1.1.1 棱柱、棱锥、棱台的结构特征
- 格式:ppt
- 大小:2.40 MB
- 文档页数:32
第1课时棱柱、棱锥、棱台的结构特征学习目标 1.通过对实物模型的观察,归纳认知棱柱、棱锥、棱台的结构特征.2.理解棱柱、棱锥、棱台之间的关系.3.能运用棱柱、棱锥、棱台的结构特征描述现实生活中简单物体的结构和有关计算.知识点一空间几何体的定义、分类及相关概念思考观察下面两组物体,你能说出各组物体的共同点吗?答案(1)几何体的表面由若干个平面多边形围成.(2)几何体的表面由平面图形绕其所在平面内的一条定直线旋转而成.梳理(1)空间几何体的定义及分类①定义:如果只考虑物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.②分类:常见的空间几何体有多面体与旋转体两类.(2)多面体与旋转体类别多面体旋转体定义由若干个平面多边形围成的几何体由一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体图形相关概念面:围成多面体的各个多边形棱:相邻两个面的公共边顶点:棱与棱的公共点轴:形成旋转体所绕的定直线知识点二棱柱的结构特征思考观察下列多面体,有什么共同特点?答案(1)有两个面相互平行;(2)其余各面都是平行四边形;(3)每相邻两个四边形的公共边都互相平行.梳理棱柱的结构特征名称定义图形及表示相关概念分类棱柱有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面如图可记作:棱柱ABCDEF—A′B′C′D′E′F′底面(底):两个互相平行的面侧面:其余各面侧棱:相邻侧面的公共边顶点:侧面与底面的公共顶点按底面多边形的边数分:三棱柱、四棱柱、……体叫做棱柱知识点三棱锥的结构特征思考观察下列多面体,有什么共同特点?答案(1)有一个面是多边形;(2)其余各面都是有一个公共顶点的三角形.梳理棱锥的结构特征名称定义图形及表示相关概念分类棱锥有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥如图可记作:棱锥S—ABCD底面(底):多边形面侧面:有公共顶点的各个三角形面侧棱:相邻侧面的公共边顶点:各侧面的公共顶点按底面多边形的边数分:三棱锥、四棱锥、……知识点四棱台的结构特征思考观察下列多面体,分析其与棱锥有何区别与联系?答案(1)区别:有两个面相互平行.(2)联系:用平行于棱锥底面的平面去截棱锥,其底面和截面之间的部分即为该几何体.梳理棱台的结构特征名称定义图形及表示相关概念分类棱台用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分叫做棱台如图可记作:棱台ABCD—A′B′C′D′上底面:原棱锥的截面下底面:原棱锥的底面侧面:其余各面侧棱:相邻侧面的公共边顶点:侧面与上(下)底面的公共顶点由三棱锥、四棱锥、五棱锥……截得的棱台分别叫做三棱台、四棱台、五棱台……知识点五棱柱、棱锥、棱台之间的关系类型一棱柱、棱锥、棱台的结构特征命题角度1棱柱的结构特征例1下列关于棱柱的说法:①所有的面都是平行四边形;②每一个面都不会是三角形;③两底面平行,并且各侧棱也平行;④被平行于底面的平面截成的两部分可以都是棱柱.其中正确说法的序号是________.答案③④解析①错误,底面可以不是多边形;②错误,底面可以是三角形;③正确,由棱柱的定义可知;④正确,被平行于底面的平面截成的两部分可以都是棱柱.反思与感悟关于棱柱的辨析(1)紧扣棱柱的结构特征进行有关概念辨析.