七年级下二元一次方程组复习题
- 格式:doc
- 大小:126.50 KB
- 文档页数:3
一、选择题1.如图,宽为25cm的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积是()A.2200cm B.2150cm C.2100cm D.275cm C解析:C【分析】根据矩形的两组对边分别相等,可知题中有两个等量关系:小长方形的长+小长方形的宽=25,小长方形的长×2=小长方形的长+小长方形的宽×4,根据这两个等量关系,可列出方程组,再求解.【详解】设一个小长方形的长为xcm,宽为ycm,由图形可知,25 24x yx x y+=⎧⎨=+⎩,解得:205xy=⎧⎨=⎩,所以一个小长方形的面积为205100⨯=(cm2) .故选:C.【点睛】本题考查了二元一次方程的应用,解答本题关键是弄清题意,看懂图示,找出合适的等量关系,列出方程组.并弄清小正方形的长与宽的关系.2.已知方程组512x yax by+=⎧⎨+=⎩和521613x ybx ay+=⎧⎨+=⎩的解相同,则a、b的值分别是()A.2,3 B.3,2 C.2,4 D.3,4B解析:B【分析】由于这两个方程组的解相同,所以可以把这两个方程组中的第一个方程联立再组成一个新的方程组,然后求出x、y的解,把求出的解代入另外两个方程,得到关于a,b的方程组,即可求出a、b的值.【详解】根据题意,得:5 5216x yx y+=⎧⎨+=⎩,解得:23x y =⎧⎨=⎩,将2x =、3y =代入1213ax by bx ay +=⎧⎨+=⎩,得:23122313a b b a +=⎧⎨+=⎩,解得:32a b =⎧⎨=⎩,∴a 、b 的值分别是3、2. 故选:B . 【点睛】本题主要考查了二元一次方程组的解,理解方程组的解即为能使方程组中两方程都成立的未知数的值是解题的关键. 3.若关于x ,y 的二元一次方程组432x y kx y k+=⎧⎨-=⎩的解也是二元一次方程2310x y +=的解,则x y -的值为( ) A .2 B .10C .2-D .4D解析:D 【分析】把k 看做已知数求出x 与y ,代入已知方程计算即可求出k 的值,从而求得x y -的值. 【详解】432x y k x y k +=⎧⎨-=⎩①②, ①-②得:5ky =, 把5k y =代入②得:115k x =, 把115k x =,5ky =代入2310x y +=,得:11231055k k ⨯+⨯= 解得:2k =, ∴225x =,25y =, ∴222455x y -=-=. 【点睛】本题考查了二元一次方程组的解,以及二元一次方程的解,方程组的解即为能使方程组中两方程都成立的未知数的值.4.方程组2824x yx y⎧+=⎪⎨+=⎪⎩的解的个数为()A.1 B.2 C.3 D.4A解析:A【分析】分类讨论x与y的正负,利用绝对值的代数意义化简,求出方程组的解,即可做出判断.【详解】解:根据x、y的正负分4种情况讨论:①当x>0,y>0时,方程组变形得:2824x yx y+=⎧⎨+=⎩,无解;②当x>0,y<0时,方程组变形得:28 24 x yx y+=⎧⎨-=⎩,解得x=3,y=2>0,则方程组无解;③当x<0,y>0时,方程组变形得:28 24x yx y-+=⎧⎨+=⎩,此时方程组的解为16xy=-⎧⎨=⎩;④当x<0,y<0时,方程组变形得:2824x yx y-+=⎧⎨-=⎩,无解,综上所述,方程组的解个数是1.故选:A.【点睛】本题考查了解二元一次方程组,利用了分类讨论的思想,熟练掌握运算法则是解本题的关键.5.已知1,2xy=⎧⎨=⎩是二元一次方程24x ay+=的一组解,则a的值为()A.2 B.2-C.1 D.1-C 解析:C【分析】把x与y的值代入方程计算即可求出a的值.【详解】把1,2xy=⎧⎨=⎩代入方程24x ay+=,得224a+=,解得1a=.故选C.【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值. 6.如图,周长为34的矩形ABCD 被分成7个全等的矩形,则矩形ABCD 的面积为 ( )A .280B .140C .70D .196C解析:C 【解析】解:设小长方形的长、宽分别为x 、y , 依题意得:,解得:,则矩形ABCD 的面积为7×2×5=70. 故选C .【点评】考查了二元一次方程组的应用,此题是一个信息题目,首先会根据图示找到所需要的数量关系,然后利用这些关系列出方程组解决问题.7.已知方程组2325x y x y +=⎧⎨-=⎩,则39x y +的值为( )A .2-B .2C .6-D .6C解析:C 【分析】方程组两方程相减求出x+3y 的值,进而即可求得3x+9y 的值. 【详解】2325x y x y +=⎧⎨-=⎩①②, ①-②得:32x y +=-, ∴()39336x y x y +=+=-, 故选:C . 【点睛】本题考查了求代数式的值以及解二元一次方程组,解二元一次方程组利用了消元的思想,消元的方法有:代入消元法与加减消元法.灵活运用整体代入法是解题的关键.8.已知关于x 、y 的方程组2323216ax by c ax by c -=⎧⎨+=⎩的解是42x y =⎧⎨=⎩,则关于x 、y 的方程组232232316ax by a cax by a c -+=⎧⎨++=⎩的解是 ( ) A .42x y =⎧⎨=⎩B .32x y =⎧⎨=⎩C .52x y =⎧⎨=⎩D .51x y =⎧⎨=⎩B解析:B 【分析】方程组232232316ax by a c ax by a c -+=⎧⎨++=⎩可化为213231216a x by c a x by c +-=⎧⎨++=⎩()(),由方程组2323216ax by cax by c-=⎧⎨+=⎩的解是42x y =⎧⎨=⎩即可求得方程组232232316ax by a c ax by a c -+=⎧⎨++=⎩的解为32x y =⎧⎨=⎩. 【详解】方程组232232316ax by a c ax by a c -+=⎧⎨++=⎩可化为213231216a x by c a x by c +-=⎧⎨++=⎩()(),∵方程组2323216ax by c ax by c -=⎧⎨+=⎩的解是42x y =⎧⎨=⎩,∴142x y +=⎧⎨=⎩,即方程组232232316ax by a c ax by a c -+=⎧⎨++=⎩的解为32x y =⎧⎨=⎩. 故选B. 【点睛】本题考查了二元一次方程组的解,把方程组232232316ax by a cax by a c-+=⎧⎨++=⎩化为213231216a x by c a x by c +-=⎧⎨++=⎩()()是解决问题的关键. 9.已知关于x ,y 的二元一次方程组323223x y m x y m+=-⎧⎨+=⎩的解适合方程x-y=4,则m 的值为( ) A .1 B .2C .3D .4C解析:C 【分析】通过观察方程组可知第一个方程减去第二个方程可得22x y m -=-,再结合4x y -=即可求得答案. 【详解】解:∵323223x y m x y m +=-⎧⎨+=⎩①②①-②得,22x y m -=- ∵4x y -= ∴224m -= ∴3m =. 故选:C 【点睛】本题考查了根据二元一次方程组的解满足一定的条件求参数问题,能根据题目特点灵活运用加减消元法、代入消元法是解题的关键.10.下列四组值中,不是二元一次方程21x y -=的解的是( )A .11x y =-⎧⎨=-⎩B .00.5x y =⎧⎨=-⎩C .10=⎧⎨=⎩x yD .11x y =⎧⎨=⎩D解析:D 【分析】将各项中x 与y 的值代入方程检验即可.【详解】 解:x-2y=1, 解得:x=2y+1,当y=-1时,x=-1,所以11x y =-⎧⎨=-⎩是方程21x y -=的解,选项A 不合题意,当y=-0.5时,x=-1+1=0,所以00.5x y =⎧⎨=-⎩是方程21x y -=的解,选项B 不合题意;当y=0时,x=1,所以10x y =⎧⎨=⎩是方程21x y -=的解,选项C 不合题意; 当y=1时,x=2+1=3,所以11x y =⎧⎨=⎩不是方程21x y -=的解,选项D 符合题意; 故选:D . 【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.二、填空题11.现有甲、乙、丙三个圆柱形的杯子,杯深均为20cm ,各装有12cm 高的水,甲、乙、丙三个杯子的底面积如下表.分别从甲、乙两杯中取出相同体积的水倒入丙杯,过程中水没溢出,最后甲、乙两杯水的高度之和等于丙杯水的高度.则从甲杯中倒出的水的体积为__________3cm .乙杯60丙杯80180【分析】设后来甲乙丙三杯内水的高度分别为:xyx+y利用水的总体积不变分别从甲乙两杯中取出相同体积的水倒入丙杯得出二元一次方程组进而即可求解【详解】解:设后来甲乙丙三杯内水的高度分别为:xyx解析:180【分析】设后来甲、乙、丙三杯内水的高度分别为:x,y,x+y,利用水的总体积不变,分别从甲、乙两杯中取出相同体积的水倒入丙杯,得出二元一次方程组,进而即可求解.【详解】解:设后来甲、乙、丙三杯内水的高度分别为:x,y,x+y,根据题意可得:() ()() 401260128012406080 40126012x y x yx y⎧⨯+⨯+⨯+++⎪⎨-=-⎪⎩=,解得:7.59xy=⎧⎨=⎩,∴从甲杯中倒出的水的体积为:40× (12-7.5)=180(3cm),故答案是:180.【点睛】此题主要考查了二元一次方程组的应用,根据题意列出二元一次方程组是解题关键.12.在长方形ABCD中放入六个长、宽都相同的小长方形,所标尺寸如图所示,则小长方形的宽CE为____________cm.2【分析】设小长方形的宽CE为小长方形的长是根据长方形ABCD的长和宽列出方程组求解【详解】解:设小长方形的宽CE为小长方形的长是根据图形大长方形的宽可以表示为或者则大长方形的长可以表示为则解得故答解析:2【分析】设小长方形的宽CE为xcm,小长方形的长是ycm,根据长方形ABCD的长和宽列出方程组52313x x yx y+=+⎧⎨+=⎩求解.【详解】解:设小长方形的宽CE 为xcm ,小长方形的长是ycm , 根据图形,大长方形的宽可以表示为52x +,或者x y +, 则52x x y +=+,大长方形的长可以表示为3x y +, 则313x y +=,52313x x y x y +=+⎧⎨+=⎩,解得27x y =⎧⎨=⎩. 故答案是:2. 【点睛】本题考查二元一次方程组的应用,解题的关键是找到等量关系列出方程组求解.13.已知x ,y 满足方程组612328x y x y +=⎧⎨-=⎩,则x +y 的值为__.5【分析】根据两个方程系数的关系将两个方程相加即可得到答案【详解】解:①+②得:4x+4y =20则x+y =5故答案为:5【点睛】此题考查解二元一次方程组—特殊法根据所求的式子中各系数与方程组的关系将解析:5 【分析】根据两个方程系数的关系将两个方程相加即可得到答案. 【详解】解:612328x y x y +=⎧⎨-=⎩①②,①+②得:4x +4y =20, 则x +y =5, 故答案为:5. 【点睛】此题考查解二元一次方程组—特殊法,根据所求的式子中各系数与方程组的关系,将原方程组对应相加或相减即可得到答案的方法更为简便. 14.甲、乙两人共同解方程组51542+=⎧⎨-=-⎩ax y x by ,由于甲看错了方程①中的a ,得到方程组的解为31x y =-⎧⎨=⎩,乙看错了方程②中的b ,得到方程组的解为54x y =⎧⎨=⎩,则a 2020+(10b )2021=________.【分析】根据甲看错了方程①中的a②没有看错代入②得到一个方程求出b 的值乙看错了方程②中的b①没有看错代入①求出a 的值然后再把ab 的值代入代数式计算即可求解【详解】解:根据题意得4×(-3)-b=-2解析:0【分析】根据甲看错了方程①中的a ,②没有看错,代入②得到一个方程求出b 的值,乙看错了方程②中的b ,①没有看错,代入①求出a 的值,然后再把a 、b 的值代入代数式计算即可求解. 【详解】解:根据题意得,4×(-3)-b=-2,5a+5×4=15, 解得a=-1,b=-10,则a 2020+ (10b )2021=(-1)2020+(-110×10)2021=1-1=0故答案是:0. 【点睛】本题考查了二元一次方程的解,根据题意列出方程式解题的关键.15.如图,在两个形状、大小完全相同的大长方形内放入四个如图③的小长方形后得到如图①、②,已知大长方形的长为m ,则(1)若记小长方形的长为a ,宽为()b a b >,则a 和b 之间的数量关系是_________;(2)图①中阴影部分的周长与图②中阴影部分的周长的和是________(结果用含m 的代数式表示).【分析】(1)根据图①可得两个小长方形的宽等于一个小长方形的长由此即可得;(2)先根据图①可得从而可得再分别求出图①与图②中阴影部分的周长然后根据整式的加法法则进行求和即可得【详解】(1)由图①得:解析:2a b = 112m 【分析】(1)根据图①可得两个小长方形的宽等于一个小长方形的长,由此即可得;(2)先根据图①可得2a b m +=,从而可得,24m ma b ==,再分别求出图①与图②中阴影部分的周长,然后根据整式的加法法则进行求和即可得. 【详解】(1)由图①得:2a b =; (2)由图①得:22a ba b m =⎧⎨+=⎩,解得24m a m b ⎧=⎪⎪⎨⎪=⎪⎩,图①中阴影部分的周长为()52242m b m m m ⎛⎫+=+=⎪⎝⎭, 图②中阴影部分的周长为()3223223244m m m m a b b m m ⎛⎫-++=-++= ⎪⎝⎭, 则图①中阴影部分的周长与图②中阴影部分的周长的和是511322m m m +=, 故答案为:2a b =,112m . 【点睛】本题考查了二元一次方程组的应用、整式的加减应用,依据图形,正确建立方程组和列出整式是解题关键. 16.若方程组18mx ny nx my -=⎧⎨+=⎩的解是21x y =⎧⎨=⎩,则m=________,n=________.3【分析】把xy 的值代入原方程组即可装化成关于mn 的二元一次方程组进而求出mn 的值【详解】解:把代入方程组得①×2+②得5m=10∴m=2将m=2代入②得n=3故答案为:2;3【点睛】本题考查二元一解析:3 【分析】把x 、y 的值代入原方程组,即可装化成关于m 、n 的二元一次方程组,进而求出m 、n 的值. 【详解】解:把21x y =⎧⎨=⎩代入方程组18mx ny nx my -=⎧⎨+=⎩得2128m n n m -=⎧⎨+=⎩①② ①×2+②得 5m=10 ∴m=2将m=2代入②得n=3 故答案为:2;3. 【点睛】本题考查二元一次方程组的定义及解法,其基本思路是消元,消元的方法有:加减消元法和代入消元法两种,当方程中相同的未知数的系数相等或者互为相反数时用加减消元法解方程组比较简单,灵活选择合适的方法是解题的关键.17.若方程组1122a x y c a x y c +=⎧⎨+=⎩的解是23x y =⎧⎨=⎩,则方程组111222a x y a c a x y a c +=-⎧⎨+=-⎩的解是x =_____,y =_____.-1-3【分析】把代入方程组可求出c1﹣c2=2(a1﹣a2)c1﹣2a1=3再根据方程组即可求出xy 的值【详解】解:把代入方程组得所以c1﹣c2=2(a1﹣a2)c1﹣2a1=3方程组①﹣②得(a解析:-1 -3【分析】把23x y =⎧⎨=⎩代入方程组1122a x y c a x y c +=⎧⎨+=⎩可求出c 1﹣c 2=2(a 1﹣a 2),c 1﹣2a 1=3,再根据方程组111222a x y a c a x y a c +=-⎧⎨+=-⎩①②,即可求出x 、y 的值. 【详解】解:把23x y =⎧⎨=⎩代入方程组1122a x y c a x y c +=⎧⎨+=⎩得, 11222323a c a c +=⎧⎨+=⎩, 所以c 1﹣c 2=2(a 1﹣a 2),c 1﹣2a 1=3,方程组111222a x y a c a x y a c +=-⎧⎨+=-⎩①②,①﹣②得,(a 1﹣a 2)x =a 1﹣a 2﹣(c 1﹣c 2), 所以(a 1﹣a 2)x =﹣(a 1﹣a 2),因此x =﹣1,把x =﹣1代入方程组111222a x y a c a x y a c +=-⎧⎨+=-⎩①②中的方程①得,﹣a 1+y =a 1﹣c 1,所以y =2a 1﹣c 1=﹣(c 1﹣2a 1)=﹣3,故答案为:﹣1,﹣3.【点睛】本题考查二元一次方程组及其解法,掌握方程组的解法是解决问题的关键,解二元一次方程组的基本思想是消元.18.某风景区有4个相同的出口、4个相同的入口,假设在任何情况下每个入口的人数均是匀速出入,每个出口的人数均是匀速出入,当风景区人数已达到可容纳人数的20%时,若同时开放4个入口和2个出口,则1.6小时刚好达到可容纳人数;若同时开放2个入口和2个出口,则8小时刚好达到可容纳人数.受疫情影响,2020年五一期间,该风景区游览人数只允许达到平时可容纳人数的60%,当风景区人数已达到平时可容纳人数的10%时,若同时开放3个入口和2个出口,则经过__________小时刚好达到平时可容纳人数的60%.【分析】设每个入口每小时可进可容纳人数的每个出口每小时可出可容纳人数的根据当风景区人数已达到可容纳人数的20时若同时开放4个入口和2个出口则16小时刚好达到可容纳人数;若同时开放2个入口和2个出口则 解析:53【分析】设每个入口每小时可进可容纳人数的%x ,每个出口每小时可出可容纳人数的%y ,根据“当风景区人数已达到可容纳人数的20%时,若同时开放4个入口和2个出口,则1.6小时刚好达到可容纳人数;若同时开放2个入口和2个出口,则8小时刚好达到可容纳人数”,即可得出关于,x y 的二元一次方程组,解之即可得出,x y 的值,再将其代入60%10%3%2%x y --即可求出结论.【详解】解:设每个入口每小时可进可容纳人数的%x ,每个出口每小时可出可容纳人数的%y , 依题意,得: 1.64 1.62100208282=10020x y x y ⨯-⨯=-⎧⎨⨯-⨯-⎩, 解得:2015x y =⎧⎨=⎩, ∴60%10%50%53%2%320%215%3x y -==-⨯-⨯. 故答案为:53. 【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.19.对于任意有理数a ,b ,c ,d ,我们规定a bad bc c d =-.已知x ,y 同时满足514x y=-,513y x =-,则xy =________.【分析】利用题中的新定义得到二元一次方程组求出与的值即可【详解】解:根据题中的新定义得:①②得:解得:把代入①得:∴故答案为:【点睛】此题考查了解二元一次方程组以及有理数的乘法弄清题中的新定义是解本解析:6-【分析】利用题中的新定义得到二元一次方程组,求出x 与y 的值即可.【详解】解:根据题中的新定义得:45531x y x y +=⎧⎨+=⎩①②,①3⨯-②得:714x =,解得:2x =,把2x =代入①得:3y =-,∴6xy =-,故答案为:6-【点睛】此题考查了解二元一次方程组,以及有理数的乘法,弄清题中的新定义是解本题的关键. 20.若2|327|(521)0a b a b +++-+=,则a b +=______.-3【分析】由|3a+2b+7|+(5a-2b+1)2=0可得:3a+2b+7=0和5a-2b+1=0联立成方程组后解方程组可得a 和b 的值问题得解【详解】解:由题意得解方程组得所以【点睛】本题考查非 解析:-3【分析】由|3a+2b+7|+(5a-2b+1)2=0,可得:3a+2b+7=0和5a-2b+1=0,联立成方程组后解方程组可得a 和b 的值,问题得解.