a :t或二维热传导方程如果我们考虑稳恒温度场,即在热传导方程中物体的温度趋于某种平衡状态,这时温 度u 已与时间t 无关,所以 —=0,此时方程(3.21)就变成拉普拉斯方程(3.19).由此可见稳恒Ct温度场内的温度 U 也满足拉普拉斯方程•在研究气体或液体的扩散过程时,若扩散系数是常数,则所得的扩散方程与热传导方 程完全相同•3. 2初始条件与边界条件上面所讨论的是如何将过程的物理规律用数学式子表达出来•除此以外,我们还需要把具体条件也用数学形式表达出来,这是因为任何一个具体的物理现象都是处在特定条件之下 的.例如弦振动问题,上节所推导出来的方程是一切柔软均匀的弦作微小横向振动的共同规 律,在推导这个方程时没有考虑到弦在初始时刻物状态以及弦所受的约束情况 •如果我们不是泛泛地研究弦的振动,势必就要考虑到弦所具有的特定条件 .因为任何一个具体振动现象总是在某时刻的振动状态和此时刻以前的状态有关,从而就与初始时刻的状态有关•另外,弦的两端所受的约束也会影响弦的振动, 端点所处的物理条件不同会产生不同的影响, 因而弦的振动也不同.所以对弦振动问题来说,除了建立振动方程以外,还需列出它的具体条件 对热传导方程,拉普拉斯方程也是如此.提出的条件应该恰恰能够说明某一具体物理现象的初始状态以及边界上的约束情况,其中a 2 = 2u=a 2;t2 2 2\ d u d u d u r + r + r cy cz厂■方程(3.21)称为三维热传导方程.若物体内有热源,其强度为F (x, y,z),则相应的热传导方程为:u 2 a :t2 2 2u u u +r 2" 2x : yf(x, y,z,t),如果所考虑的物体是一根细杆 作为特例, 而其中的温度u 只与x,t (或x, y,t )有关,(或一块薄板),或者即使不是细杆 (或薄板) 则方程(3.21)就变成一维热传导方程:U 2a:t-2;u-2:y 2用以说明系统的初始状态的条件称为初始条件 •用以说明边界上的约束情况的条件称为边界条件•下面具体说明初始条件和边界条件的表达形式,先谈初始条件,对于弦振动问题来说, 初始条件就是弦在开始时刻的位移及速度,若以 「(x),t (X )分别表示初位移和初速度,则 初始条件可以表达为t」= (x)-(X )t =0而对热传导方程来说,初始条件是指在开始时刻物体温度的分布情况,若以 「(M)表 示t=0时物体内任一点 M 处的温度,则热传导方程的初始条件就是u(M,t )tn 「(M).泊松方程与拉普拉斯方程都是描述稳恒状态的,与初始状态无头,所以不提初始条件 再谈边界条件•如果边界条件直接给出了未知函数 u(M ,t)在边界S 上的值,以s 表示边界S 上的动点,则这样的边界条件可表为u(M,t )M :s 「(St),或简写成(3.24)这种边界条件称为第一类边界条件,其中(s,t)表示在边界S 上给定的已知函数•例如,在杆的导热问题中,若在端点 x = a 处温度保持为常数 u 0,这时在端点x = a 的边界条件为uxn =u 0・若在端点X =a 处温度随时间的变化规律 f (t)为已知,在这点的边界条件为ux 「f (t)・又如在弦振动问题中,若弦的某端点X = a 是固定的,则在该点的位移为零,即Uxn=0・以上都是第一类边界条件的例子 •总之,第一类边界条件直接给出了未知函数u(M ,t)在边界S 上的值但在许多情况下,边界上的物理条件并不能用第一类边界条件来描述 .例如,在杆的导热问题中,若杆的一端x 二a 绝热,那末绝热这个条件就不能直接给出杆的端点处的温度变cu 丄丄化.由于从杆外通过杆端流入杆内的热量为k —— 心S^t (其中A t 为时间间隔,AS 为杆cn(3.22)(3.23)的截面积,n 为杆在端点x=a 处的外法向,若 x=a 是杆的左端点,n 的正向与x 轴正向PuQuQu Qu相反,贝厂■,若x=a 是杆的右端点,则n 的正向与x 轴正向相同,贝厂 '), cnex cn ex所以绝热这个条件可以表达为0( Ik —也S 也 t = 0,cn xy即二 0.x =a若在单位时间内通过 x=a 端单位面积流入杆内的热量是 t 的已知函数f(t),则这个条件可表示为对于弦振动问题来说, 如果弦在x=a 处是自由的,即沿着位移方向不受外力, 则此时弦在x=a 