①两个面互相平行;②其余各面是四边形;③相邻两个四边形的公共边互相平行.(2)多注意观察一些实物模型和图片便于反例排除.特别提醒:求解与棱柱相关的问题时,首先看是否有两个平行的面作为底面,再看是否满足其他特征.跟踪训练1关于棱柱,下列说法正确的是________.①有两个面平行,其余各面都是平行四边形的几何体是棱柱;②棱柱的侧棱长相等,侧面都是平行四边形;③各侧面都是正方形的四棱柱一定是正方体.答案②解析①不正确,反例如图所示.②正确,由棱柱定义可知,棱柱的侧棱相互平行且相等,所以侧面均为平行四边形.③不正确,上、下底面是菱形,各侧面是全等的正方形的四棱柱不一定是正方体.命题角度2棱锥、棱台的结构特征例2(1)判断如图所示的物体是不是棱锥,为什么?解该物体不是棱锥.因为棱锥的定义中要求:各侧面有一个公共顶点,但侧面ABC与侧面CDE没有公共顶点,所以该物体不是棱锥.(2)如图所示的多面体是不是棱台?解根据棱台的定义,可以得到判断一个多面体是棱台的标准有两个:一是共点,二是平行.即各侧棱延长线要交于一点,上、下两个底面要平行,二者缺一不可.据此,图(1)中多面体侧棱延长线不相交于同一点,故不是棱台;图(2)中多面体不是由棱锥截得的,不是棱台;图(3)中多面体虽是由棱锥截得的,但截面与底面不平行,因此也不是棱台.反思与感悟棱锥、棱台结构特征问题的判断方法(1)举反例法结合棱锥、棱台的定义举反例直接说明关于棱锥、棱台结构特征的某些说法不正确.(2)直接法棱锥棱台定底面只有一个面是多边形,此面即为底面两个互相平行的面,即为底面看侧棱相交于一点延长后相交于一点跟踪训练2有下列三个命题:①用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台;②两个面平行且相似,其余各面都是梯形的多面体是棱台;③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台.其中正确的有()A.0个B.1个C.2个D.3个答案A解析①中的平面不一定平行于底面,故①错;②③可用反例去检验,如图所示,侧棱延长线不能相交于一点,故②③错.故选A.类型二多面体的识别和判断例3如图,已知长方体ABCD-A1B1C1D1.用平面BCFE把这个长方体分成两部分后,各部分形成的几何体还是棱柱吗?如果是,是几棱柱?如果不是,说明理由.解截面BCFE上方部分是棱柱,且是三棱柱BEB1-CFC1,其中△BEB1和△CFC1是底面.截面BCFE下方部分也是棱柱,且是四棱柱ABEA1-DCFD1,其中四边形ABEA1和四边形DCFD1是底面.引申探究用一个平面去截本例中的四棱柱,能截出三棱锥吗?解如图.几何体B-A1B1C1就是三棱锥.反思与感悟解答此类题目的关键是正确掌握棱柱的几何特征,在利用几何体的概念进行判断时,要紧扣定义,注意几何体间的联系与区别,不要认为底面就是上下位置.跟踪训练3如图所示,关于该几何体的正确说法有________.①这是一个六面体;②这是一个四棱台;③这是一个四棱柱;④此几何体可由三棱柱截去一个三棱柱得到;⑤此几何体可由四棱柱截去一个三棱柱得到.答案①③④⑤解析①正确,因为有六个面,属于六面体的范畴;②错误,因为侧棱的延长线不能交于一点,所以不正确;③正确,若把几何体放倒就会发现是一个四棱柱;④⑤都正确,如图所示.类型三多面体的表面展开图例4(1)请画出如图所示的几何体的表面展开图;(2)如图是两个几何体的表面展开图,请问各是什么几何体?解(1)展开图如图所示.(答案不唯一)(2)根据表面展开图,可知①为五棱柱,②为三棱台.