【详解】解:由题意,得3270,5210,a b a b ++=⎧⎨-+=⎩解方程组得1,2,a b =-⎧⎨=-⎩所以3a b +=-.【点睛】本题考查非负数的性质,利用其特殊的性质:非负数≥0,将问题转化为解方程或解方程组.这是解答此类题的规律,要求掌握.三、解答题21.为响应国家节能减排的号召,鼓励居民节约用电,各省市先后出台了“阶梯价格”制度,如表中是我市的电价标准(每月).(1)已知小明家5月份用电252度,缴纳电费158.4元,6月份用电340度,缴纳电费220元,请你根据以上数据,求出表格中的a ,b 的值(2)7月份开始用电增多,小明家缴纳电费285.5元,求小明家7月份的用电量解析:(1)a=0.6,b=0.7;(2)415度【分析】(1)根据各档的电费价格和所用的电数以及所缴纳电费,列出方程组,进行求解即可; (2)根据题意先判断出小明家所用的电所在的档,再设小明家五月份用电量为m 度,根据价格表列出等式,求出m 的值即可.【详解】解:(1)由题意可得:{180(252180)158.4180(340180)220a b a b +-=+-=解得:a=0.6,b=0.7(2)若一个月用电量为350度,电费为180×0.6+(350-180)×0.7=227,∵285.5>227,∴小明家7月份用电量超过350度;设小明家7月份用电量为m 度,则有:180×0.6+(350-180)×0.7+(m-350)×0.9=285.5;解得:m=415;∴小明家7月份用电量为415度;【点睛】此题考查了二元一次方程组的应用和一元一次方程的应用,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.22.解方程(组)(1)21332x x x -+-= (2)3450529x y x y -+=⎧⎨+=⎩解析:(1)x =-7;(2)12x y =⎧⎨=⎩【分析】(1)根据去分母,去括号,移项,合并同类项,系数化为1的步骤解方程即可; (2)方程整理后,利用加减消元法解方程即可.【详解】解:(1)去分母得 ()()622133x x x --=+去括号得 64239x x x -+=+移项得 64392x x x --=-合并同类项得 7x -=系数化为1得 7x =-(2)方程组整理得345529x y x y -=-⎧⎨+=⎩①② ②×2+①得1313x =解得1x =把1x =代入②得529y +=解得2y =∴方程组的解为12x y =⎧⎨=⎩【点睛】本题考查了解一元一次方程及解二元一次方程组.解二元一次方程组的思想是消元思想,常用方法是代入法和加减法.23.某硫酸厂接到一批订单,急需一批浓度为60%的硫酸1200吨.但工厂只有一大批浓度70%和浓度55%的硫酸,却没有浓度60%的硫酸,马上生产时间已经来不及.由于签订了合同,到期交不了货,就得赔违约金,搞不好,这个月连工资都发不了.现在请你帮忙仔细算一算这两种硫酸各需多少吨,才能配制成浓度为60%的硫酸1200吨?解析:需要浓度70%的硫酸400吨,浓度55%的硫酸800吨,才能配制成浓度为60%的硫酸1200吨.【分析】设需要浓度70%的硫酸x 吨,浓度55%的硫酸y 吨,才能配制成浓度为60%的硫酸1200吨,根据题意列出方程组即可求解.【详解】解:设需要浓度70%的硫酸x 吨,浓度55%的硫酸y 吨,才能配制成浓度为60%的硫酸1200吨,(70%=0.7,55%=0.55,60%=0.6),根据题意得:0.70.550.612001200x y x y +=⨯⎧⎨+=⎩, 解得400800x y =⎧⎨=⎩, 答:需要浓度70%的硫酸400吨,浓度55%的硫酸800吨,才能配制成浓度为60%的硫酸1200吨.【点睛】本题考查了二元一次方程组的应用,解决本题的关键是根据题意找到等量关系.24.(1)解方程组:21035x y x y +=⎧⎨-=⎩;(2)解不等式组:2(1)35423xxx+-<⎧⎪-⎨-≥⎪⎩.解析:(1)81xy=⎧⎨=⎩;(2) 13x≤<.【分析】(1)利用加减消元法,先消去x,求得y,后代入求得x,从而得到方程组的解;(2)分别求得不等式组中每一个不等式的解集,再确定出公共部分即可.【详解】(1)由21035x yx y+=⎧⎨-=⎩①②,①-②,得5y=5,解得y=1;把y=1代入①,解得x=8,所以原方程组的解为=81 xy⎧⎨=⎩.(2)由2(1)35423xxx+-<⎧⎪⎨--≥⎪⎩①②,解不等式①得 x<3;解不等式②得x≥1;所以原不等式组的解集为1≤x<3.【点睛】(1)考查了二元一次方程组的解法,熟练掌握加减消元法是解题的关键;(2)考查了一元一次不等式组的解法,熟练求解,利用数形结合思想,灵活确定解集是解题的关键.25.某班举行数学知识竞赛,下面是班长安排小明购买奖品后的对话情景小明:买了两种不同的笔记本共40本,单价分别是5元和8元,我从你处领了300元,现在找回68元班长:你肯定搞错了小明:哦!我把自己口袋里的13元一起当作找回的钱款了班长:这就对啦!(1)根据上述信息,求两种笔记本各买了多少本?(2)请你解释,小明为什么不可能找回68元?解析:(1)5元的笔记本买25本,8元的笔记本买15本;(2)见解析【分析】(1)设5元、8元的笔记本分别买x本、y本,根据题意列二元一次方程组解答;(2)根据(1)中求出的5元、8元笔记本的本数求出应找回的钱数,再与68比较即可得出结论.【详解】(1)设5元、8元的笔记本分别买x 本、y 本,由题意得405868313x y x y +=⎧⎨++=⎩,解得2515x y =⎧⎨=⎩, 答:5元的笔记本买25本,8元的笔记本买15本;(2)应找回的钱数为:3005258155568-⨯-⨯=≠,∴不能找回68元.【点睛】此题考查二元一次方程组的实际应用,有理数的混合运算,正确理解题意是解题的关键. 26.用指定的方法解下列方程组:(1)34194x y x y +=⎧⎨-=⎩(代入法); (2)2353212x y x y +=-⎧⎨-=⎩(加减法). 解析:(1)51x y =⎧⎨=⎩;(2)23x y =⎧⎨=-⎩【分析】(1)由②得出x =4+y ③,把③代入①得出3(4+y )+4y =19,求出y ,把y =1代入③求出x 即可;(2)①×2+②×3得出13x =26,求出x ,把x =2代入①求出y 即可.【详解】解:(1)3419?4?x y x y +=⎧⎨-=⎩①②, 由②得:x =4+y③,把③代入①得:3(4+y )+4y =19,解得:y =1,把y =1代入③得:x =4+1=5,所以方程组的解是51x y =⎧⎨=⎩; (2)235?3212?x y x y +=-⎧⎨-=⎩①②, ①×2+②×3得:13x =26,解得:x =2,把x =2代入①得:4+3y =﹣5,解得:y =﹣3,所以方程组的解23x y =⎧⎨=-⎩. 【点睛】本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键.27.解方程组:(1)1367x y x y -=⎧⎨=-⎩; (2)414531x y x y -=⎧⎨+=⎩. 解析:(1)174x y =⎧⎨=⎩;(2)56x y =⎧⎨=⎩ 【分析】 (1)利用代入消元法求解即可;(2)利用加减消元法求解即可.【详解】解:(1)1367x y x y -=⎧⎨=-⎩①②把②代入①得: 6713y y --=,解得:4y =,把4y =代入②得: 64717x =⨯-=,∴原方程组的解为174.x y =⎧⎨=⎩, (2)414531x y x y -=⎧⎨+=⎩①②①+②得, 945x =,解得:5x =,将5x =代入①得,2014y -=,解得:6y =,故原方程组的解为56x y =⎧⎨=⎩. 【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法和加减消元法.28.若关于,x y的方程组37x yax y b-=⎧⎨+=⎩和关于,x y的方程组28x by ax y+=⎧⎨+=⎩有相同的解,求,a b的值.解析:75a=-,115b=-.【分析】首先把3x-y=7和2x+y=8联立方程组,求得x、y的数值,再进一步代入原方程组的另一个方程,再进一步联立关于a、b的方程组,进一步解方程组求得答案即可.【详解】解:由题意得37 28 x yx y-=⎧⎨+=⎩,解得32 xy=⎧⎨=⎩,把32xy=⎧⎨=⎩代入原方程组+yax bx by a=⎧⎨+=⎩,得,3+232a bb a=⎧⎨+=⎩,解得75115ab⎧=-⎪⎪⎨⎪=-⎪⎩.【点睛】本题考查二元一次方程组的解法,熟练掌握加减消元法是解题的关键.。
一、选择题1.若12x y =⎧⎨=-⎩是方程3x+by =1的解,则b 的值为( ) A .1B .﹣1C .﹣2D .2A解析:A【分析】把方程的解代入方程,解方程求出b 的值即可.【详解】 把12x y =⎧⎨=-⎩代入方程3x +by =1,得3−2b =1, 所以−2b =−2,所以b =1.故选:A .【点睛】本题考查了方程的解和解方程,掌握方程解的意义是解决本题的关键.2.若关于x 、y 的方程组228x y ax y +=⎧⎨+=⎩的解为整数,则满足条件的所有a 的值的和为( )A .6B .9C .12D .16C 解析:C【分析】先把a 看作已知数求出42x a =-,然后结合方程组的解为整数即可求出a 的值,进而可得答案.【详解】 解:对方程组2{28x y ax y +=+=①②, ②-①×2,得()24a x -=,∴42x a =-, ∵关于x 、y 的方程组228x y ax y +=⎧⎨+=⎩的解为整数, ∴21,2,4a -=±±±,即a =﹣2、0、1、3、4、6,∴满足条件的所有a 的值的和为﹣2+0+1+3+4+6=12.故选:C .【点睛】本题考查了二元一次方程组的解法,正确理解题意、熟练掌握解二元一次方程组的方法是解题关键.3.小明的妈妈在菜市场买回2斤萝卜、1斤排骨共花了41.4元,而两个月前买同重量的这两样菜只要36元,与两个月前相比,这次萝卜的单价下降了10%,但排骨单价却上涨了20%,设两个月前买的萝卜和排骨的单价分别为x 元/斤,y 元/斤,则可列方程为( )A .()()2362110%120%41.4x y x y +=⎧⎨⨯-++=⎩B .()()241.42110%120%36x y x y +=⎧⎨⨯-++=⎩C .()()241.4110%2120%36x y x y +=⎧⎨-+⨯+=⎩D .()()236110%2120%41.4x y x y +=⎧⎨-+⨯+=⎩A 解析:A【分析】根据题目中设的两个月前的萝卜和排骨的单价,先列出两个月前的式子236x y +=,再根据降价和涨价列出现在的式子()()2110%120%41.4x y ⨯-++=,得到方程组.【详解】解:两个月前买菜的情况列式:236x y +=,现在萝卜的价格下降了10%,就是()110%x -,排骨的价格上涨了20%,就是()120%y +,那么这次买菜的情况列式:()()2110%120%41.4x y ⨯-++=,∴方程组可以列为()()2362110%120%41.4x y x y +=⎧⎨⨯-++=⎩. 故选:A .【点睛】本题考查二元一次方程组的应用,解题的关键是根据题意找到等量关系列出方程组. 4.《孙子算经》是中国古代著名的数学著作.在书中有这样一道题:“今有木,不知长短.引绳度之,余绳四尺五,屈绳量之,不足一尺.问木长几何? ”译成白话文: “现有一根木头,不知道它的长短.用整条绳子去量木头,绳子比木头长4.5尺;将绳子对折后去量,则绳子比木头短1尺.问木头的长度是多少尺?”设木头的长度为x 尺,绳子的长度为y 尺.则可列出方程组为( )A . 4.512x y y x -=⎧⎪⎨-=⎪⎩B . 4.512y x y y -=⎧⎪⎨-=⎪⎩C . 4.512y x y x -=⎧⎪⎨-=⎪⎩D . 4.512x y y y -=⎧⎪⎨-=⎪⎩C 解析:C【分析】根据“用绳子去量一根木头,绳子还剩余4.5尺,将绳子对折再量木头,木头还剩余1尺”,即可得出关于x ,y 的二元一次方程组,此题得解.【详解】依题意,得: 4.512y x y x -=⎧⎪⎨-=⎪⎩, 故选:C .【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.5.以方程组21x y y x +=⎧⎨=-⎩的解为坐标的点(x ,y)在平面直角坐标系中的位置是( ) A .第一象限B .第二象限C .第三象限D .第四象限A解析:A【分析】先根据代入消元法解方程组,然后判断即可;【详解】 21x y y x +=⎧⎨=-⎩, 把1y x =-代入2x y +=中,得:12x x -+=, 解得:32x =, ∴31122y =-=, ∴点31,22⎛⎫ ⎪⎝⎭在第一象限. 故选A .【点睛】本题主要考查了解二元一次方程组及象限与点的坐标,准确计算判断是解题的关键. 6.方程组125x y x y +=⎧⎨+=⎩的解为( ) A .12x y =-⎧⎨=⎩ B .21x y =⎧⎨=⎩ C .43x y =⎧⎨=-⎩ D .23x y =-⎧⎨=⎩C 解析:C【分析】根据解二元一次方程组的方法可以解答本题.【详解】解:125x y x y +=⎧⎨+=⎩①②②﹣①,得x=4,将x=4代入①,得y=﹣3,故原方程组的解为43x y =⎧⎨=-⎩, 故选:C .【点睛】本题考查了解二元一次方程组,解答本题的关键是明确解二元一次方程组的方法. 7.已知x ,y 满足方程组4,5,x m y m +=⎧⎨-=⎩则无论m 取何值,x ,y 恒有的关系式是( ) A .1x y +=B .1x y +=-C .9x y +=D .9x y -=- C 解析:C【分析】由方程组消去m ,得到一个关于x ,y 的方程,化简这个方程即可.【详解】解:将5m y =-代入4x m +=,得54x y +-=,所以9x y +=.故选C.【点睛】解二元一次方程组的基本思想是“消元”,基本方法是代入法和加减法,此题实际是消元法的考核. 8.已知方程组2325x y x y +=⎧⎨-=⎩,则39x y +的值为( ) A .2-B .2C .6-D .6C解析:C【分析】方程组两方程相减求出x+3y 的值,进而即可求得3x+9y 的值.【详解】 2325x y x y +=⎧⎨-=⎩①②, ①-②得:32x y +=-,∴()39336x y x y +=+=-,故选:C .【点睛】本题考查了求代数式的值以及解二元一次方程组,解二元一次方程组利用了消元的思想,消元的方法有:代入消元法与加减消元法.灵活运用整体代入法是解题的关键. 9.已知 xyz≠0,且4520430x y z x y z -+=⎧⎨+-=⎩,则 x :y :z 等于( )A .3:2:1B .1:2:3C .4:5:3D .3:4:5B解析:B【分析】 由4520430x y z x y z -+⎧⎨+-⎩=①=②,①×3+②×2,得出x 与y 的关系式,①×4+②×5,得出x 与z 的关系式,从而算出xyz 的比值即可.【详解】∵4520430x y z x y z -+⎧⎨+-⎩=①=②, ∴①×3+②×2,得2x=y ,①×4+②×5,得3x=z ,∴x :y :z=x :2x :3x=1:2:3,故选B .【点睛】本题考查了三元一次方程组的解法,用含有x 的代数式表示y 与z 是解此题的关键. 10.下列方程中,是二元一次方程的是( ).A .324x y z -=B .690+=xC .42x y =-D .123y x+= C 解析:C【分析】含有两个未知数,并且含有未知数的项的次数是1的整式方程是二元一次方程,根据定义解答.【详解】A 、含有三个未知数,不符合;B 、是一元一次方程,不符合;C 、符合;D 、含有分式,不符合;故选:C.【点睛】此题考查二元一次方程的定义,熟记该方程的特点是解题的关键. 二、填空题11.金秋十月,丹桂飘香,重庆市綦江区某中学举行了创新科技大赛,该校初二年级某班共有18人报名参加航海组、航空组和无人机组三个项目组的比赛(每人限参加一项),其中航海组的同学比无人机组的同学的两倍少3人,航空组的同学不少于5人但不超过9人,班级决定为航海组的每位同学购买2个航海模型,为航空组的每位同学购买3个航空模型,为无人机组的每位同学购买若干个无人机模型,已知航海模型75元每个,航空模型98元每个,无人机模型165元每个,若购买这三种模型共需花费6939元,则其中购买无人机模型的费用是_______.4125元【分析】设无人机组有x 个同学航空组有y 个同学根据人数为18列出二元一次方程根据航空组的同学不少于5人但不超过9人得到xy的解再代入模型费用进行验证即可求解【详解】设无人机组有x个同学航空组解析:4125元.【分析】设无人机组有x个同学,航空组有y个同学,根据人数为18列出二元一次方程,根据航空组的同学不少于5人但不超过9人,得到x,y的解,再代入模型费用进行验证即可求解.【详解】设无人机组有x个同学,航空组有y个同学,则航海组有(2x-3)个同学,依题意得x+2x-3+y=18,解得x=21=733y y --,∵航空组的同学不少于5人但不超过9人,x,y为正整数,y为3的倍数,故方程的解为,56xy=⎧⎨=⎩,49xy=⎧⎨=⎩,设为无人机组的每位同学购买a个无人机模型,当56xy=⎧⎨=⎩时,依题意得5a×165+2×7×75+6×3×98=6939解得a=4125=5825,符合题意,故购买无人机模型的费用是4125元;当49xy=⎧⎨=⎩时,依题意得4a×165+2×5×75+9×3×98=6939解得a=3543660,不符合题意;综上,答案为4125元.故答案为:4125元.【点睛】此题主要考查二元一次方程的应用,解题的关键是根据题意列出方程,再分类讨论进行求解.12.若方程x|m|-2+(m+3)y2m-n=6是关于x、y的二元一次方程,则m+n=_____8【分析】根据二元一次方程满足的条件:含有2个未知数未知数的项的次数是1的整式方程可得|m|-2=12m-n=1解出mn的值可得答案【详解】解:由题意知|m|-2=12m-n=1且m+3≠0解得m=解析:8【分析】根据二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程可得|m|-2=1,2m-n=1,解出m、n的值可得答案.【详解】解:由题意,知|m|-2=1,2m-n=1且m+3≠0.解得m=3,n=5.所以m+n=3+5=8.故答案是:8.【点睛】主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.13.若32x y =⎧⎨=⎩是方程24x ay -= 的一个解,则a =________.1【分析】将解代入二元一次方程再解一个一元一次方程即可【详解】解:∵是方程的一个解∴∴故答案为:1【点睛】本题考查了二元一次方程的解解决此类题目时只要将解代入方程计算即可解析:1【分析】将解代入二元一次方程,再解一个一元一次方程即可.【详解】解:∵32x y =⎧⎨=⎩是方程24x ay -=的一个解, ∴2324a ⨯-=,∴1a =,故答案为:1.【点睛】本题考查了二元一次方程的解,解决此类题目时,只要将解代入方程计算即可. 14.