处沿位移方向的张力(参照 3.1中例1的推导) 为的形式,其中—表示函数沿边界外法向的变化率,这种边界条件称为第二类边界条件•cn除了上述两类边界条件外,有时还会遇到其他形式的边界条件 •例如在杆的导热热问题中,若杆在某个端点 x = a 自由冷却,那末自由冷却这个条件就是cuK 石=H (5 -ux =ax=a ),(其中U i 为周围介质的温度)即(加(k )u + h ———:u 1 h -1州」 X HI H 丿=f(t).x^a总之,有时边界条件必须表达为=0,(3.25)对于有界杆(0乞x 乞I ),若两端都是自由冷却,则在X = I 处,上述条件可表为-U 在x = 0处,这个条件可表为这是由于在单位时间内从周围介质传到杆的 X = a 端单位面积上的热量与介质和杆端的温度差成正比,而在单位时间内通过 考3.1中例4).x = a 端单位面积传向杆内的热量与x=acn 丿X -i 成正比般地,这种边界条件的形式为(3.26)这样的边界条件称为第三类边界条件•不论哪一种边界条件,如果它的数学表达式中的右端自由项恒为零,则这种边界条件称为齐次的.3.3定解问题的提法前面两节我们推导了三种不同类型的偏微分方程并讨论了与它们相应的初始条件与边界条件的表达方式•由于这些方程中出现的未知函数的偏导数的最高阶都是二阶,而且它们对于未知函数及其各阶偏导数来说都是线性的,所以这种方程称为二阶线性偏微分方程*)1在工程技术上二介线性偏微分方程遇到最多•如果一个函数具有所需要的各阶连续编导数,并且代入某偏微方程中能使该方程变成恒等式,则此函数称为该方程的解•由于每一个物理过程都处在特定的条件之下,所以我们的任务是要求出适合初始条件和边界条件的解•初始条件和边界条件都称为定解条件•求一个偏微方程满足定解条件的解的问题称为定解问题只有初始条件,没有边界条件的定解问题称为始值问题(或柯西问题);而没有初始条件,只有边界条件的定解问题称为边值问题;既有初始条件也有边界条件的定解问题称为混合问题•一个定解问题提得是否符合实际情况,当然必须靠实际来证实,然而从数学角度来看,可以从三方面加以检验•1)解的存在性,即看所结出来的定解问题是否有解;2)解的唯一性,即看是否只有一个解;3)解的稳定性,即看当定解条件有微小变动时,解是否相应地只有微小的变动,如果*)二阶线性编微分方程可以按它们的二阶导数的系数的代数性质进行分类,在§ 1・1中所推导的波动方程属于双曲型,拉普拉斯(或泊松)方程属于椭圆型,热传导方程属于抛物型,关于二阶线性偏微分方程的分类方法,读者可参阅复旦大学数学系编《数学物理方程》(第二版,上海科学技术岀版社岀版)第一章§5.确定如此,此解便称为稳定的,否则所得的解就无实用价值•因为定解条件通常总是利用实验方法获得的,因而所得到的结果,总有一定的误差,如果因此而解的变动很大,那末这种解显然不能符合客观实际的要求•如果一个定解问题存在唯一且稳定的解,则此问题称为适定的,在以后讨论中我们把着眼点放在讨论定解问题的解法上,而很少讨论它的适定性,这是因为讨论定解问题的适定性往往十分困难,而本书所讨论的定解问题都是古典的,它们的适定性都是经过证明了的.习题一1.长为I的均匀杆,侧面绝缘,一端温度为零,另一端有恒定热流q进入(即单位时间内通过单位截面积流入的热量为q ),杆的初始温度分布是x— x),试写出相应的定解问题22.长为I的弦两端固定,开始时在x = C受到冲量的作用,试写出相应的定解问题3.有一均匀杆,只要杆中任一小段有纵向位移或速度,必导致邻段的压缩或伸长,这种仲缩传开去,就有纵波沿着杆传播,试推导杆的纵振动方程4.一均匀杆原长为I,一端固定,另一端沿杆的轴线方向被拉长e而静止,突然放手任其振动,试建立振动方程与定解条件.5.若F(z),G(z)是任意二阶可微函数,验证u = F (x at) G(x -at)满足方程-2 -2:-U 2: U2—a 2.t x6.若函数U i(x,t), U2(x, t)JM, U n(x, t),…均为线性齐次方程-2 -2:u : u-~2 P 2~x :t的解,其中p,q, r只是x, t的函数,而且级数u k(x,t)收敛,并对x,t可以进行两次kz!逐项微分,求证级数u=:£u k(x,t)满足原方程(这个结论叫做线性齐次方程的叠加原理)k m。