某超市促销活动,将车厘子、波罗蜜、山竹三种水果采用三种不同方式搭配成礼盒,分别是蒸蒸日上礼盒、独占鳌头礼盒、吉祥如意礼盒,将礼盒进行销售,每盒的总成本为盒中车厘子、波罗蜜、山竹三种水果成本之和,盒子成本忽略不计,蒸蒸日上每盒分别装有车厘子、波罗蜜、山竹三种水果8千克,4千克,3千克;独占鳌头每盒装有车厘子、波罗蜜、山竹三种水果3千克,8千克,6千克;蒸蒸日上每盒的总成本是每千克车厘子水果成本的14倍,每盒蒸蒸日上的销售利润是60%,每盒独占鳌头的售价是成本的43倍,每盒吉祥如意在成本上提高60%标价后打八折出售,获利为每千克车厘子水果成本的2.8倍,当销售蒸蒸日上、独占鳌头、吉祥如意三种礼盒的数量之比为5:2:5,则销售的总利润率为______.44【分析】分别设每千克车厘子菠萝蜜山竹三种水果的成本价分别为xyz 再由题意分别求出每一种礼盒的成本利润则可求解【详解】设设每千克车厘子菠萝蜜山竹三种水果的成本价分别为xyz 由题意可得:∴蒸蒸日上的 解析:44%【分析】分别设每千克车厘子、菠萝蜜、山竹三种水果的成本价分别为x 、y 、z ,再由题意分别求出每一种礼盒的成本、利润则可求解.【详解】设设每千克车厘子、菠萝蜜、山竹三种水果的成本价分别为x 、y 、z ,由题意可得:84314x y z x ++=∴436y z x +=蒸蒸日上的总成本为:84314x y z x ++=, 每盒的利润是:342(843)55x y z x ++=; 独占鳌头的总成本为:38632615x y z x x x ++=+⨯=, 每盒的售价是:4(386)3x y z ++, 每盒的利润是:()()41(386)386386533x y z x y z x y z x ++-++=++= 每盒吉祥如意的销售利润是2.8x ,则成本为:()2.810160%80%1x x =+⨯-, 当销售蒸蒸日上、独占鳌头、吉祥如意三种礼盒的数量之比为5:2:5,总成本是:51425510150x x x x ⨯+⨯+⨯=, 总利润是:425255 2.8665x x x x ⨯+⨯+⨯= ∴总利润是6644%150x x= 故答案为:44%【点睛】本题考查了三元一次方程的应用;理解题意,能够通过所给的量之间的关系列出正确的方程是解题的关键.15.已知关于x 、y 的方程组22332x y k x y k -=⎧⎨-=-⎩的解满足24x y -=,则k 的值为_______.6【分析】先利用方程组中的第二个方程减去第一个方程可得再根据方程的解满足可得一个关于k 的一元一次方程解方程即可得【详解】由②①得:由题意得:解得故答案为:6【点睛】本题考查了二元一次方程组的特殊解法解析:6【分析】先利用方程组中的第二个方程减去第一个方程可得22x y k -=-,再根据方程的解满足24x y -=可得一个关于k 的一元一次方程,解方程即可得.【详解】22332x y k x y k -=⎧⎨-=-⎩①②, 由②-①得:22x y k -=-,由题意得:24k -=,解得6k =,故答案为:6.【点睛】本题考查了二元一次方程组的特殊解法、解一元一次方程,熟练掌握方程组的解法是解题关键.16.单项式-x 2m-n y 3与单项式3m+n 2x y 3可以合并,则多项式4m-2n+(-m-n )2-2(n-2m )2的值是______.-3【分析】根据两个单项式可以合并求出mn 的值再化简多项式代入即可【详解】解:单项式-x2m-ny3与单项式可以合并∴2m-n=33=m+n 组成方程组解得:m=2n=1当m=2n=1时故答案为:【点解析:-3【分析】根据两个单项式可以合并,求出m 、n 的值,再化简多项式代入即可.【详解】解:单项式-x 2m-n y 3与单项式3m+n 2x y 3可以合并 ∴2m-n=3,3=m+n组成方程组解得:m=2,n=1当m=2,n=1时 ()()224222m n m n n m -+---- 82918=-+-3=-故答案为:3-.【点睛】本题考查同类项定义,以及代入多项式求值,值得注意的是本题代入求值时,可以直接代入,化简后代入反而繁缛了.17.已知关于x ,y 的方程组111222a b c a b c x y x y +=⎧⎨+=⎩的唯一解是41x y =⎧⎨=⎩,则关于m ,n 的方程组()()11112222a 2m 6bc b a 2m 6b c b n n ⎧--=+⎪⎨--=+⎪⎩的解是____________.【分析】变形方程组根据整体代入的方法进行分析计算即可;【详解】方程组可变形为方程组即是当代入方程组之后的方程组则也是这一方程组的解所以∴故答案是【点睛】本题主要考查了二元一次方程组的求解准确分析计算解析:52m n =⎧⎨=-⎩【分析】变形方程组,根据整体代入的方法进行分析计算即可;【详解】方程组()()11112222a 2m 6b c b a 2m 6b c b n n ⎧--=+⎪⎨--=+⎪⎩可变形为方程组()()111222a 2m 6b (1)c a 2m 6b (1)c n n ⎧-+--=⎪⎨-+--=⎪⎩,即是当261x m y n =-⎧⎨=--⎩代入方程组111222a b c a b c x y x y +=⎧⎨+=⎩之后的方程组,则41x y =⎧⎨=⎩也是这一方程组的解,所以26411x m y n =-=⎧⎨=--=⎩,∴52m n =⎧⎨=-⎩. 故答案是52m n =⎧⎨=-⎩. 【点睛】本题主要考查了二元一次方程组的求解,准确分析计算是解题的关键.18.为了节省空间,家里的饭碗一般是竖直摆放的,如果4只饭碗(形状、大小相同)竖直摆放的高度为11,8cm 只饭碗竖直摆放的高度为17cm .如图所示,小颖家的碗橱每格的高度为35,cm 则一摞碗竖直放人橱柜时,每格最多能放________________________. 【分析】由题意得碗的高度和碗的个数的关系式为y=kx+b 然后代入题中的两种情况得根据每格橱柜最高35cm 即可求出答案【详解】设碗的个数为xcm 碗摞起来的高度为ycm 可得碗的高度和碗的个数的关系式为y解析:20【分析】由题意得,碗的高度和碗的个数的关系式为y=kx+b ,然后代入题中的两种情况得352y x =+, 根据每格橱柜最高35cm ,即可求出答案.【详解】设碗的个数为x cm ,碗摞起来的高度为y cm ,可得碗的高度和碗的个数的关系式为y=kx+b ,根据4只碗摞起来的高度为11cm ,8只碗摞起来的高度为17cm ,列方程组411817k b k b +=⎧⎨+=⎩ ,解得:325k b ⎧=⎪⎨⎪=⎩ , 352y x =+, 碗橱每格的高度为35cm ,33552x =+, 解得:20x ,所以每格最多能放20个碗,故答案为:20.【点睛】本题考查了二元一次方程的应用,关键是根据题意,找出合适的等量关系式,列出方程组求解.19.某风景区有4个相同的出口、4个相同的入口,假设在任何情况下每个入口的人数均是匀速出入,每个出口的人数均是匀速出入,当风景区人数已达到可容纳人数的20%时,若同时开放4个入口和2个出口,则1.6小时刚好达到可容纳人数;若同时开放2个入口和2个出口,则8小时刚好达到可容纳人数.受疫情影响,2020年五一期间,该风景区游览人数只允许达到平时可容纳人数的60%,当风景区人数已达到平时可容纳人数的10%时,若同时开放3个入口和2个出口,则经过__________小时刚好达到平时可容纳人数的60%.【分析】设每个入口每小时可进可容纳人数的每个出口每小时可出可容纳人数的根据当风景区人数已达到可容纳人数的20时若同时开放4个入口和2个出口则16小时刚好达到可容纳人数;若同时开放2个入口和2个出口则 解析:53【分析】设每个入口每小时可进可容纳人数的%x ,每个出口每小时可出可容纳人数的%y ,根据“当风景区人数已达到可容纳人数的20%时,若同时开放4个入口和2个出口,则1.6小时刚好达到可容纳人数;若同时开放2个入口和2个出口,则8小时刚好达到可容纳人数”,即可得出关于,x y 的二元一次方程组,解之即可得出,x y 的值,再将其代入60%10%3%2%x y --即可求出结论.【详解】解:设每个入口每小时可进可容纳人数的%x ,每个出口每小时可出可容纳人数的%y , 依题意,得: 1.64 1.62100208282=10020x y x y ⨯-⨯=-⎧⎨⨯-⨯-⎩,解得:2015 xy=⎧⎨=⎩,∴60%10%50%5 3%2%320%215%3x y-== -⨯-⨯.故答案为:53.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.20.甲、乙二人分别从A、B两地同时出发,匀速沿同一平直公路相向而行.甲骑的共享电车,乙步行,两人在出发2.5h时相遇,相遇后0.5h甲到达B地,若相遇后乙又走了20千米才到达A、B两地的中点,那么乙的速度为______千米/时.4【分析】设甲的速度为x乙的速度为y根据题意得到方程组即可求解【详解】设甲的速度为x乙的速度为y故两地的距离为3x依题意可得解得∴乙的速度为4千米/时故答案为:4【点睛】此题主要考查二元一次方程组的解析:4【分析】设甲的速度为x,乙的速度为y,根据题意得到方程组即可求解.【详解】设甲的速度为x,乙的速度为y,故A、B两地的距离为3x,依题意可得3 2.5202 2.5()3y xx y x ⎧+=⎪⎨⎪+=⎩解得204 xy=⎧⎨=⎩∴乙的速度为4千米/时.故答案为:4.【点睛】此题主要考查二元一次方程组的应用,解题的关键是根据题意找到等量关系列方程求解.三、解答题21.解方程组:(1)2328 x yx y=⎧⎨-=⎩(2)3224()5()2 x yx y x y+=⎧⎨+--=⎩解析:(1)42xy=⎧⎨=⎩;(2)71xy=⎧⎨=⎩.【分析】(1)方程组利用代入消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【详解】解:(1)2328x y x y =⎧⎨-=⎩①②, 把①代入②得:3x-x=8,解得:x=4,把x=4代入①得:y=2,则方程组的解为42x y =⎧⎨=⎩; (2)方程组整理得:32292x y x y +=⎧⎨-+=⎩①②, ①+②×3得:28y=28,即y=1,把y=1代入②得:x=7,则方程组的解为71x y =⎧⎨=⎩. 【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.22.解方程组:321121x y x y -=⎧⎨+=⎩. 解析:31x y =⎧⎨=-⎩【分析】利用加减消元法求解即可.【详解】3211(1)21(2)x y x y -=⎧⎨+=⎩, (1)+(2),得4x =12,解得:x =3.将x =3代入(2),得9﹣2y =11,解得y =﹣1.所以方程组的解是:31x y =⎧⎨=-⎩. 【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.23.一个电器超市购进A 、B 两种型号的电风扇进行销售,已知购进2台A 型号和3台B 型号共用910元,购进3台A 型号比购进2台B 型号多用260元.(1)求A 、B 两种型号的电风扇每台进价分别是多少元?(2)超市根据市场需求,决定购进这两种型号的电风扇共30台进行销售,A 种型号电风扇每台售价260元,B 种型号电风扇每件售价190元,若超市购进的两种电风扇全部售出后,总获利是1400元,求该超市本次购进A 、B 两种型号的电风扇各多少台?解析:(1)A 、B 两种型号的电风扇每台进价分别是200元和170元;(2)该超市本次购进A 、B 两种型号的电风扇各是20台和10台【分析】(1)设A 、B 两种型号的电风扇每台进价分别是x 元、y 元,进而利用购进2台A 型号和3台B 型号共用910元,购进3台A 型号比购进2台B 型号多用260元,列出二元一次方程组求出答案;(2)首先设购进A 种型号的电风扇a 台,则设购进B 种型号的电风扇(30-a )台,直接利用本次购进的两种电风扇全部售出后,总获利为1400元,列方程求出答案.【详解】解:(1)设A 、B 两种型号的电风扇每台进价分别是x 元、y 元,依题意,得2391032260x y x y +=⎧⎨-=⎩,解得200170x y =⎧⎨=⎩, 答:A 、B 两种型号的电风扇每台进价分别是200元和170元.(2)设购进A 种型号的电风扇a 台,则设购进B 种型号的电风扇(30)a -台, 依题意,得:(260200)(190170)(30)1400a a -+--=,解得:20a =,则3010a -=.答:该超市本次购进A 、B 两种型号的电风扇各是20台和10台.【点睛】此题主要考查了二元一次方程的应用,正确根据题目间等量关系列方程组进行计算求解是解题关键.24.甲,乙两位同学在解方程组11ax by cx y +=⎧⎨+=-⎩时,甲正确解得方程组的解为11x y =-⎧⎨=⎩.乙因抄错了方程中的系数c ,得到的解为21x y =⎧⎨=-⎩,若乙没有再发生其他错误,试求a 、b 、c 的值.解析:2a =,3b =,2c =【分析】所谓“方程组”的解,指的是该数值满足方程组中的每一方程的值,根据题意可得111a b c -+=⎧⎨-+=-⎩和121a b a b -+=⎧⎨-=⎩,解方程组可得原方程组中a 、b 、c 的值. 【详解】解:11x y =-⎧⎨=⎩代入到原方程组中,得111a b c -+=⎧⎨-+=-⎩,解得2c =, 乙仅因抄错了c 而求得21x y =⎧⎨=-⎩,但它仍是方程1ax by +=的解, 所以把21x y =⎧⎨=-⎩代入到1ax by +=中得21a b -=, 由121a b a b -+=⎧⎨-=⎩,解得23a b =⎧⎨=⎩, 所以2a =,3b =,2c =.【点睛】此题主要考查了二元一次方程组解的定义以及解二元一次方程组的基本方法. 25.萱萱家为方便她上学,在黄冈小河中学旁边购买了一套经济适用房.她家准备将地面铺上地砖,地面结构如图所示.根据图中的数据(单位:m ),解答下列问题: (1)写出用含x 、y 的整式表示地面总面积;(2)已知客厅面积是厨房面积的4倍,且地面总面积是卫生间面积的15倍,铺1m 2地砖的平均费用为80元,求铺地砖的总费用为多少元?解析:(1)6218x y ++;(2)3600元【分析】(1)根据长方形的面积=长×宽,表示各部分的面积,于是可表示出总面积.(2)根据已知客厅面积是厨房面积的4倍,且地面总面积是卫生间面积的15倍,列出方程组求解,可求出总面积,再根据单价可求出铺地砖的总费用.【详解】解:(1)卧室的长=2+2=4,厨房的长=6-3=3,∴地面的总面积为:3×4+2y+2×3+6x=6x+2y+18.(2)由题意得6423 6218152xx y y=⨯⨯⎧⎨++=⨯⎩解得:41.5 xy=⎧⎨=⎩∴地面总面积为:S=6x+2y+18=45(m2),∴铺地砖的总费用为:45×80=3600(元).答:那么铺地砖的总费用为3600元.【点睛】本题考查二元一次方程组的应用,关键是能根据等量关系列出方程组.26.解方程组:(1)421 x yy x+=⎧⎨=+⎩;(2)4311 213x yx y-=⎧⎨+=⎩解析:(1)13xy=⎧⎨=⎩;(2)53xy=⎧⎨=⎩【分析】(1)利用代入消元法即可求解;(2)将②式适当变形得③式,再利用代入消元法即可求解.【详解】解:(1)x y4y2x1+=⎧⎨=+⎩①②,把②代入①得:x+2x+1=4,解得:x=1,把x=1代入② 得:y=3,∴原方程组的解为13 xy=⎧⎨=⎩;(2)4x-3y112x y13=⎧⎨+=⎩①②,解:由②得:y=13-2x③,把③代入①得:4x-3(13-2x)=11,解得x=5,把x=5代入③得:y=3,∴原方程组的解为 53x y =⎧⎨=⎩. 【点睛】本题考查代入消元法解二元一次方程组.代入消元法解二元一次方程组的一般步骤: 变:将其中一个方程变形,使一个未知数用含另一个未知数的代数式表示;代:用这个代数式代替另一个方程中的相应未知数,得到一个一元一次方程; 解:解这个一元一次方程;求:把求得的未知数的值代入代数式,求得另一个未知数的值;写:写出方程组的解.27.在新冠疫情期间,为支援武汉,现将我市大米运往武汉.有大小两种货车,2辆大货车与3辆小货车一次可以运货15.5吨,5辆大货车与6辆小货车一次可以运货35吨.那么3辆大货车与5辆小货车一次可以运货多少吨.解析:5【分析】本题等量关系比较明显:2辆大车运载吨数+3辆小车运载吨数=15.5;5辆大车运载吨数+6辆小车运载吨数=35,算出1辆大车与1辆小车一次可以运货多少吨后,即可计算出3辆大车与5辆小车一次可以运货多少吨.【详解】设大货车每辆装x 吨,小货车每辆装y 吨,根据题意列出方程组为:2315.55635x y x y +=⎧⎨+=⎩, 解这个方程组得:42.5x y =⎧⎨=⎩, ∴3x +5y =24.5.答:3辆大车与5辆小车一次可以运货24.5吨.【点睛】本题考察二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.28.解方程组:(1)1367x y x y -=⎧⎨=-⎩; (2)414531x y x y -=⎧⎨+=⎩. 解析:(1)174x y =⎧⎨=⎩;(2)56x y =⎧⎨=⎩【分析】 (1)利用代入消元法求解即可;(2)利用加减消元法求解即可.【详解】解:(1)1367x y x y -=⎧⎨=-⎩①② 把②代入①得: 6713y y --=,解得:4y =,把4y =代入②得: 64717x =⨯-=,∴原方程组的解为174.x y =⎧⎨=⎩, (2)414531x y x y -=⎧⎨+=⎩①②①+②得, 945x =,解得:5x =,将5x =代入①得,2014y -=,解得:6y =,故原方程组的解为56x y =⎧⎨=⎩. 【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法和加减消元法.。
2021年苏科版七年级数学下册《10.5用二元一次方程组解决问题》期末复习专题提升训练(附答案)1.小新出生时父亲28岁,现在父亲的年龄是小新的3倍还多2岁,则现在小新的年龄是岁.2.如图,长为4a的长方形,沿图中虚线裁剪成四个形状大小完全相同的小长方形,那么每个小长方形的周长为(用含a的代数式表示).3.小慧带着妈妈给的现金去蛋糕店买蛋糕,他若买5个巧克力蛋糕和3个桂圆蛋糕,则妈妈给的钱不够,还缺16元;若买3个巧克力蛋糕和5个桂圆蛋糕,则妈妈给的钱还有剩余,还多10元,若他只买8个桂圆蛋糕,则剩余的钱为元.4.相传在很久以前,北关城外的津南村里有一户做宽面生意的吴姓财主,为了考察两个儿子的数学能力,某日上午各给了兄弟俩一笔相同的款项,让他们分别去同一家瓷器店里买大、中、小三种不同规格的碗,要求三种碗都要买,而且钱必须刚好花完.中午时分,两兄弟带着碗陆续回到家里,管家检查发现都符合要求,吴财主大喜过望.管家点数之后接着汇报:兄弟俩买回来的碗总数是一个两位数,且各自买回来的相同规格的碗数量之差小于4,其中小碗的总数超过23个,总价是中碗总价的,同时是大碗总价的,已知中碗的单价是小碗的2倍,大碗的单价是小碗的3倍,则哥哥所买的中碗比小碗多个.5.小丽在4张同样的纸片上各写了一个正整数,从中随机抽取2张并将它们上面的数相加重复这样做每次所得的和都是16,17,18,19中的一个数并且这4个数都能取到猜猜看,小丽在4张纸片上写的4个整数之积为.6.如图,是由8个大小相同的小长方形无缝拼接而成的的一个大长方形,已知大长方形的周长为40cm,则小长方形的周长为cm.7.幻方(MagicSquare)是一种将数字排放在正方形格子中,使其每行、每列和对角线上的数字和都相等的图表.在如图所示的三阶幻方中,x+y的值为.34x﹣2y a2y﹣x c b8.假期到了,20名女教师去外地培训,住宿时宾馆有足够多的2人间和3人间可供租住,但每个租住的房间都要按床位数住满,她们共有种租住方案.9.商场购进A、B、C三种商品各100件、112件、60件,分别按照25%、40%、60%的利润进行标价,其中商品C的标价为80元,为了促销,商场举行优惠活动:如果同时购买A、B商品各两件,就免费获赠一件C商品.这个优惠活动,实际上相当于这五件商品打了七五折.那么,商场购进这三种商品一共花了元.10.小华在文具超市挑选了6支中性笔和5本笔记本.结账时,小华付款50元,营业店员找零4元,小华说:“阿姨您好,6支中性笔和5本笔记本一共42元,应该找零8元.”店员说:“啊…哦,我明白了,小朋友你真棒,我刚才把中性笔和笔记本的单价弄反了,对不起,再找给你4元”.根据两人的对话计算:若购买一支中性笔和一本笔记本一共需要付款元.11.磁器口古镇,被赞誉为“小重庆”,磁器口的陈麻花更是重庆标志性名片之一.磁器口某门店从陈麻花生产商处采购了原味、麻辣、巧克力三种口味的麻花进行销售,其每袋进价分别是10元,12元,15元,其中原味与麻辣味麻花每袋的销售利润率相同,原味与巧克力味麻花每袋的销售利润相同.经统计,在今年元旦节当天,该门店这三种口味的麻花销量是2:3:2,其销售原味与巧克力味麻花的总利润率是40%,且巧克力味麻花销售额比原味麻花销售额多1000元,则今年元旦节当天该门店销售这三种口味的麻花的利润共元.12.打折前,买50件A商品和30件B商品用了920元,买60件A商品和10件B产品用了1000元.打折后,买400件A商品和400件B商品用了7500元,比不打折时少花的钱数为元.13.“元旦”期间小明去永辉超市购物,恰逢永辉超市“满1400减99元”促销活动,小明准备提前购置一些年货A和B,已知A和B的单价总和是100到200之间的整数,小明粗略测算了一下发现自己所购年货总价为1305元,不能达到超市的促销活动金额.于是小明又购买了A、B各一件,这样就能参加超市的促销活动,最后刚好付款1305元.小明经仔细计算发现前面粗略测算时把A和B的单价看反了,那么小明实际总共买了件年货.14.为了适合不同人群的口味,某商店对苹果味、草莓味、牛奶味的糖果混合组装成甲、乙两种袋装进行销售.甲种每袋装有苹果味、草莓味、牛奶味的糖果各10颗,乙种每袋装有苹果味糖果20颗,草莓味和牛奶味糖果各5颗.甲、乙两种袋装糖果每袋成本价分别是袋中各类糖果成本之和.已知每颗苹果味的糖果成本价为0.4元,甲种袋装糖果的售价为23.4元,利润率为30%,乙种袋装糖果每袋的利润率为20%.若这两种袋装的销售利润率达到24%,则该公司销售甲、乙两种袋装糖果的数量之比是.15.某工厂计划生产一批某种产品,数量不超过3500件.该产品由A,B,C三部分组成,分别由厂里甲、乙、丙三个车间完成.三个车间于某天零时同时开工,每天24小时连续工作.若干天后的零时,甲车间完成任务;几天后的18时,乙车间完成任务;自乙车间完成任务后的当天零时起,再过几天后的8时,丙车间完成任务.已知三个车间每天完成A,B,C的数量分别为300件、240件、180件,该工厂完成这种产品的件数是.16.某环卫公司通过政府采购的方式计划购进一批A,B两种型号的新能源汽车.据了解,2辆A型汽车和3辆B型汽车的进价共计80万元;3辆A型汽车和2辆B型汽车的进价共计95万元.(1)求A,B两种型号的汽车每辆进价分别为多少万元;(2)该公司计划恰好用200万元购进以上两种型号的新能源汽车(两种型号的汽车均购买),并使得购进的B种型号的新能源汽车数量多于A种型号的新能源汽车数量,请直接写出该公司的采购方案.17.在手工制作课上,老师组织班级同学用硬纸制作圆柱形茶叶筒.全班共有学生50人,其中男生x人,女生y人,男生人数比女生人数少2人.已知每名同学每小时剪筒身40个或剪筒底120个.(1)求这个班男生、女生各有多少人?(2)原计划男生负责剪筒底,女生负责剪筒身,若要求一个筒身配两个筒底,请说明每小时剪出的筒身与筒底能否配套?如果不配套,请说明如何调配人员,才能使每小时剪出的筒身与筒底刚好配套?18.2021年郑州市中招体育考试统考项目为:长跑、立定跳远、足球运球,选考项目(50米跑或1分钟跳绳).为了备考练习,很多同学准备重新购买足球、跳绳.(1)某校九(1)班有部分同学准备统一购买新的足球和跳绳.经班长统计共需要购买足球的有12名同学,需要购买跳绳的有10名同学.请你根据如图中班长和售货员阿姨的对话信息,分别求出足球和跳绳的单价.(2)由于足球和跳绳的需求量增大,该体育用品商店老板计划再次购进足球a个和跳绳b根(其中a>15),恰好用了1800元,其中足球每个进价为80元,跳绳每根的进价为15元,则有哪几种购进方案?(3)假如(2)中所购进的足球和跳绳全部售出,且单价与(1)中的售价相同,为了使销售获利最多,应选择哪种购进方案?19.“国美”、“苏宁”两家电器商场出售同样的空气净化器和过滤器,空气净化器和过滤器在两家商场的售价一样.已知买一个空气净化器和1个过滤器要花费2320元,买2个空气净化器和3个过滤器要花费4760元.(1)请用方程组求出一个空气净化器与一个过滤器的销售价格分别是多少元?(2)为了“庆新年,贺元旦”,两家商场都在搞促销活动,“国美”规定:这两种商品都打九五折;“苏宁”规定:买一个空气净化器赠送两个过滤器.若某单位想要买10个空气净化器和30个过滤器,如果只能在一家商场购买,请问选择哪家商场购买更合算?请说明理由.20.列方程解应用题:在庆祝深圳经济特区建立40周年的活动中,八年级组购买了“小红旗”装饰各班教室,家委会先后两次在同一家商店以相同的单价购买了两种材质的“小红旗”,第一次购买300个塑料材质的“小红旗”,200个涤纶材质的“小红旗”,共花费660元;第二次购买100个塑料材质的“小红旗”,300个涤纶材质的“小红旗”共花费570元,求这两种材质的“小红旗”单价各为多少元?21.在疫情防控期间,某中学为保障广大师生生命健康安全,欲从商场购进一批免洗手消毒液和84消毒液.如果购买40瓶免洗手消毒液和90瓶84消毒液,共需花费1320元,如果购买60瓶免洗手消毒液和120瓶84消毒液,共需花费1860元.(1)每瓶免洗手消毒液和每瓶84消毒液的价格分别是多少元?(2)若商场有两种促销方案:方案一,所有购买商品均打九折;方案二,购买5瓶免洗手消毒液送2瓶84消毒液,学校打算购进免洗手消毒液100瓶,84消毒液60瓶,请问学校选用哪种方案更节约钱?节约多少钱?22.为了净化空气,美化环境,织金县计划投资2.8万元种银杏树和桂花树共160棵,已知某苗圃负责种活银杏树的价格是220元/棵,负责种活桂花树的价格是120元/棵,问可种银杏树和桂花树各多少棵?23.丹东的草莓久负盛名,当下正是草莓的销售旺季,某日,我市一水果店以3650元购进两种不同品种的草莓,若按标价出售可获毛利润1600元(毛利润=售价﹣进价),这两种草莓的进价、标价如下表所示:价格/品种A品种B品种进价(元/千克)3545标价(元/千克)5065求这两个品种的草莓各购进多少千克.24.由于酒泉独特的气候资源,生产的洋葱品质好、干物质含量高且耐储存,品质、色泽、风味明显优于其他洋葱产区,因而受到国内外客商青睐.现欲将一批洋葱运往外地销售,若用2辆A型车和1辆B型车载满洋葱一次可运走10吨;用1辆A型车和2辆B型车载满洋葱一次可运走11吨.现有洋葱31吨,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满洋葱.根据以上信息,解答下列问题:(1)1辆A型车和1辆B型车都载满洋葱一次可分别运送多少吨?(2)请你帮该物流公司设计租车方案;(3)若1辆A型车需租金100元/次,1辆B型车需租金120元/次.请选出费用最少的租车方案,并求出最少租车费.25.某景点的门票价格如下表:购票人数(人)1~5051~99100以上(含100)门票单价(元)484542(1)某校七年级1、2两个班共有102人去游览该景点,其中1班人数少于50人,2班人数多于50人且少于100人.如果两班都以班为单位单独购票,则一共支付4737元,两个班各有多少名学生?(2)该校八、九年级自愿报名浏览该景点,其中八年级的报名人数不超过50人,九年级的报名人数超过50人,但不超过80人.若两个年级分别购票,总计支付门票费4914元;若合在一起作为一个团体购票,总计支付门票费4452元,问八年级、九年级各报名多少人?26.某公司在手机网络平台推出的一种新型打车方式受到大众的欢迎.该打车方式的总费用由里程费和耗时费组成,其中里程费按x元/千米计算,耗时费按y元/分钟计算.小聪、小明两人用该打车方式出行,按上述计价规则,他们打车行驶里程数、所用时间及支付车费如下表:里程数(千米)时间(分钟)车费(元)小聪3109小明61817.4(1)求x,y的值;(2)该公司现推出新政策,在原有付费基础上,当里程数超过8千米后,超出的部分要加收0.6元/千米的里程费,小强使用该方式从三水荷花世界打车到大旗头古村,总里程为23千米,耗时30分钟,求小强需支付多少车费.27.疫情期间,为保护学生和教师的健康,某学校用33000元购进甲、乙两种医用口罩共计1000盒,甲,乙两种口罩的售价分别是30元/盒,35元/盒.(1)求甲、乙两种口罩各购进了多少盒?(2)现已知甲,乙两种口罩的数量分别是20个/盒,25个/盒,按照教育局要求,学校必须储备足够使用十天的口罩,该校师生共计800人,每人每天2个口罩,问购买的口罩数量是否能满足教育局的要求?28.甘肃省白银市具有悠久的历史和灿烂的文化,在历史长河中,黄河文化、西夏文化、中原文化等多种文化在这里相互渗透,融合发展.千姿百态、景象万千的景泰黄河石林,被称为“中华自然奇观”.寿鹿山、屈吴山、哈思山、铁木山等自然景观各具特色,引人入胜.一外地游客到某特产专营店,准备购买红枸杞和小口大枣两种盒装特产.若购买3盒红枸杞和2盒小口大枣共需285元;购买1盒红枸杞和3盒小口大枣共需270元.(1)请分别求出每盒红枸杞和每盒小口大枣的价格;(2)该游客购买了4盒红枸杞和2盒小口大枣,共需多少元?参考答案1.解:设小新现在的年龄为x岁,父亲现在的年龄是y岁,由题意得:,解得:,即现在小新的年龄是13岁,故答案为:13.2.解:如图,,解得.所以2(x+y)=2(2a+a)=6a.故答案是:6a.3.解:设巧克力单价为x元,买1个桂圆蛋糕y元,由题意可知:5x+3y﹣16=3x+5y+10.整理,得x﹣y=13.因为他只买8个桂圆蛋糕的钱是8y元,则他剩余的钱为:5x+3y﹣16﹣8y=5(x﹣y)﹣16=5×13﹣16=49.故答案是:49.4.解:设小碗的单价为a元,则中碗的单价为2a元,大碗的单价为3a元,大碗的数量为x个,中碗的数量为y个,大碗的数量为z个,根据题意得az=×2ay=×3ax,则x:y:z=8:9:6,令x=8m,y=9m,z=6m,∵其中小碗的总数超过23个,∴6m>23,解得m>,∵m为整数,且兄弟俩买回来的碗总数是一个两位数,∴m=4,∴中碗的数量为36个,大碗的数量为24个,由各自买回来的相同规格的碗数量之差小于4,∴哥哥和弟弟买回中碗的可能是18,18和19,17两种可能,买回小碗的可能是12,12和13,11两种可能∴哥哥所买的中碗比小碗多6个.故答案为:6.5.解:设这四个数分别为a,b,c,d(a≤b≤c≤d)故a+b=16,c+d=19,由题意得,若这四个数各不相同时,所得的任意两个数之和不止四种,若这四个数有三个或四个相等时,任意两个数之和只有两种或一种,∴四个数中只有两个数相等,∵任意两个数之和最小值是16,最大值是19,∴这两个相等的数可能是8或9,∴这四个数可能是8、8、9、10或7、9、9、10,∴这四个数的积为5670或5760,故答案为5670或5760.6.解:设小长方形的长为xcm,宽为ycm,由题意知,.解得,所以小长方形的周长为:2(6+2)=16(cm).故答案是:16.7.解:根据题意,得.解得.所以x+y=﹣1+2=1.故答案是:1.8.解:设住3人间的需要有x间,住2人间的需要有y间,3x+2y=20,因为,2y是偶数,20是偶数,所以,3x只能是偶数,即x必须是偶数,当x=0时,y=10,当x=2时,y=7,当x=4时,y=4,当x=6时,y=1,综合以上得知,有4种租住方案.故答案是:4.9.解:商品C的进价为:80÷(1+60%)=50(元),设商品A的进价为x元,商品B的进价为y元,由“同时购买A、B商品各两件,就免费获赠一件C商品.这个优惠活动,实际上相当于这五件商品打了七五折.”得,2(1.25x+1.4y)=0.75(2×1.25x+2×1.4y+80),化简得25x+28y=2400,∴100x+112y+60×50=4(25x+28y)+3000=4×2400+3000=12600(元),故答案为:12600.10.解:设购买一支中性笔x元,购买一本笔记本y元,则.由①+②,得11(x+y)=88.所以x+y=8.即:购买一支中性笔和一本笔记本一共需要付款8元.故答案是:8.11.解:设原味麻花的销售单价为x元,根据题意得,麻辣味麻花销售单价为12(1+)=1.2x(元),巧克力麻花的销售单价为15+(x﹣10)=x+5(元),设今年元旦节当天,该门店这三种口味的麻花销量分别是:原味2y袋,麻辣味3y袋,巧克力味2y袋,根据题意得,,解得,,∴今年元旦节当天该门店销售这三种口味的麻花的利润为:(x﹣10)•2y+(1.2x﹣12)•3y+(x﹣10)•2y=7.6xy﹣76y=7.6×15×100﹣76×100=3800.故答案为:3800.12.解:设打折前A商品每件x元,B商品每件y元,根据题意得:,解得:,则打折前买400件A商品和400件B商品需要400×16+400×4=8000(元),则打折后比打折前少花8000﹣7500=500(元).故答案为:500.13.解:1305+99=1404,设A的单价为x元,共买a件;B的单价为y元,共买b件,由题意得:,①+②得:(a+b﹣1)(x+y)=2709,∵2709=3×3×7×43,且已知A和B的单价总和是100到200之间的整数,∴x+y=3×43=129(元),∴a+b﹣1=2709÷129=21,∴a+b=22(件).故答案为:22.14.解:设1颗草莓味糖果m元,1颗牛奶味糖果n元,由题意得:10(0.4+m+n)×(1+30%)=23.4,解得:m+n=1.4,∴甲种糖果的成本价为:10×(0.4+1.4)=18(元),乙种糖果的成本价为:20×0.4+5(m+n)=8+5×1.4=15(元).设甲种糖果有x袋,乙种糖果有y袋,则:18x×30%+15y×20%=(18x+15y)×24%,解得:=.∴该公司销售甲、乙两种袋装糖果的数量之比是.故答案为:.15.解:设甲车间a天完成,乙车间(a+b)天+18小时完成,丙车间(a+b+c+1)天+8小时完成,乙车间最后一天完成240×=180(件),丙车间最后一天完成180×=60(件),根据题意,得300a=240(a+b)+180=180(a+b+c+1)+60∴5a=4(a+b)+3=3(a+b+c+1)+1解得a=4b+3,b=c﹣,∵0<a+b+c≤=19,0<a+b≤=14,0<a≤=11.即a+b+c≤19,a+b≤14,a≤11,∴a=11时,b=2,c=4,当a为10时,b不是整数,舍去,同理当a为其它非负整数如9、8、7、6、5、4、3、2、1时,b、c不同时为非负整数,∴该工厂完成这种产品的件数是11×300=3300(件).故答案为3300.16.解:(1)设A型汽车每辆的进价为x万元,B型汽车每辆的进价为y万元,依题意,得:,解得:,答:A型汽车每辆的进价为25万元,B型汽车每辆的进价为10万元.(2)设购进A型汽车m辆,购进B型汽车n辆,m<n,依题意,得:25m+10n=200,∴m=8﹣n.∵m,n均为正整数,∴n为5的倍数,∴或或,∵m<n,∴不合题意舍去,∴共2种购买方案,方案一:购进A型车4辆,B型车10辆;方案二:购进A型车2辆,B型车15辆.17.解:(1)由题意得:,解得:,答:这个班有男生有24人,女生有26人;(2)男生剪筒底的数量:24×120=2880(个),女生剪筒身的数量:26×40=1040(个),因为一个筒身配两个筒底,2880:1040≠2:1,所以原计划男生负责剪筒底,女生负责剪筒身,每小时剪出的筒身与筒底不能配套,设男生应向女生支援a人,由题意得:120(24﹣a)=(26+a)×40×2,解得:a=4,答:原计划男生负责剪筒底,女生负责剪筒身,每小时剪出的筒身与筒底不能配套;男生应向女生支援4人时,才能使每小时剪出的筒身与筒底配套.18.解:(1)设足球和跳绳的单价分别为x元、y元,由题意得:,解得:,∴足球和跳绳的单价分别为100元、20元,答:足球和跳绳的单价分别为100元、20元;(2)由题意得:80a+15b=1800,(a>15),当全买足球时,可买足球的数量为:=22.5,∴15<a<22.5,当a=16时,b=(舍去);当a=17时,b=(舍去);当a=18时,b=24;当a=19时,b=(舍去);当a=20时,b=(舍去);当a=21时,b=8;当a=22时,b=(舍去);∴有两种方案:方案一,购进足球18个,跳绳24根;方案二,购进足球21个,跳绳8根;答:有两种方案:方案一,购进足球18个,跳绳24根;方案二,购进足球21个,跳绳8根;(3)方案一利润:(100﹣80)×18+(20﹣15)×24=480(元),方案二利润:(100﹣80)×21+(20﹣15)×8=460(元),∵480元>460元,∴选方案一,购进足球18个,跳绳24根.19.解:(1)设一个空气净化器与一个过滤器的销售价格分别为x元、y元,由题意得:,解得:,答:一个空气净化器2200元,一个过滤器120元;(2)选择“苏宁”商场购买更合算,理由如下:在“国美”商场购买所需费用为:0.95(2200×10+120×30)=24320(元),在“苏宁”商场购买所需费用为:2200×10+(30﹣10×2)×120=23200(元),∵24320>23200,∴选“苏宁”商场购买更合算.20.解:设塑料材质的“小红旗”的单价为x元,涤纶材质的“小红旗”的单价为y元,由题意得:,解得:,答:塑料材质的“小红旗”的单价为1.2元,涤纶材质的“小红旗”的单价为1.5元.21.解:(1)设每瓶免洗手消毒液和每瓶84消毒液的价格分别是a元、b元,,解得,即每瓶免洗手消毒液和每瓶84消毒液的价格分别是15元、8元;(2)方案一的花费为:(15×100+8×60)×0.9=1782(元),方案二的花费为:15×100+8×(60﹣100÷5×2)=1660(元),1782﹣1660=122(元),1782>1660,答:学校选用方案二更节约钱,节约122元.22.解:设可种银杏树x棵、桂花树y棵,依题意得:,解得:,答:可种银杏树88棵、桂花树72棵23.解:设A品种的草莓购进x千克,B品种的草莓购进y千克,由题意得:,解得:,答:A品种的草莓购进40千克,B品种的草莓购进50千克.24.解:(1)设1辆A型车载满洋葱一次可运送x吨,1辆B型车载满洋葱一次可运送y吨,依题意,得:,解得:,答:1辆A型车载满洋葱一次可运送3吨,1辆B型车载满洋葱一次可运送4吨.(2)依题意,得:3a+4b=31,∵a,b均为正整数,∴或或.∴一共有3种租车方案,方案一:租A型车1辆,B型车7辆;方案二:租A型车5辆,B型车4辆;方案三:租A型车9辆,B型车1辆;(3)方案一所需租金为100×1+120×7=940(元);方案二所需租金为100×5+120×4=980(元);方案三所需租金为100×9+120×1=1020(元).∵940<980<1020,∴最省钱的租车方案是方案一,即租A型车1辆,B型车7辆,最少租车费为940元.25.解:(1)设七年级1班有x名学生,2班有y名学生,由题意得:,解得:,答:七年级1班有49名学生,2班有53名学生;(2)设八年级报名a人,九年级报名b人,分两种情况:①若a+b<100,由题意得:,解得:,(不合题意舍去);②若a+b≥100,由题意得:,解得:,符合题意;答:八年级报名48人,九年级报名58人.26.解:(1)根据题意得:,解得:.答:x,y的值分别为:2;0.3.(2)8×2+(23﹣8)×(2+0.6)+30×0.3=64(元).答:小强需支付64元车费.27.解:(1)设学校购进甲种口罩x盒,购进乙种口罩y盒,依题意,得:,解得:.答:学校购进甲种口罩400盒,购进乙种口罩600盒.(2)购买的口罩总数为:400×20+600×25=23000(个),全校师生两周需要的用量为:800×2×10=16000(个).∵23000>16000,∴购买的口罩数量能满足教育局的要求.28.解:(1)设每盒红枸杞的价格为x元,每盒小口大枣的价格为y元,由题意得:,解得:,答:每盒红枸杞的价格45元,每盒小口大枣的价格为75元;(2)4×45+2×75=330(元),答:该游客购买了4盒红枸杞和2盒小口大枣,共需330元。
苏教版数学七年级下册期中复习阶梯训练 二元一次方程组(优生加练)一、单选题1.若关于x 、y 的方程组 的解为整数,则满足条件的所有a 的值的和为( ){x +y =2ax +2y =8A .6B .9C .12D .162.自行车的轮胎安装在前轮上行驶3000千米后报废,安装在后轮上,只能行驶2000千米,为了行驶尽可能多的路程,采取在自行车行驶一定路程后,用前后轮调换使用的方法,那么安装在自行车上的这对轮胎最多可行驶多少千米?( )A .2300千米B .2400千米C .2500千米D .2600千米3.利用两块完全一样的长方体木块测量一张桌子的高度,首先按图①所示的方式放置,再交换两木块的位置,按图②所示的方式放置.量的数据如图,则桌子的高度等于( )A .B .C .D .80cm 75cm 70cm 65cm4.小明在拼图时,发现8个一样大小的长方形,恰好可以拼成一个大的长方形如图1;小红看见了,说:“我也来试一试.”结果小红七拼八凑,拼成了如图2那样的正方形,中间还留下了一个洞,恰好是面积为 的小正方形,则每个小长方形的面积为( ) 9cm 2A .135cm 2B .108cm 2C .68cm 2D .60cm 25.我国古代数学家张丘建在《张丘建算经)里,提出了“百钱买百鸡”这个有名的数学问题.用100个钱买100只鸡,公鸡每只五个钱,母鸡每只三个钱,小鸡每个钱三只.问公鸡,小鸡各买了多少只?在这个问题中,小鸡的只数不可能是( )A .87B .84C .81D .786.已知 和 的方程组 的解是,则 和 的方程组 x y {a 1x +b 1y =c 1a 2x +b 2y =c 2{x =3y =4x y的解是 {3a 1x +4b 1y =5c 13a 2x +4b 2y =5c 2()A .B .C .D .{x =3y =4{x =4y =3{x =1y =1{x =5y =57.如图,在一个大长方形中放入六个形状、大小相同的小长方形,所标尺寸如图所示,则图中阴影部分的面积是( )A .16B .44C .96D .1408.小江去商店购买签字笔和笔记本(签字笔的单价相同,笔记本的单价相同).若购买20支签字笔和15本笔记本,则他身上的钱会不足25元;若购买19支签字笔和13本笔记本,则他身上的钱会剩下15元.若小江购买17支签字笔和9本笔记本,则( )A .他身上的钱会不足95元B .他身上的钱会剩下95元C .他身上的钱会不足105元D .他身上的钱会剩下105元9.利用两块相同的长方体木块测量一张桌子的高度.首先按图①方式放置,再交换两木块的位置,按图②方式放置.测量的数据如图,则桌子的高度是( )A .84cmB .85cmC .86cmD .87cm10.对于代数式ax 2﹣2bx﹣c ,当x 取﹣1时,代数式的值为2,当x 取0时,代数式的值为1,当x 取3时,代数式的值为2,则当x 取2时,代数式的值是( )A .1B .3C .4D .5二、填空题11.已知关于 , 的二元一次方程组 的解为 那么关于 、 的二元一x y {ax +by =5bx +ay =6{x =4y =6m n 次方程组 的解为 .{a(m +n)+b(m−n)=5b(m +n)+a(m−n)=612.若关于,的二元一次方程组与有相同的解,则这个x y {ax +by =m cx +dy =n {(a +1)x +(b +2)y =m +2(c +3)x +(d +4)y =n +5解是 .13.若方程组 的解是 ,则方程组 的解是,x = {a 1x +y =c 1a 2x +y =c 2{x =2y =3{a 1x +y =a 1−c 1a 2x +y =a 2−c 2,y = .14.为迎接建国70周年,某商店购进,,三种纪念品共若干件,且,,三种纪念品的数量A B C A B C 之比为8:7:9,一段时间后,根据销售情况,补充三种纪念品后,库存总数量比第一次多200件,且,,三种纪念品的比例为9:10:10,又一段时间后,根据销售情况,再次补充三种纪念品,A B C 库存总数景比第二次多170 件,且,,三种纪念品的比例为7: 6: 6,已知第一次三种纪念A B C 品总数盘不超过1000件,则第一次购进种纪念品 件.A 15.春节即将来临时,某商人抓住商机购进甲、乙、丙三种糖果,已知销售甲糖果的利润率为10%,乙糖果的利润率为20%,丙糖果的利润率为30%,当售出的甲、乙、丙糖果重量之比为 时,商人得到的总利润率为22%;当售出的甲、乙、丙糖果重量之比为 时,商1: 3: 13: 2: 1人得到的总利率为20%.那么当售出的甲、乙、丙糖果重量之比为 时,这个商人得到的总5: 1: 1利润率为 .16.课外活动中,80名学生自由组合分成12组,各组人数分别有5人、7人和8人三种情况,设5人一组的有x 组,7人一组的有y 组,8人一组的有z 组,有下列结论:① ;② ;③ ;④5人一组的最多有5组.{x +y +z =125x +7y +8z =80x =12z +2y =−32z +10其中正确的有 .(把正确结论的序号都填上)三、解答题17.某工厂的一条流水线匀速生产出产品,在有一些产品积压的情况下,经过试验,若安排9人包装,则5小时可以包装完所有产品;若安排6人包装,则需要10小时才能包装完所有产品.假设每个人的包装速度一样,现要在2小时内完成产品包装的任务,问至少需要安排多少人?18.甲、乙两人共同解方程组 .解题时由于甲看错了方程①中的a ,得到方程组{ax +5y =15①4x−by =−2②的解为 ;乙看错了方程②中的b ,得到方程组的 ,试计算a 2019+( b)2020的值. {x =−3y =−1{x =5y =4−11019.已知关于x 、y 的方程组 ,甲由于看错了方程①中的a ,得到方程组的解为{ax +y =5①4x−by =7② ;乙由于看错了方程②中的b ,得到方程组的解为.求原方程组的正确解. {x =3y =5{x =−1y =720.李老师让全班同学们解关于x 、y 的方程组 (其中a 和b 代表确定的数),甲、{2x +ay =1①bx−y =7②乙两人解错了,甲看错了方程①中的a ,解得 ,乙看错了②中的b ,解得 ,请{x =1y =−4{x =−1y =1你求出这个方程组的符合题意解.21.4月9日上午8时,2017 徐州国际马拉松赛鸣枪开跑,一名 岁的男子带着他的两个孩子一同参加了比赛,下面是两个孩子与记者的对话:根据对话内容,请你用方程的知识帮记者求出哥哥和妹妹的年龄.22.解关于x 、y 的方程组 时,甲符合题意地解得方程组的解为 ,乙因为把{ax +by =93x−cy =−2{x =2y =4c 抄错了,在计算无误的情况下解得方程组的解为 ,求a 、b 、c 的值. {x =4y =−1四、综合题23.已知关于x ,y 的方程组的解是 {a 1x +b 1y =c 1a 2x +b 2y =c 2{x =4y =−6(1)若把x 换成m ,y 换成n ,得到的关于m ,n 的方程组为 ,则这个方程组{a 1m +b 1n =c 1a 2m +b 2n =c 2的解是 .{m =_______n =_______(2)若把x 换成2x ,y 换成3y ,得到方程组,则 ,所以这个{2a 1x +3b 1y =c 12a 2x +3b 2y =c 2{2x =_______3y =_______方程组的解是 .(3)根据以上的方法解方程组 {2a 1x−b 1y =5c 12a 2x−b 2y =5c 224.规定:形如关于x ,y 的方程x+ky=b 与kx+y=b 的两个方程互为共轭二元一次方程,其中k≠1.由这两个方程组成的方程组 叫做共轭方程组.{x +ky =bkx +y =b (1)方程3x+y=5的共轭二元一次方程是 ;(2)若关于x ,y 的方程组 为共轭方程组,则a= ,b= .{x +(1−a)y =b +2(2a−2)x +y =4−b (3)若方程x+ky=b 中x ,y 的值满足下列表格: x-10y 02则这个方程的共轭二元一次方程是 .25.数轴上有两个动点M ,N ,如果点M 始终在点N 的左侧,我们称作点M 是点N 的“追赶点”.如图,数轴上有2个点A ,B ,它们表示的数分别为-3,1,已知点M 是点N 的“追赶点”,且M ,N 表示的数分别为m ,n .(1)由题意得:点A 是点B 的“追赶点”,AB=1-(-3)=4(AB 表示线段AB 的长,以下相同);类似的,MN= .(2)在A ,M ,N 三点中,若其中一个点是另外两个点所构成线段的中点,请用含m 的代数式来表示n .(3)若AM=BN ,MN= AM ,求m 和n 值.43答案解析部分1.【答案】C2.【答案】B3.【答案】B4.【答案】A5.【答案】A6.【答案】D7.【答案】B8.【答案】B9.【答案】B10.【答案】A11.【答案】{m =5n =−112.【答案】{x =1y =1213.【答案】-1;-314.【答案】32015.【答案】18%16.【答案】①②③④17.【答案】解:设原有产品m ,每个人的包装速度为x ,每小时流水线生产的产品为y. 则 ,解得: {5×9x =m +5y 10×6x =m +10y {y =3x m =30x若需要n 人刚好完成,则2nx=m+y ,n =m +2y 2x =30x +6x 2x =18∴至少需要18人18.【答案】解:将 代入方程组中的4x−by =−2得:−12+b =−2,即b =10;{x =−3y =−1将代入方程组中的ax +5y =15得:5a +20=15,即a =−1;{x =5y =4当a =−1,b =10时,a 2019+( b)2020=-1+1=0.−11019.【答案】解:由题意可得:把代入②得: {x =3y =512−5b =7解得: ,b =1把 代入①得: {x =−1y =7−a +7=5解得: a =2∴原方程组为,{2x +y =54x−y =7解这个方程组得:.{x =2y =120.【答案】解:由题意可知,把代入方程②中,得b+4=7,解得b=3;{x =1y =−4把 代入方程①中,得-2+a=1,解得a=3;{x =−1y =1把 代入方程组,可得 ,{a =3b =3{2x +3y =113x−y =72解得: ,{x =2y =−1∴原方程组的解应为.{x =2y =−121.【答案】解:设今年妹妹的年龄为x 岁,哥哥的年龄为y 岁,根据题意得:{x +y =163(x +2)+(y +2)=34+2解得:.{x =6y =10答:今年妹妹6岁,哥哥1022.【答案】解:把 代入方程 ,得:x =2,y =43x−cy =−2 ,6−4c =−2解得: .c =2把 分别代入方程 ,得:{x =2y =4,,,{x =4y =−1ax +by =9,{2a+4b =94a−b =9解得.∴{a =52b =1所以, .a =52,b =1,c =2故答案为: .a =52,b =1,c =223.【答案】(1){m =4n =−6(2); {2x =43y =−6{x =2y =−2(3)解:将方程组 ,变形为 {2a 1x−b 1y =5c 12a 2x−b 2y =5c 2{25a 1x−15b 1y =c 125a 2x−25b 2y =c 2∴ ,解得 ,{25x =4−15y =−6{x =10y =30∴方程组的解为 {2a 1x−b 1y =5c 12a 2x−b 2y =5c 2{x =10y =3024.【答案】(1)x+3y=5(2)1;1(3) x+y=-1−1225.【答案】(1)n﹣m(2)解:分三种情况讨论:①M 是A 、N的中点,∴n+(-3)=2m ,∴n=2m+3;②A 是M 、N 点中点时,m+n=-3×2,∴n=﹣6﹣m;③N 是M 、A 的中点时,-3+m=2n ,∴n ;=−3+m2(3)解:∵AM=BN ,∴|m+3|=|n﹣1|.∵MN AM ,=43∴n﹣m |m+3|,=43∴ 或 或 或,{m +3=n−13n−3m =4m +12{m +3=n−13n−3m =−4m−12{m +3=−n−13n−3m =4m +12{m +3=−n−13n−3m =−4m−12∴ 或 或 或 .{m =0n =4{m =−6n =−2{m =−95n =−15{m =3n =−5∵n >m ,∴ 或 或 .{m =0n =4{m =−6n =−2{m =−95n =−15。
七年级下册数学《第八章二元一次方程组》专题解二元一次方程组(计算题50题)1.用代入法解下列方程组:(1)x−y=4,3x+y=16;(2)x−y=2,3x+5y=14.2.用代入法解下列方程组:(1)2x−y=33x+2y=8;(2)u+v=103u−2v=5.3.用代入法解下列方程组:(1)3x−y=2,9x+8y=17;(2)3x−4y=10x+3y=12.4.用代入法解下列方程组.(1)x+2y=4y=2x−3;(2)x−y=44x+2y=−2.5.用代入法解下列方程组:(1)5x+4y=−1.52x−3y=4(2)4x−3y−10=03x−2y=06.用代入法解下列方程组:(1)x−y=42x+y=5;(2)3x−y=29x+8y=17;(3)3x+2y=−8 6x−3y=−9.7.用代入法解下列方程组:(1)3x+2y=11,①x=y+3,②(2)4x−3y=36,①y+5x=7,②(3)2x−3y=1,①3x+2y=8,②8.用代入法解下列方程组:(1)5x+2y=15①8x+3y=−1②;(2)3(y−2)=x−172(x−1)=5y−8.9.用代入法解下列方程组:(1)x=6−5y3x−6y=4(2)5x+2y=15x+y=6(3)3x+4y=22x−y=5(4)2x+3y=73x−5y=110.用代入法解下列方程组:(1)2x+y=3x+2y=−6;(2)x+5y=43x−6y=5;(3)2x−y=63x+2y=2;(4)5x+2y=113y−x=−9;1.用加减法解下列方程组:(1)4x−y =143x +y =7 (2x−2y =7x−3y =−82.用加减法解下列方程组:(1)2m +7n =53m +n =−2(2)2u−5v =124u +3v =−2(3y 7=12+y 7=133.用加减法解下列方程组:(1)x−y =52x +y =4;(2)x−2y =33x +4y =−1.4.用加减法解下列方程组:(1)4x−3y =11,2x +y =13;(2)x−y =3,2y +3(x−y)=115.用加减法解下列方程组:(1)3μ+2t =76μ−2t =11 (2)2a +b =33a +b =4.6.(2023•市北区校级开学)用加减法解下列方程组:(1)3y−4x =04x +y =8; (2+y =3x−32y =−1.7.(2022秋•陕西期末)用加减法解下列方程组:(1)x−y =33x−8y =14; (2+2y =10=1+y 13.8.用加减法解下列方程组:(1)x +3=y ,2(x +1)−y =6; (2)x +y =2800,96%x +64%y =2800×92%.9.用加减法解下列方程组:(1)x−y =5,①2x +y =4;②(2)x−2y =1,①x +3y =6;②(3)2x−y =5,①x−1=12(2y−1).②10.用加减法解下列方程组:(1)x +3y =62x−3y =3 (2)7x +8y =−57x−y =4(3)y−1=3(x−2)y+4=2(x+1)(4+y4=1−y3=−1.1.(2022春•新田县期中)用指定的方法解下列方程组:(1)2x−5y=14①y=−x②(代入法);(2)2x+3y=9①3x+5y=16②(加减法).2.(2022春•安岳县校级月考)解下列方程组:(1)3x−y=75x+2y=8(用代入法);(2+n3=10−n4=5(用加减法).3.(2022春•大连期中)用指定的方法解下列方程组:(1)x−3y=42x+y=13(代入法);(2)5x+2y=4x+4y=−6(加减法).4.(2022春•宁远县月考)请用指定的方法解下列方程组(1)5a−b=113a+b=7(代入消元法);(2)2x−5y=245x+2y=31(加减消元法).5.(2021秋•蒲城县期末)请用指定的方法解下列方程组:(1)2x+3y=11①x=y+3②(代入消元法);(2)3x−2y=2①4x+y=10②(加减消元法).6.(2022秋•历下区期中)请用指定的方法解下列方程组:(1)m−n2=22m+3n=12(代入法);(2)6s−5t=36s+t=−15(加减法).7.(2022春•泰安期中)用指定的方法解下列方程组(1)3x+4y=19x−y=4(代入消元法);(2)2x+3y=−53x−2y=12(加减消元法);(35(x−9)=6(y−2)−y13=2.8.(2021秋•历下区期中)请用指定的方法解下列方程组:(1)3x+2y=14x=y+3;(代入法)(2)2x+3y=123x+4y=17.(加减法)9.(2021春•沙河口区期末)用指定的方法解下列方程组:(1)y=2x−33x+2y=8(代入法);(2)3x+4y=165x−6y=33(加减法).10.用指定的方法解下列方程组:(1)3x+4y=19x−y=4(代入法);(2)2x+3y=−53x−2y=12(加减法).1.(2022•苏州模拟)用适当的方法解下列方程组.(1)x+2y=9y−3x=1;(2x−34y=1=4.2.(2022秋•锦江区校级期末)用适当的方法解下列方程组.(1)x=2y−14x+3y=7;(2)3x+2y=22x+3y=28,.3.用适当的方法解下列方程组:(1)x+2y=0,3x+4y=6;(2=2y1)−y=11(3)x+0.4y=40,0.5x+0.7y=35;(4+n−m4=−14,5(n1)12=2.4.(2022•天津模拟)用适当的方法解下列方程组:(1)x +y =52x−y =4; (2=y 24−y−33=112.5.(2021•越城区校级开学)用适当的方法解下列方程组:(1)2x−3y =7x−3y =7. (2)0.3p +0.4q =40.2p +2=0.9q .6.(2022春•东城区校级月考)用适当的方法解下列方程组(1)x +y =52x +y =8; (2)2x +3y =73x−2y =4.7.(2021春•哈尔滨期末)用适当的方法解下列方程组(1)x +2y =93x−2y =−1 (2)2x−y =53x +4y =28.(2022春•椒江区校级期中)用适当的方法解下列方程组:(1)2x +3y =16①x +4y =13②; (2)2s t 3=3s−2t 8=3.9.(2022春•诸暨市期中)用适当的方法解下列方程组:(1)y=2x−1x+2y=−7(2+y3=7+y2=810.(2021春•南湖区校级期中)用适当的方法解下列方程组:(1)3x+2y=9x−y=8;(2=x y2=7.1.先阅读材料,然后解方程组:材料:解方程组x+y=4①3(x+y)+y=14②在本题中,先将x+y看作一个整体,将①整体代入②,得3×4+y=14,解得y=2.把y=2代入①得x=2,所以x=2 y=2这种解法称为“整体代入法”,你若留心观察,有很多方程组可采用此法解答,请用这种方法解方程组x−y−1=0①4(x−y)−y=5②.2.(2021秋•乐平市期末)解方程组3x−2y=8⋯⋯⋯①3(3x−2y)+4y=20⋯.②时,可把①代入②得:3×8+4y=20,求得y=﹣1,从而进一步求得x=2y=−1这种解法为“整体代入法“,请用这样的方法解下列方程组2x−3y=123(2x−3y)+5y=26.3.先阅读,然后解方程组.解方程组x−y−1=0①4(x−y)−y=5②时,可由①得x﹣y=1.③,然后再将③代入②得4×1﹣y=5,求得y=﹣1,从而进一步求得x=0y=−1这种方法被称为“整体代入法”,请用这样的方法解下列方程组:=0=2y+1.4.(2022春•太和县期末)先阅读,然后解方程组.解方程组x−y−1=0①4(x−y)−y=5②时,可由①得x﹣y=1,③然后再将③代入②得4×1﹣y=5,求得y=﹣1,从而进一步求得x=0①y=−1②这种方法被称为“整体代入法”,+2y=9.5.先阅读,然后解方程组.解方程组x−y−1=0①4(x−y)−y=5②时,可由①得x﹣y=1③,然后再将③代入②得4×1﹣y=5,求得y=﹣1,从而进一步求得x这种方法被称为“整体代入法”,请用这样的方法解下列方程组:2x−3y−2=03(2x−3y)+y=7.1.用换元法解下列方程组+2y=12−1y=342.用换元法解下列方程组:(1)3(x+y)+2(x−y)=36(x+y)−4(x−y)=−16(2+x5y3=2−(x+5y)=5.3.(2022春•云阳县期中)阅读探索:解方程组(a−1)+2(b+2)=62(a−1)+(b+2)=6解:设a﹣1=x,b+2=y原方程组可以化为x+2y=62x+y=6,解得x=2y=2,即:a−1=2b+2=2∴a=3b=0,此种解方程组的方法叫换元法.(1)拓展提高运用上述方法解下列方程组(a4−1)+2(b5+2)=102(a4−1)+(b5+2)=11;(2)能力运用已知关于x,y的方程组a1x+b1y=c1a2x+b2y=c2的解为x=6y=7,求关于m、n的方程组a1(m−2)+b1(n+3)=c1a2(m−2)+b2(n+3)=c2的解.4+x−y10=3①−x−y10=−1②,你会解这个方程组吗?小明、小刚、小芳争论了一会儿,他们分别写出了一种方法:小明:把原方程组整理得8x+2y=90③2x+8y=−30④④×4﹣③得30y=﹣210,所以y=﹣7把y=﹣7代入③得8x=104,所以x=13,即x=13y=−7小刚:设x y6=m,x−y10=n,则m+n=3③m−n=−1④③+④得m=1,③﹣④得m=2,=1=2,所以x+y=6x−y=20,所以x=13y=−7.小芳:①+②得2(x y)6=2,即x+y=6.③①﹣②得2(x−y)10=4,即x﹣y=20.④③④组成方程组得x=13③﹣④得y =﹣7,即x =13y =−7.老师看过后,非常高兴,特别是小刚的方法独特,像小刚的这种方法叫做换元法,你能用换元法解下列方程组吗?+2x 3y 7=1−2x 3y 7=5.5.(2022春•卧龙区校级月考)阅读探索(1)知识积累解方程组(a−1)+2(b +2)=62(a−1)+(b +2)=6.解:设a ﹣1=x ,b +2=y .原方程组可变为x +2y =62x +y =6,解这个方程组得x =2y =2,即a−1=2b +2=2,所以a =3b =0,这种解方程组的方法叫换元法.(2)拓展提高运用上述方法解下列方程组:(m 3−1)+2(n 5+2)=43(m 3−1)−(n 5+2)=5.(3)能力运用已知关于x ,y 的方程组a 1x +b 1y =c 1a 2x +b 2y =c 2的解为x =3y =4,请直接写出关于m 、n 的方程组a 1(m +2)−b 1n =c 1a 2(m +2)−b 2n =c 2的解是 .。
初中七年级数学二元一次方程组(含答案)8.1 二元一次方程组一、选择题:1.下列方程中,是二元一次方程的是()A。
3x - 2y = 4zC。
1y - 2x + 4y = 6D。
4x - x42.下列方程组中,是二元一次方程组的是()A。
x + y = 4.2x + 3y = 7B。
2a - 3b = 11.5b - 4c = 6C。
x2 = 9.y = 2xD。
x + y = 8.x2 - y2 = 43.二元一次方程 5a - 11b = 21()B。
有无数解4.方程 y = 1 - x 与 3x + 2y = 5 的公共解是()A。
x = 3.y = 25.若│x - 2│ + (3y + 2)2 = 0,则 x + y 的值是()C。
-36.方程组 { 4x - 3y = k。
2x + 3y = 5 } 的解与 x 与 y 的值相等,则 k 等于()1 + y = 5;x = y;x2 - y2 = 27.下列各式,属于二元一次方程的个数有()A。
18.某年级学生共有 246 人,其中男生人数 y 比女生人数 x的 2 倍少 2 人,则下面所列的方程组中符合题意的有()A。
{ x + y = 246.2y = x - 2 }二、填空题9.已知方程 2x + 3y - 4 = 0,用含 x 的代数式表示 y 为:y= (4 - 2x) / 3;用含 y 的代数式表示 x 为:x = (4 - 3y) / 2.10.在二元一次方程 -x/2 + 3y/2 = 2 中,当 x = 4 时,y = 2;当 y = -1 时,x = 1.11.若 x3m3 - 2yn1 = 5 是二元一次方程,则 m = 1,n = -1.12.已知 { x = -2.y = 3 } 是方程 x - ky = 1 的解,那么 k = 5.13.已知│x - 1│ + (2y + 1)2 = 0,且 2x - ky = 4,则 k = -8.14.二元一次方程 x + y = 5 的正整数解有 (1.4)。
一、选择题1.若x ,y 均为正整数,且2x +1·4y =128,则x +y 的值为( )A .3B .5C .4或5D .3或4或5C 解析:C【解析】∵2x +1·4y =128,27=128,∴x +1+2y =7,即x +2y =6.∵x ,y 均为正整数,∴22x y =⎧⎨=⎩或41x y =⎧⎨=⎩ ∴x +y =4或5.2.如图,在两个形状、大小完全相同的大长方形内,分别互不重叠地放入四个如图③的小长方形后得图①、图②,已知大长方形的长为2a ,两个大长方形未被覆盖部分分别用阴影表示,则图①阴影部分周长与图②阴影部分周长的差是( )(用a 的代数式表示)A .﹣aB .aC .12aD .﹣12a A 解析:A【分析】 设图③小长方形的长为m ,宽为n ,则由已知可以求得m 、n 关于a 的表达式,从而可以用a 表示出图①阴影部分周长与图②阴影部分周长,然后即可算得二者之差.【详解】解:设图③小长方形的长为m ,宽为n ,则由图①得m=2n ,m+2n=2a , ∴2a m a n ==,, ∴图①阴影部分周长=22245a n a a a ⨯+=+=,图②阴影部分周长=()2322126n n n n a ++==,∴图①阴影部分周长与图②阴影部分周长的差是:5a-6a=-a ,故选A .【点睛】本题考查二元一次方程组的几何应用,设图③小长方形的长为m ,宽为n ,并用a 表示出m 和n 是解题关键.3.已知代数式x a ﹣b y 2与xy 2a +b 是同类项,则a 与b 的值分别是( )A .a =0,b =1B .a =2,b =1C .a =1,b =0D .a =0,b =2C解析:C【分析】根据同类项的定义可得关于a 、b 的方程组,解方程组即得答案.【详解】解:由同类项的定义,得122a b a b -=⎧⎨+=⎩,解得:10a b =⎧⎨=⎩. 故选:C .【点睛】本题考查了同类项的定义和二元一次方程组的解法,属于基本题目,正确理解题意、掌握解答的方法是解题的关键.4.若a 为方程250x x +-=的解,则22015a a ++的值为( )A .2010B .2020C .2025D .2019B 解析:B【分析】先根据a 为方程250x x +-=的解得到25a a +=,然后整体代入即可解答.【详解】解:∵a 为方程250x x +-=的解∴250a a +-=,即25a a +=∴22015a a ++=5+2015=2020.故答案为B .【点睛】本题考查了一元二次方程的解和整体法的应用,正确理解并灵活应用一元二次方程的解解答问题是解答本题的关键. 5.下列方程组的解为31x y =⎧⎨=⎩的是( ) A .224x y x y -=⎧⎨+=⎩B .253x y x y -=⎧⎨+=⎩C .32x y x y +=⎧⎨-=⎩D .2536x y x y -=⎧⎨+=⎩ D 解析:D【解析】把31x y =⎧⎨=⎩代入选项A 第2个方程24x y +=不成立,故错误; 把31x y =⎧⎨=⎩代入选项B 第2个方程3x y +=不成立,故错误; 把31x y =⎧⎨=⎩代入选项C 第1个方程3x y +=不成立,故错误;把31x y =⎧⎨=⎩代入选项D 两个方程均成立,故正确; 故选D.6.若x m ﹣n ﹣2y m+n ﹣2=2007,是关于x ,y 的二元一次方程,则m ,n 的值分别是( ) A .m=1,n=0B .m=0,n=1C .m=2,n=1D .m=2,n=3C解析:C【分析】根据二元一次方程的定义,列出关于m 、n 的方程组,然后解方程组即可.【详解】 解:根据题意,得121m n m n -=⎧⎨+-=⎩, 解得21m n =⎧⎨=⎩. 故选:C .7.已知关于x 、y 的二元一次方程组356310x y x ky +=⎧⎨+=⎩给出下列结论:①当5k =时,此方程组无解;②若此方程组的解也是方程61516x y +=的解,则10k =;③无论整数k 取何值,此方程组一定无整数解(x 、y 均为整数),其中正确的是( )A .①②③B .①③C .②③D .①②A解析:A【分析】根据二元一次方程组的解法逐个判断即可.【详解】 当5k =时,方程组为3563510x y x y +=⎧⎨+=⎩,此时方程组无解 ∴结论①正确由题意,解方程组35661516x y x y +=⎧⎨+=⎩得:2345x y ⎧=⎪⎪⎨⎪=⎪⎩把23x =,45y =代入310x ky +=得2431035k ⨯+= 解得10k =,则结论②正确解方程组356310x y x ky +=⎧⎨+=⎩得:20231545x k y k ⎧=-⎪⎪-⎨⎪=⎪-⎩又k 为整数 x 、y 不能均为整数∴结论③正确综上,正确的结论是①②③故选:A .【点睛】本题考查了二元一次方程组的解与解法,掌握二元一次方程组的解法是解题关键. 8.小月去买文具,打算买5支单价相同的签字笔和3本单价相同的笔记本,她与售货员的对话如下,那么一支笔和一本笔记本应付( )小月:您好,我要买5支签字笔和3本笔记本售货员:好的,那你应付款52元小月:刚才我把两种文具的单价弄反了,以为要付44元A .10元B .11元C .12元D .13元C解析:C【分析】设购买1支签字笔应付x 元,1本笔记本应付y 元,根据题意可得5x+3y=52和3x+5y=44,进而求出x+y 的值.【详解】设购买1支签字笔应付x 元,1本笔记本应付y 元, 根据题意得53523544x y x y +⎧⎨+⎩==, 解得8x+8y=96,即x+y=12,所以在单价没有弄反的情况下,购买1支签字笔和1本笔记本应付12元,故选C .【点睛】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.9.已知关于x ,y 的二元一次方程组323223x y m x y m+=-⎧⎨+=⎩的解适合方程x-y=4,则m 的值为( )A .1B .2C .3D .4C 解析:C【分析】通过观察方程组可知第一个方程减去第二个方程可得22x y m -=-,再结合4x y -=即可求得答案.【详解】解:∵323223x y m x y m +=-⎧⎨+=⎩①② ①-②得,22x y m -=-∵4x y -=∴224m -=∴3m =.故选:C【点睛】本题考查了根据二元一次方程组的解满足一定的条件求参数问题,能根据题目特点灵活运用加减消元法、代入消元法是解题的关键.10.下列方程是二元一次方程的是( ).A .32x y -=B .1xy =C .2+3=x xD .153x y-= A 解析:A【分析】根据二元一次方程的定义,对各个选项逐个分析,即可得到答案.【详解】 32x y -=是二元一次方程,故选项A 正确;1xy =,含未知数的项的次数是2,故选项B 错误;2+3=x x 是一元一次方程,故选项C 错误;153x y-=,不是整式方程,故选项D 错误; 故选:A .【点睛】本题考查了二元一次方程的知识;解题的关键是熟练掌握二元一次方程的定义,从而完成求解.二、填空题11.已知关于x ,y 的方程组35223x y m x y m +=+⎧⎨+=⎩,给出下列结论:①34x y =⎧⎨=-⎩是方程组的解;②2m =时,x ,y 的值互为相反数;③无论m 的x ,y 都满足的关系式22x y +=;④x ,y 的都为自然数的解有2对,其中正确的为__________.(填正确的序号)②③④【分析】先解方程组用m 表示出x 与y 根据方程组解的情况即可作出判断【详解】解:解出方程组得①由x =3得2m-6=3解得m =由y =-4得4-m =-4解得m =8∴不是方程组的解故①不正确;②若xy 的解析:②③④【分析】先解方程组用m表示出x与y,根据方程组解的情况即可作出判断.【详解】解:解出方程组得264x my m=-⎧⎨=-⎩,①由x=3得,2m-6=3,解得m=92,由y=-4得,4-m=-4,解得m=8,∴34xy=⎧⎨=-⎩不是方程组的解,故①不正确;②若x,y的值互为相反数,2m-6+4-m=0,解得m=2,故②正确;③∵2m-6+2(4-m)=2,∴无论m取何值,x,y都是满足关系式x+2y=2,故③正确;④∵x,y的都为自然数,∴m=3,4,共2个,即1xy=⎧⎨=⎩,2xy=⎧⎨=⎩.故④正确;故答案为:②③④.【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.12.在长方形ABCD中放入六个长、宽都相同的小长方形,所标尺寸如图所示,则小长方形的宽CE为____________cm.2【分析】设小长方形的宽CE为小长方形的长是根据长方形ABCD的长和宽列出方程组求解【详解】解:设小长方形的宽CE为小长方形的长是根据图形大长方形的宽可以表示为或者则大长方形的长可以表示为则解得故答解析:2【分析】设小长方形的宽CE 为xcm ,小长方形的长是ycm ,根据长方形ABCD 的长和宽列出方程组52313x x y x y +=+⎧⎨+=⎩求解. 【详解】解:设小长方形的宽CE 为xcm ,小长方形的长是ycm ,根据图形,大长方形的宽可以表示为52x +,或者x y +,则52x x y +=+,大长方形的长可以表示为3x y +,则313x y +=,52313x x y x y +=+⎧⎨+=⎩,解得27x y =⎧⎨=⎩. 故答案是:2.【点睛】本题考查二元一次方程组的应用,解题的关键是找到等量关系列出方程组求解.13.如果方程组43123392x y x y +=⎧⎪⎨-=⎪⎩与方程y =kx -1有公共解,则k =______.【分析】先解方程组得再将代入y =kx -1得3k-1=0解方程即可【详解】解方程组得将代入y =kx -1得3k-1=0解得k=故答案为:【点睛】此题考查同解方程问题解二元一次方程组解一元一次方程熟练掌握 解析:13【分析】 先解方程组43123392x y x y +=⎧⎪⎨-=⎪⎩,得30x y =⎧⎨=⎩,再将30x y =⎧⎨=⎩代入y =kx -1,得3k-1=0,解方程即可.【详解】 解方程组43123392x y x y +=⎧⎪⎨-=⎪⎩,得30x y =⎧⎨=⎩, 将30x y =⎧⎨=⎩代入y =kx -1,得3k-1=0,解得k=13, 故答案为:13. 【点睛】此题考查同解方程问题,解二元一次方程组,解一元一次方程,熟练掌握解方程的方法是解题的关键.14.已知012x y =⎧⎪⎨=-⎪⎩是方程组522x b y x a y -=⎧⎨+=⎩的解,则a b +的值为_______ .【分析】将代入方程组求出a 和b 的值即可求解【详解】将代入方程组得:解得:∴故答案为:【点睛】本题考查了二元一次方程组的解方程组的解即为能使方程组中两方程都成立的未知数的值解析:0【分析】 将012x y =⎧⎪⎨=-⎪⎩代入方程组522x b y x a y -=⎧⎨+=⎩,求出a 和b 的值,即可求解. 【详解】 将012x y =⎧⎪⎨=-⎪⎩代入方程组522x b y x a y -=⎧⎨+=⎩,得: 121222b a ⎧-=-⎪⎪⎨⎛⎫⎪=⨯- ⎪⎪⎝⎭⎩, 解得:1212a b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴11022a b +=-+=. 故答案为:0.【点睛】 本题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.15.已知方程组2237x ay x y +=⎧⎨+=⎩的解是二元一次方程1x y -=的一个解,则a =________________.【分析】由题意建立关于xy 的新的方程组求得xy 的值再代入求解即可;【详解】由得:由得:将代入得:方程组的解为又方程组的解是的一个解经检验是的解【点睛】本题主要考查了二元一次方程组的解准确分析计算是解解析:0【分析】由题意建立关于x ,y 的新的方程组,求得x ,y 的值,再代入求解即可;【详解】2237x ay x y +=⎧⎨+=⎩①②, 由2①×得:224x ay +=③,由②-③得:()323a y -=,332y a=-, 将332y a=-代入②得: 92372a x =--, 1214232a x a -=-, 6732a x a--=, 方程组的解为6732332a x a y a -⎧=⎪⎪-⎨⎪=⎪-⎩, 又方程组的解是1x y -=的一个解,36173322a a a∴---=-, 13732a a--=, 3732,a a -=-0,a =经检验,0a =是13732a a--=的解, 0a ∴=.【点睛】本题主要考查了二元一次方程组的解,准确分析计算是解题的关键.16.若方程组1122a x y c a x y c +=⎧⎨+=⎩的解是23x y =⎧⎨=⎩,则方程组111222a x y a c a x y a c +=-⎧⎨+=-⎩的解是x =_____,y =_____.-1-3【分析】把代入方程组可求出c1﹣c2=2(a1﹣a2)c1﹣2a1=3再根据方程组即可求出xy 的值【详解】解:把代入方程组得所以c1﹣c2=2(a1﹣a2)c1﹣2a1=3方程组①﹣②得(a解析:-1 -3【分析】把23x y =⎧⎨=⎩代入方程组1122a x y c a x y c +=⎧⎨+=⎩可求出c 1﹣c 2=2(a 1﹣a 2),c 1﹣2a 1=3,再根据方程组111222a x y a c a x y a c +=-⎧⎨+=-⎩①②,即可求出x 、y 的值. 【详解】解:把23x y =⎧⎨=⎩代入方程组1122a x y c a x y c +=⎧⎨+=⎩得, 11222323a c a c +=⎧⎨+=⎩, 所以c 1﹣c 2=2(a 1﹣a 2),c 1﹣2a 1=3,方程组111222a x y a c a x y a c +=-⎧⎨+=-⎩①②,①﹣②得,(a 1﹣a 2)x =a 1﹣a 2﹣(c 1﹣c 2), 所以(a 1﹣a 2)x =﹣(a 1﹣a 2),因此x =﹣1,把x =﹣1代入方程组111222a x y a c a x y a c +=-⎧⎨+=-⎩①②中的方程①得,﹣a 1+y =a 1﹣c 1,所以y =2a 1﹣c 1=﹣(c 1﹣2a 1)=﹣3,故答案为:﹣1,﹣3.【点睛】本题考查二元一次方程组及其解法,掌握方程组的解法是解决问题的关键,解二元一次方程组的基本思想是消元.17.甲、乙二人分别从A 、B 两地同时出发,匀速沿同一平直公路相向而行.甲骑的共享电车,乙步行,两人在出发2.5h 时相遇,相遇后0.5h 甲到达B 地,若相遇后乙又走了20千米才到达A 、B 两地的中点,那么乙的速度为______千米/时.4【分析】设甲的速度为x 乙的速度为y 根据题意得到方程组即可求解【详解】设甲的速度为x 乙的速度为y 故两地的距离为3x 依题意可得解得∴乙的速度为4千米/时故答案为:4【点睛】此题主要考查二元一次方程组的解析:4【分析】设甲的速度为x ,乙的速度为y,根据题意得到方程组即可求解.【详解】设甲的速度为x,乙的速度为y,故A、B两地的距离为3x,依题意可得3 2.5202 2.5()3y xx y x ⎧+=⎪⎨⎪+=⎩解得204 xy=⎧⎨=⎩∴乙的速度为4千米/时.故答案为:4.【点睛】此题主要考查二元一次方程组的应用,解题的关键是根据题意找到等量关系列方程求解.18.2017年复兴号的成功研制生产,标志着我国高速动车组走在了世界先进前列.2019年全世界最长的高速动车组复兴号CR400A﹣B正式运营,全长约440米,如图,将笔直轨道看成1个单位长度为1米的数轴,CR400A﹣B停站时首尾对应的数分别为a,b,向右行驶一段距离后,首尾对应的数分别为c,d,若c﹣d=2(|a|﹣|b|),则b的值为__.-110【分析】由题意得出a﹣b=2(|a|﹣|b|)=440①当ab都为负数时②当a≥0b<0时③当a>0b≥0时分别计算即可得出结果【详解】解:由题意得:c﹣d=a﹣b=440∵c﹣d=2(|a解析:-110【分析】由题意得出a﹣b=2(|a|﹣|b|)=440,①当a、b都为负数时,②当a≥0、b<0时,③当a>0,b≥0时,分别计算即可得出结果.【详解】解:由题意得:c﹣d=a﹣b=440,∵c﹣d=2(|a|﹣|b|),∴a﹣b=2(|a|﹣|b|)=440,①当a、b都为负数时,4402()440 a ba b-=⎧⎨-+=⎩,方程组无解;②当a≥0、b<0时,4402()440 a ba b-=⎧⎨+=⎩,解得:330110ab=⎧⎨=-⎩;③当a>0,b≥0时,4402()440 a ba b-=⎧⎨-=⎩,方程组无解;综上所述,b 的值为﹣110,故答案为:﹣110.【点睛】本题考查了数轴、绝对值、二元一次方程组的解等知识;熟练掌握绝对值的性质,进行分类讨论是解题的关键.19.对于任意有理数a ,b ,c ,d ,我们规定a bad bc c d =-.已知x ,y 同时满足514x y=-,513y x =-,则xy =________.【分析】利用题中的新定义得到二元一次方程组求出与的值即可【详解】解:根据题中的新定义得:①②得:解得:把代入①得:∴故答案为:【点睛】此题考查了解二元一次方程组以及有理数的乘法弄清题中的新定义是解本解析:6-【分析】利用题中的新定义得到二元一次方程组,求出x 与y 的值即可.【详解】解:根据题中的新定义得:45531x y x y +=⎧⎨+=⎩①②, ①3⨯-②得:714x =,解得:2x =,把2x =代入①得:3y =-,∴6xy =-,故答案为:6-【点睛】此题考查了解二元一次方程组,以及有理数的乘法,弄清题中的新定义是解本题的关键. 20.如果关于x ,y 的二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是62x y =⎧⎨=⎩,则关于x ,y 的二元一次方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解是______.【分析】先将所求的方程组变形为然后根据题意可得进一步即可求出答案【详解】解:由方程组可得∵关于xy 的二元一次方程组的解是∴解得故答案为【点睛】本题考查了二元一次方程组的解法正确理解题意合理变形得出是解析:105x y =⎧⎨=⎩【分析】先将所求的方程组变形为11122232553255a b c a b c x y x y ⎛⎫⎛⎫⋅⋅ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫⋅⋅ ⎪ ⎪⎝⎭⎝⎭⎧+=⎪⎪⎨⎪+=⎪⎩,然后根据题意可得365225x y ⎧=⎪⎪⎨⎪=⎪⎩,进一步即可求出答案.【详解】解: 由方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩可得11122232553255a b c a b c x y x y ⎛⎫⎛⎫⋅⋅ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫⋅⋅ ⎪ ⎪⎝⎭⎝⎭⎧+=⎪⎪⎨⎪+=⎪⎩, ∵关于x ,y 的二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是62x y =⎧⎨=⎩, ∴365225x y ⎧=⎪⎪⎨⎪=⎪⎩,解得105x y =⎧⎨=⎩, 故答案为105x y =⎧⎨=⎩. 【点睛】 本题考查了二元一次方程组的解法,正确理解题意、合理变形、得出365225x y ⎧=⎪⎪⎨⎪=⎪⎩是解本题的关键.三、解答题21.某水果店有甲,乙两种水果,它们的单价分别为a 元/千克,b 元/千克.若购买甲种水果5千克,乙种水果2千克,共花费25元,购买甲种水果3千克,乙种水果4千克,共花费29元.(1)求a 和b 的值;(2)甲种水果涨价m 元/千克(02)m <<,乙种水果单价不变,小明花了45元购买了两种水果10千克,那么购买甲种水果多少千克?(用含m 的代数式表示).解析:(1)a 的值为3,b 的值为5;(2)52m- 【分析】(1)根据等量关系:购买甲5千克,乙2千克,共花费25元;购买甲3千克,乙4千克,共花费29元;列出方程组求解即可;(2)可设购买甲种糖果x 千克,则购买乙种糖果(10-x )千克,根据花了45元,列出方程即可求解;【详解】解:(1)依题意有52253429a b a b +=⎧⎨+=⎩,解得35a b =⎧⎨=⎩. 故a 的值为3,b 的值为5;(2)设购买甲种水果x 千克,则购买乙种水果(10)x -千克,依题意有:(3)5(10)45m x x ++-=, 解得:52x m=-; 故购买甲种水果52m -千克. 【点睛】本题考查了二元一次方程组的应用,解题的关键是找准等量关系,正确列出二元一次方程组.22.为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市民居民“一户一表”生活用水阶梯式计费价格表的部分信息:+污水处理费)已知小王家2020年4月份用水15吨,交水费45元;5月份用水25吨,交水费91元. (1)求a, b 的值;(2)如果小王家6月份上交水费150元,则小王家这个月用水多少吨?解析:(1)a =2.2,b =4.2;(2)35吨【分析】(1)根据等量关系:小王家2013年4月用水15吨,交水费45元,5月份用水25吨,交水费91元,列出方程组求解即可.(2)设小王家这个月用水x 吨,根据17吨及以下按2.2元收费,超过17吨但不超过30吨的部分按4.2元收费,超过30吨的部分按6元收费和污水处理的钱数,列出方程,求出x 的值即可.【详解】解:(1)根据题意,得15(0.8)4517(0.8)8(0.8)91a ab +=⎧⎨+++=⎩,解得: 2.24.2a b =⎧⎨=⎩. 答:a 的值是2.2,b 的值是4.2;(2)设小王家这个月用水x 吨,则17(a +0.8)+13(b +0.8)+(x -30)×(6+0.8)=150,解得:x =35,答:小王家这个月用水35吨.【点睛】本题考查二元一次方程组的应用,解题关键是弄清题意,合适的等量关系,列出方程组. 23.解二元一次方程组:(1)2710x y x y -=⎧⎨+=⎩ (2)1123()5x y x y y ⎧-=⎪⎨⎪-+=⎩ 解析:(1)91x y =⎧⎨=⎩;(2)14x y =-⎧⎨=-⎩. 【分析】(1)直接由加减消元法解方程组,即可得到答案;(2)先化简方程组,然后由加减消元法解方程组,即可得到答案.【详解】解:(1)2710x y x y -=⎧⎨+=⎩①②, 由②-①,得33y =,∴1y =,把1y =代入①,得9x =,∴91x y =⎧⎨=⎩; (2)1123()5x y x y y ⎧-=⎪⎨⎪-+=⎩, 把方程组整理得:424325x y x y -=⎧⎨-=⎩①②, 由①-②,得1x =-,把1x =-代入②,得4y =-,∴14x y =-⎧⎨=-⎩; 【点睛】本题考查了解二元一次方程组,解题的关键是熟练掌握运算法则,正确的进行解题.24.解方程(组)(1)4, 239, x yx y+=⎧⎨+=⎩(2)(x-1)2-25=0解析:(1)31xy=⎧⎨=⎩;(2)x=6或x=-4.【分析】(1)用加减消元法求二元一次方程组即可;(2)利用平方根的意义求解即可.【详解】(1)4(1) 239(2)x yx y+=⎧⎨+=⎩,(2)−(1)×2,得y=1,将y=1代入(1),得x=3,∴原方程组的解为31 xy=⎧⎨=⎩;(2)(x-1)2-25=0,∴(x-1)2=25,∴x-1=5或x-1=-5,∴x=6或x=-4.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.也考查了利用平方根解方程.25.学校准备租用客车外出活动.现有甲、乙两种大客车,甲种客车每辆载客量45人,乙种客车每辆载客量30人.已知1辆甲种客车和3辆乙种客车共需租金1240元,3辆甲种客车和2辆乙种客车共需租金1760元.(1)求1辆甲种客车和1辆乙种客车的租金分别是多少元?(2)学校计划租用甲、乙两种客车送330名师生集体外出活动(无空座),最节省的租车费用是多少?解析:(1)1辆甲种客车的租金是400元,1辆乙种客车的租金是280元;(2)2960元.【分析】(1)可设1辆甲种客车的租金是x元,1辆乙种客车的租金是y元,根据等量关系:①1辆甲种客车和3辆乙种客车共需租金1240元,②3辆甲种客车和2辆乙种客车共需租金1760元,列出方程组求解即可;(2)由于求最节省的租车费用,可知租用甲种客车6辆,租用乙客车2辆,进而求解即可.【详解】解:(1)设1辆甲种客车的租金是x 元,1辆乙种客车的租金是y 元,依题意有 31240321760x y x y +=⎧⎨+=⎩, 解得:400280x y =⎧⎨=⎩. ∴1辆甲种客车的租金是400元,1辆乙种客车的租金是280元;(2)根据题意,∵3303011÷=,∴当全部租用乙种客车11辆,则费用为:280113080⨯=(元);∵456302330⨯+⨯=,∴当租用甲种客车6辆,乙种客车2辆时,费用为:400628022960⨯+⨯=(元);∵454305330⨯+⨯=,∴当租用甲种客车4辆,乙种客车5辆时,费用为:400428053000⨯+⨯=(元);∵452308330⨯+⨯=,当租用甲种客车2辆,乙种客车8辆时,费用为400228083040⨯+⨯=(元);综合上述,则当租用甲种客车6辆,乙种客车2辆时,费用最少,费用为2960元.【点睛】本题考查二元一次方程组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式及所求量的等量关系.26.解方程组:321121x y x y -=⎧⎨+=⎩. 解析:31x y =⎧⎨=-⎩【分析】利用加减消元法求解即可.【详解】3211(1)21(2)x y x y -=⎧⎨+=⎩, (1)+(2),得4x =12,解得:x =3.将x =3代入(2),得9﹣2y =11,解得y =﹣1.所以方程组的解是:31x y =⎧⎨=-⎩.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.27.解方程:(1)代入法:23328y x x y =-⎧⎨+=⎩(2)加减法:25324x y x y -=⎧⎨+=⎩ 解析:(1)21x y =⎧⎨=⎩;(2)21x y =⎧⎨=-⎩ 【分析】 (1)运用代入消元法求解即可;(2)运用加减消元法求解即可.【详解】解:(1)23328y x x y =-⎧⎨+=⎩①②① 代入②得,32(23)8x x +-=,解得,x=2,把x=2代入①得,y=1,所以,方程组的解为:21x y =⎧⎨=⎩; (2)25324x y x y -=⎧⎨+=⎩①②①×2+②得,7x=14解得,x=2把x=2代入①得,4-y=5,解得,y=-1∴方程组的解为:21x y =⎧⎨=-⎩【点睛】此题主要考查了解二元一次方程组,解二元一次方程组的方法有:代入消元法和加减消元法. 28.甲、乙两人同时解方程组1542ax by x by +=⎧⎨=-⎩①②时,甲看错了方程①中的a ,解得31x y =-⎧⎨=-⎩,乙看错了②中的b ,解得54x y =⎧⎨=⎩.求原方程组的正确解.解析:原方程组的正确解是135x y =-⎧⎨=-⎩【分析】把31x y =-⎧⎨=-⎩代入②,把54x y =⎧⎨=⎩代入①,求出a 和b 的值,再把a 和b 的值代入原方程组求解即可.【详解】解:把31x y =-⎧⎨=-⎩代入②,把54x y =⎧⎨=⎩代入①, 可得()5415432a b b +=⎧⎨⨯-=--⎩,解得510a b =-⎧⎨=⎩, 510154102x y x y -+=⎧∴⎨=-⎩①②, 由②可得:4x-10y=-2③,①+③,得-x=13,x=-13,把x=-13代入①,得65+10y=15,y=-5,∴原方程组的正确解是135x y =-⎧⎨=-⎩. 【点睛】 本题考查了二元一次方程组的解,以及二元一次方程组的解法,其基本思路是消元,消元的方法有:加减消元法和代入消元法两种,灵活选择合适的方法是解答本题的关键.。
七年级下册数学二元一次方程组练习题一、选择题1. 若一个二元一次方程组的两个方程相加,结果为3x+y=7,方程相减,结果为5x-y=1,则该二元一次方程组的解是:A. (x,y) = (2,1)B. (x,y) = (1,2)C. (x,y) = (3,1)D. (x,y) = (1,3)2. 解方程组:2x+y=5x-y=7的解为:A. (x,y) = (4,-3)B. (x,y) = (1,2)C. (x,y) = (3,4)D. (x,y) = (2,1)3. 解方程组:x+y=62x-3y=7的解为:A. (x,y) = (-1,7)B. (x,y) = (2,4)C. (x,y) = (3,3)D. (x,y) = (4,2)二、填空题4. 解方程组:3x+y=8x-2y=7的解为:(x,y) = ( , )5. 若一个二元一次方程组的两个方程相加,结果为4x-y=12,方程相减,结果为3x+y=0,则该二元一次方程组的解是:(x,y) = ( , )6. 解方程组:x+y=102x+5y=35的解为:(x,y) = ( , )三、解答题7. 解方程组:2x+y=11x+3y=13的解。
8. 解方程组:3x-2y=16x+7y=29的解。
9. 解方程组:x+y=73x-4y=10的解。
10. 解方程组:2x+y=53x-y=2的解。
四、应用题11. 小明与小红两人的年龄之和是27岁,小明的年龄是小红年龄的2倍。
求解小明和小红的年龄。
12. 有一辆公交车从A地出发,到B地需要2小时,全程120公里。
如果公交车的速度再快10km/h,则只需要1小时50分钟到达B 地。
求解公交车的速度。
13. 甲、乙两人贷款共计5000元,甲先借了3000元,之后每个月还款200元;乙先借了2000元,之后每个月还款300元。
假设没有利息,求多少个月后两人的贷款还清。
14. 一件商品原价200元,现在进行打折促销,降价20%出售。
专题04 二元一次方程组压轴题必练选择题必练1.今年校团委举办了“中国梦,我的梦”歌咏比赛,张老师为鼓励同学们,带了50元钱去购买甲、乙两种笔记本作为奖品.已知甲种笔记本每本7元,乙种笔记本每本5元,每种笔记本至少买3本,则张老师购买笔记本的方案共有()A.3种B.4种C.5种D.6种2.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文a,b,c,d对应密文a+2b,2b+c,2c+3d,4d.例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为()A.7,6,1,4B.6,4,1,7C.4,6,1,7D.1,6,4,7 3.小杨在商店购买了a件甲种商品,b件乙种商品,共用213元,已知甲种商品每件5元,乙种商品每件19元,那么a+b的最大值是()A.37B.27C.23D.204.(2021秋•砚山县期末)已知是二元一次方程组的解,则m﹣n的值是()A.﹣2B.﹣3C.1D.﹣45.(2021秋•玉门市期末)如果关于x,y的方程组与的解相同,则a+b的值()A.1B.2C.﹣1D.0填空题必练6.已知:2+=22×,3+=32×,4+=42×,5+=52×,…,若10+=102×符合前面式子的规律,则a+b=.7.由菜鸟网络打造的一个仓库有相同数量的工人和机器人,均为x名(其中x>5),平时每天都只工作8小时,每名机器人每小时加工包裹(分、拣、包装一体化)的数量是每名工人每小时加工包裹数量的2倍.随着“春节”临近,人工短缺,寄年货的包裹增多,公司决定再增加2名机器人,且将机器人每天工作时间延长至12小时,并对每名机器人进行升级改造,让现在每名机器人每小时加工包裹的数量在原有基础上增加x个,结果现在所有机器人每天加工包裹的数量是所有工人平时每天加工包裹数量的6倍,则该仓库平时一天加工个包裹.8.如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的,另一根露出水面的长度是它的.两根铁棒长度之和为55cm,此时木桶中水的深度是cm.9.某步行街摆放有若干盆甲、乙、丙三种造型的盆景.甲种盆景由15朵红花、24朵黄花和25朵紫花搭配而成,乙种盆景由10朵红花和12朵黄花搭配而成,丙种盆景由10朵红花、18朵黄花和25朵紫花搭配而成.这些盆景一共用了2900朵红花,3750朵紫花,则黄花一共用了朵.10.已知方程组的解是,则方程组的解是.11.某旅行社安排一批游客乘坐景区观光车游览,若每辆观光车坐18人,剩余3人,若少安排一辆观光车,通过车辆包座(每辆观光车极限搭载26人),则所有游客正好平分乘坐到各车上.这次旅行共有客人.解答题必练12.已知方程组,由于甲看错了方程(1)中的a得到方程组的解为,乙看错了方程(2)中的b得到方程组的解为.若按正确的a、b计算,求原方程组的解.13.某商店从某公司批发部购100件A种商品,80件B种商品,共花去2800元.在商店零售时,每件A种商品加价15%,每件B种商品加价10%,这样全部卖出后共收入3140元,问A、B两种商品买入时的单价各为多少元?14.阅读材料并回答下列问题:当m,n都是实数,且满足2m=8+n,就称点P(m﹣1,)为“爱心点”.(1)判断点A(5,3),B(4,6)哪个点为“爱心点”,并说明理由;(2)若点C(a,﹣8)也是“爱心点”,请求出a的值;(3)已知p,q为有理数,且关于x,y的方程组解为坐标的点B(x,y)是“爱心点”,求p,q的值.15.阅读以下内容:已知实数m,n满足m+n=5,且求k的值,三位同学分别提出了以下三种不同的解题思路:甲同学:先解关于m,n的方程组,再求k的值、乙同学:将原方程组中的两个方程相加,再求k的值丙同学:先解方程组,再求k的值(1)试选择其中一名同学的思路,解答此题(2)试说明在关于x、y的方程组中,不论a取什么实数,x+y的值始终不变.16.已知关于x、y的二元一次方程组.(1)当k=1时,解这个方程组;(2)若﹣1<k≤1,设S=x﹣8y,求S的取值范围.17.为方便市民出行,减轻城市中心交通压力,佛山市掀起新一轮城市基础设施建设高潮,动工修建贯穿东西、南北的地铁2、3号线,已知修建地铁2号线32千米和3号线66千米共投资581.6亿元;且3号线每千米的平均造价比2号线每千米的平均造价多0.2亿元.(1)求2号线、3号线每千米的平均造价分别是多少亿元?(2)除地铁1、2、3号线外,佛山市政府规划未来五年,还要再建168千米的地铁线网.据预算,这168千米地铁线网每千米的平均造价是3号线每千米的平均造价的1.2倍,则还需投资多少亿元?18.某校七年级400名学生到郊外参加植树活动,已知用3辆小客车和1辆大客车每次可运送学生105人,用1辆小客车和2辆大客车每次可运送学生110人.(1)每辆小客车和每辆大客车各能坐多少名学生?(2)若计划租小客车m辆,大客车n辆,一次送完,且恰好每辆车都坐满:①请你设计出所有的租车方案;②若小客车每辆租金150元,大客车每辆租金250元,请选出最省钱的租车方案,并求出最少租金.19.如果关于x、y的二元一次方程组的解是,不求a,b的值,你能否求关于x、y的二元一次方程组的解?如果能,请求出方程组的解.20.我市某包装生产企业承接了一批上海世博会的礼品盒制作业务,为了确保质量,该企业进行试生产.他们购得规格是170cm×40cm的标准板材作为原材料,每张标准板材再按照裁法一或裁法二裁下A型与B型两种板材.如图甲,(单位:cm)(1)列出方程(组),求出图甲中a与b的值;(2)在试生产阶段,若将30张标准板材用裁法一裁剪,4张标准板材用裁法二裁剪,再将得到的A型与B型板材做侧面和底面,做成图乙的竖式与横式两种礼品盒.①两种裁法共产生A型板材张,B型板材张;②已知①中的A型板材和B型板材恰好做成竖式有盖礼品盒x个,横式无盖礼品盒的y个,求x、y的值.21.当a,b都是实数,且满足2a﹣b=6,就称点P(a﹣1,+1)为完美点.(1)判断点A(2,3)是否为完美点.(2)已知关于x,y的方程组,当m为何值时,以方程组的解为坐标的点B(x,y)是完美点,请说明理由.22.某汽车制造厂开发一款新式电动汽车,计划一年生产安装240辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人.他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)如果工厂招聘n(0<n<10)名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?专题04 二元一次方程组压轴题必练选择题必练1.今年校团委举办了“中国梦,我的梦”歌咏比赛,张老师为鼓励同学们,带了50元钱去购买甲、乙两种笔记本作为奖品.已知甲种笔记本每本7元,乙种笔记本每本5元,每种笔记本至少买3本,则张老师购买笔记本的方案共有()A.3种B.4种C.5种D.6种【答案】D【解答】解:设甲种笔记本购买了x本,乙种笔记本y本,由题意,得7x+5y≤50,∵x≥3,y≥3,∴当x=3,y=3时,7×3+5×3=36<50,当x=3,y=4时,7×3+5×4=41<50,当x=3,y=5时,7×3+5×5=46<50,当x=3,y=6时,7×3+5×6=51>50舍去,当x=4,y=3时,7×4+5×3=43<50,当x=4,y=4时,7×4+5×4=48<50,当x=4,y=5时,7×4+5×5=53>50舍去,当x=5,y=3时,7×5+5×3=50=50,综上所述,共有6种购买方案.故选:D.2.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文a,b,c,d对应密文a+2b,2b+c,2c+3d,4d.例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为()A.7,6,1,4B.6,4,1,7C.4,6,1,7D.1,6,4,7【答案】B【解答】解:依题意,得,解得.∴明文为:6,4,1,7.故选:B.3.小杨在商店购买了a件甲种商品,b件乙种商品,共用213元,已知甲种商品每件5元,乙种商品每件19元,那么a+b的最大值是()A.37B.27C.23D.20【答案】A【解答】解:由题意得,5a+19b=213,∴a=,∴a+b=+b=,∵a+b是关于b的一次函数且a+b随b的增大而减小,∴当b最小时,a+b取最大值,又∵a,b是正整数,∴当b=2时,a+b的最大值=37.故选:A.4.(2021秋•砚山县期末)已知是二元一次方程组的解,则m﹣n的值是()A.﹣2B.﹣3C.1D.﹣4【答案】B【解答】解:把方程组的解代入方程组得,解得,∴m﹣n=﹣4+1=﹣3,故选:B.5.(2021秋•玉门市期末)如果关于x,y的方程组与的解相同,则a+b的值()A.1B.2C.﹣1D.0【答案】A【解答】解:∵方程组与的解相同,∴方程组的解与方程组的解相同,∴方程组,①+②得,b(x+y)+a(x+y)=7,∴7a+7b=7,∴a+b=1,故选:A.填空题必练6.已知:2+=22×,3+=32×,4+=42×,5+=52×,…,若10+=102×符合前面式子的规律,则a+b=.【答案】109【解答】解:根据题中材料可知=,∵10+=102×,∴b=10,a=99,a+b=109.7.由菜鸟网络打造的一个仓库有相同数量的工人和机器人,均为x名(其中x>5),平时每天都只工作8小时,每名机器人每小时加工包裹(分、拣、包装一体化)的数量是每名工人每小时加工包裹数量的2倍.随着“春节”临近,人工短缺,寄年货的包裹增多,公司决定再增加2名机器人,且将机器人每天工作时间延长至12小时,并对每名机器人进行升级改造,让现在每名机器人每小时加工包裹的数量在原有基础上增加x个,结果现在所有机器人每天加工包裹的数量是所有工人平时每天加工包裹数量的6倍,则该仓库平时一天加工个包裹.【答案】864【解答】解:设工人每小时加工y个包裹,则改造前机器人每小时加工2y个包裹,改造后机器人每小时加工(2y+x)个包裹,依题意,得:12(x+2)(2y+x)=6×8xy,∴x2+4y﹣2xy+2x=0,∴y===+=+=+3+,∵x是大于5的整数,y是整数,∴x=6,y=6,∴该仓库平时一天加工6×6×8+6×12×8=864(个),故答案为864.8.如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的,另一根露出水面的长度是它的.两根铁棒长度之和为55cm,此时木桶中水的深度是cm.【答案】20【解答】解:设较长铁棒的长度为xcm,较短铁棒的长度为ycm.因为两根铁棒之和为55cm,故可列x+y=55,又知两棒未露出水面的长度相等,故可知x=y,据此可列:,解得:,因此木桶中水的深度为30×=20cm.故填20.9.某步行街摆放有若干盆甲、乙、丙三种造型的盆景.甲种盆景由15朵红花、24朵黄花和25朵紫花搭配而成,乙种盆景由10朵红花和12朵黄花搭配而成,丙种盆景由10朵红花、18朵黄花和25朵紫花搭配而成.这些盆景一共用了2900朵红花,3750朵紫花,则黄花一共用了朵.【答案】4380【解答】解:设步行街摆放有甲、乙、丙三种造型的盆景分别有x盆、y盆、z盆.由题意,有,由①得,3x+2y+2z=580,③由②得,x+z=150④,③+④,得4x+2y+3z==730,∴黄花一共用了:24x+12y+18z=6(4x+2y+3z)=6×730=4380.故答案为:4380.10.已知方程组的解是,则方程组的解是.【答案】【解答】解:方程组转化为;∴由恒等式意义,得∴x=3,y=9∴方程组的解为故答案为11.某旅行社安排一批游客乘坐景区观光车游览,若每辆观光车坐18人,剩余3人,若少安排一辆观光车,通过车辆包座(每辆观光车极限搭载26人),则所有游客正好平分乘坐到各车上.这次旅行共有客人.【答案】75或147或399【解答】解:设原计划安排x辆车,根据题意,得为整数,且≤26,==18+,∴x﹣1=1,3,7,21,经检验x﹣1=1∴x﹣1=3,7,21,∴x=4,8,22,所以这次的游客人数为:18×4+3=75,或18×8+3=147,或18×22+3=399,经检验可知,游客为75人或147人或399人都符合题意.故答案为75或147或399.解答题必练12.已知方程组,由于甲看错了方程(1)中的a得到方程组的解为,乙看错了方程(2)中的b得到方程组的解为.若按正确的a、b计算,求原方程组的解.【解答】解:把代入(2)得:﹣12﹣b=﹣2,解得:b=﹣10,把代入(1)得:a+10=15,解得:a=5,即方程组为:,(1)×2﹣(2)得:6x=32,解得:x=,把x=代入(1)得:+5y=15,解得:y=﹣,即原方程组的解为:13.某商店从某公司批发部购100件A种商品,80件B种商品,共花去2800元.在商店零售时,每件A种商品加价15%B种商品加价10%,这样全部卖出后共收入3140元,问A、B两种商品买入时的单价各为多少元?【解答】解:设A商品买入时的单价为x元,B商品买入时的单价为y元,由题意得,,解得:.答:A商品买入时的单价为12元,B商品买入时的单价为20元.14.阅读材料并回答下列问题:当m,n都是实数,且满足2m=8+n,就称点P(m﹣1,)为“爱心点”.(1)判断点A(5,3),B(4,6)哪个点为“爱心点”,并说明理由;(2)若点C(a,﹣8)也是“爱心点”,请求出a的值;(3)已知p,q为有理数,且关于x,y的方程组解为坐标的点B(x,y)是“爱心点”,求p,q的值.【解答】解:(1)点A是爱心点,点B不是爱心点,理由如下:∵,∴,∵2×6=8+4,∴点A是爱心点;∵,∴,∵2×5≠8+10,∴点B不是爱心点;(2)∵点C为爱心点,∴,∴n=﹣18,又∵2m=8+n,∴2m=8+(﹣18),解得m=﹣5,∴﹣5﹣1=a,即a=﹣6;(3)解方程组得,又∵点B是爱心点满足:,∴,∵2m=8+n,∴2 p﹣2q+2=8+4q﹣2,整理得:2 p﹣6q=4,∵p,q是有理数,∴p=0,﹣6q=4,∴p=0,q=﹣.15.阅读以下内容:已知实数m,n满足m+n=5,且求k的值,三位同学分别提出了以下三种不同的解题思路:甲同学:先解关于m,n的方程组,再求k的值、乙同学:将原方程组中的两个方程相加,再求k的值丙同学:先解方程组,再求k的值(1)试选择其中一名同学的思路,解答此题(2)试说明在关于x、y的方程组中,不论a取什么实数,x+y的值始终不变.【解答】解:(1),①+②得到,17(m+n)=11k﹣3,∵m+n=5,∴17×5=11k﹣3解得k=8.(2)①×3+②得到:4x+4y=12,∴x+y=3,∴不论a取什么实数,x+y的值始终不变.16.已知关于x、y的二元一次方程组.(1)当k=1时,解这个方程组;(2)若﹣1<k≤1,设S=x﹣8y,求S的取值范围.【解答】解:(1)k=1时,方程组为,②×2得,2x+6y=10③,③﹣①得,11y=11,解得y=1,将y=1代入②得,x+3=5,解得x=2,所以,方程组的解是;(2),①﹣②得,x﹣8y=﹣3k﹣3,∵﹣1<k≤1,∴﹣3≤﹣3k<3,﹣6≤﹣3k﹣3<0,∴S的取值范围是﹣6≤S<0.17.为方便市民出行,减轻城市中心交通压力,佛山市掀起新一轮城市基础设施建设高潮,动工修建贯穿东西、南北的地铁2、3号线,已知修建地铁2号线32千米和3号线66千米共投资581.6亿元;且3号线每千米的平均造价比2号线每千米的平均造价多0.2亿元.(1)求2号线、3号线每千米的平均造价分别是多少亿元?(2)除地铁1、2、3号线外,佛山市政府规划未来五年,还要再建168千米的地铁线网.据预算,这168千米地铁线网每千米的平均造价是3号线每千米的平均造价的1.2倍,则还需投资多少亿元?【解答】解:(1)设2号线每千米的平均造价是x亿元,3号线每千米的平均造价是y 亿元,由题意得出:,解得:,答:2号线每千米的平均造价是5.8亿元,3号线每千米的平均造价是6亿元;(2)由(1)得出:168×6×1.2=1209.6(亿元),答:还需投资1209.6亿元.18.某校七年级400名学生到郊外参加植树活动,已知用3辆小客车和1辆大客车每次可运送学生105人,用1辆小客车和2辆大客车每次可运送学生110人.(1)每辆小客车和每辆大客车各能坐多少名学生?(2)若计划租小客车m辆,大客车n辆,一次送完,且恰好每辆车都坐满:①请你设计出所有的租车方案;②若小客车每辆租金150元,大客车每辆租金250元,请选出最省钱的租车方案,并求出最少租金.【解答】解:(1)设每辆小客车能坐x人,每辆大客车能坐y人,据题意:,解得:,答:每辆小客车能坐20人,每辆大客车能坐45人;(2)①由题意得:20m+45n=400,∴n=,∵m、n为非负整数,∴或或,∴租车方案有三种:方案一:小客车20车、大客车0辆,方案二:小客车11辆,大客车4辆,方案三:小客车2辆,大客车8辆;②方案一租金:150×20=3000(元),方案二租金:150×11+250×4=2650(元),方案三租金:150×2+250×8=2300(元),∴方案三租金最少,最少租金为2300元.19.如果关于x、y的二元一次方程组的解是,不求a,b的值,你能否求关于x、y的二元一次方程组的解?如果能,请求出方程组的解.【解答】解:根据题意可得,解得:.20.我市某包装生产企业承接了一批上海世博会的礼品盒制作业务,为了确保质量,该企业进行试生产.他们购得规格是170cm×40cm的标准板材作为原材料,每张标准板材再按照裁法一或裁法二裁下A型与B型两种板材.如图甲,(单位:cm)(1)列出方程(组),求出图甲中a与b的值;(2)在试生产阶段,若将30张标准板材用裁法一裁剪,4张标准板材用裁法二裁剪,再将得到的A型与B型板材做侧面和底面,做成图乙的竖式与横式两种礼品盒.①两种裁法共产生A型板材张,B型板材张;②已知①中的A型板材和B型板材恰好做成竖式有盖礼品盒x个,横式无盖礼品盒的y个,求x、y的值.【解答】解:(1)由题意得:,解得:,答:图甲中a与b的值分别为:60、40;(2)①由图示裁法一产生A型板材为:2×30=60,裁法二产生A型板材为:1×4=4,所以两种裁法共产生A型板材为60+4=64(张),由图示裁法一产生B型板材为:1×30=30,裁法二产生A型板材为,2×4=8,所以两种裁法共产生B型板材为30+8=38(张),故答案为:64,38;②根据题意竖式有盖礼品盒的x个,横式无盖礼品盒的y个,则A型板材需要(4x+3y)个,B型板材需要(2x+2y)个,所以,解得.21.当a,b都是实数,且满足2a﹣b=6,就称点P(a﹣1,+1)为完美点.(1)判断点A(2,3)是否为完美点.(2)已知关于x,y的方程组,当m为何值时,以方程组的解为坐标的点B(x,y)是完美点,请说明理由.【解答】解:(1)a﹣1=2,可得a=3,+1=3,可得b=4,∵2a﹣b≠6,∴A(2,3)不是完美点.(2)∵,∴,3+m=a﹣1,可得a=m+4,3﹣m=+1,可得b=4﹣2m,∵2a﹣b=6,∴2m+8﹣4+2m=6,∴m=,∴当m=时,点B(x,y)是完美点.22.某汽车制造厂开发一款新式电动汽车,计划一年生产安装240辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人.他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)如果工厂招聘n(0<n<10)名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?【解答】解:(1)设每名熟练工每月可以安装x辆电动汽车,新工人每月分别安装y辆电动汽车,根据题意得,解之得.答:每名熟练工每月可以安装4辆电动汽车,新工人每月分别安装2辆电动汽车;(2)设调熟练工m人,由题意得,12(4m+2n)=240,整理得,n=10﹣2m,∵0<n<10,∴当m=1,2,3,4时,n=8,6,4,2,即:①调熟练工1人,新工人8人;②调熟练工2人,新工人6人;③调熟练工3人,新工人4人;④调熟练工4人,新工人2人.。
1
二元一次方程组复习题
例题:1、下列方程是二元一次方程的是( )
(A)x2+x+1=0 (B)2x+3y-1=0 (C)x+y-z=0 (D)x+011y
2、下列各组数值是x-2y=4方程的解的是( )
(A)12yx (B) 11yx (C)20yx(D) 14yx
3、以12yx为解的二元一次方程的个数是( )
(A)有且只有一个 (B)只有两个 (C) 有无数个 (D)不会超过100个
4、二元一次方程3x+2y=7的正整数解的组数是( )
(A)1组 (B)2组 (C)3组 (D)4组
5、已知24yx是二元一次方程mx+y=10的一个解,则m的值为 。
6、已知3xm-1-4y2m-n+4=1是二元一次方程,则m= ,n= .
7、下列方程组中,属于二元一次方程组的是()
(A)121yxyx (B) 21yxxy (C) 123yzyx (D) 0252xyx
8、已知2ay+5b和-4a2xb2-4y是同类项,则x= ,y= .
9、写一个21yx以为解的二元一次方程组: 。
10、如果21yx是方程组1352ybxayx的解,则ba 。
11、方程组5231yxyx的解是 .
12、将下列二元一次方程变形,使其中一个未知数用含另一个未知数的代数式表示:
⑴2x-y-3=0 ⑵x-2y-3=0
⑶ 2x+5y-13=0 ⑷143vu
13、用代入法解下利二元一次方程组:
①5231yxxy ②142yxyx ③894132tsts
2
14、用加减法解方程组423532yxyx时,下列变形正确的是()
(A)446596yxyx (B) 12691064yxyx (C) 12261536yxyx (D) 12631062yxyx
15、解方程组)2(19427)1(25613yxyx 你认为下列4种方法中,最简便的是()
(A)代入消元法 (B)用(1)27-(2)13,先消去x
(C)用(1)4-(2)6,先消去y (D) 用(1)2-(2)3,先消去y
16、用加减法解下列方程组:①11522153yxyx ②46365nmnm
提高题:1、已知12yx是方程组57byaxbyax的解,求ba的值。
2、已知)0(0403yzyyx,则zx()(A)12 (B)-121 (C)-12 (D) 121
3、已知︳4x+3y-5︳+︳x-2y-4︳=0,求x,y的值
4、已知二元一次方程ax+by=10的两个解为01yx,51yx,则a= ,b= .
5、已知关于x,y的方程组142yxnymx与3)1(36ymnxyx的解相同,求nm,的值。
3
6、已知关于x,y的二元一次方程组ayxyx422的解也是方程x- y=2的解,求a的值。
7、方程2x+3y=11的正整数解是 。
8、解方程组872ycxbyax时,一学生把c看错而得到22yx,已知该方程组的正确的解是23yx,
那么a,b,c的值是()
(A)不能确定 (B) a=4,b=5,c=-2 (C) a,b不能确定,c=-2 (D) a=4,b=7,c=-2