反思与感悟(1)绘制展开图:绘制多面体的平面展开图要结合多面体的几何特征,发挥空间想象能力或者是亲手制作多面体模型.在解题过程中,常常给多面体的顶点标上字母,先把多面体的底面画出来,然后依次画出各侧面,便可得到其平面展开图.(2)由展开图复原几何体:若是给出多面体的平面展开图,来判断是由哪一个多面体展开的,则可把上述过程逆推.同一个几何体的平面展开图可能是不一样的,也就是说,一个多面体可有多个平面展开图.跟踪训练4如图所示,不是正四面体(各棱长都相等的三棱锥)的展开图的是()A.①③B.②④C.③④D.①②答案C解析可选择阴影三角形作为底面进行折叠,发现①②可折成正四面体,③④不论选哪一个三角形作底面折叠都不能折成正四面体.1.下面多面体中,是棱柱的有()A.1个B.2个C.3个D.4个答案D解析根据棱柱的定义进行判定知,这4个图都满足.2.有一个多面体,共有四个面围成,每一个面都是三角形,则这个几何体为()A.四棱柱B.四棱锥C.三棱柱D.三棱锥答案D解析四个面都是三角形的几何体只能是三棱锥.3.三棱柱的平面展开图是()答案B解析两个全等的三角形,在侧面三个长方形的两侧,这样的图形围成的是三棱柱,故选B. 4.下列叙述,其中正确的有()①两个底面平行且相似,其余的面都是梯形的多面体是棱台;②如图所示,截正方体所得的几何体是棱台;③棱锥被平面截成的两部分不可能都是棱锥.A.0个B.1个C.2个D.3个答案A解析①不正确,因为不能保证各侧棱的延长线交于一点,如图(1)所示;②不正确,因为侧棱延长后不能交于一点,还原后也并非棱锥;③不正确,如图(2)所示,用一个过顶点的平面截四棱锥得到的是两个三棱锥.(1)(2)5.一个棱柱有10个顶点,所有的侧棱长的和为60 cm,则每条侧棱长为________ cm.答案12解析因为棱柱有10个顶点,所以棱柱为五棱柱,共有五条侧棱,所以侧棱长为605=12(cm).1.棱柱、棱锥定义的关注点(1)棱柱的定义有以下两个要点,缺一不可:①有两个平面(底面)互相平行;②其余各面(侧面)每相邻两个面的公共边(侧棱)都互相平行.(2)棱锥的定义有以下两个要点,缺一不可:①有一个面(底面)是多边形;②其余各面(侧面)是有一个公共顶点的三角形.2.棱柱、棱锥、棱台之间的关系在运动变化的观点下,棱柱、棱锥、棱台之间的关系可以用下图表示出来(以三棱柱、三棱锥、三棱台为例).3.根据几何体的结构特点判定几何体的类型,首先要熟练掌握各几何体的概念,把握好各类几何体的性质,其次要有一定的空间想象能力.课时作业一、选择题1.在棱柱中()A.只有两个面平行B.所有的棱都平行C.所有的面都是平行四边形D.两底面平行,且各侧棱也互相平行答案D解析对于A,如果是长方体,可能不止有两个面平行,故错;对于B,如果是长方体,不可能所有的棱都平行,只是所有的侧棱都平行,故错;对于C,上、下底面不一定是平行四边形,故错;对于D,据棱柱的定义知其正确,故对.故选D.2.下面多面体中有12条棱的是()A.四棱柱B.四棱锥C.五棱锥D.五棱柱答案A解析∵n棱柱共有3n条棱,n棱锥共有2n条棱,∴四棱柱共有12条棱;四棱锥共有8条棱;五棱锥共有10条棱;五棱柱共有15条棱.故选A.3.有两个面平行的多面体不可能是()A.棱柱B.棱锥C.棱台D.以上都错答案B解析由棱锥的结构特征可得.4.棱台不具有的性质是()A.两底面相似B.侧面都是梯形C.侧棱都平行D.侧棱延长后都交于一点答案C解析根据棱台的定义:用平行于底面的平面截棱台,截面与底面之间的部分叫做棱台,∴棱台具有的性质是:上、下底面多边形相似,每个侧面都是梯形,侧棱延长后交于一点,故选项A、B、D排除,∴棱台的侧棱都不平行,故选C.5.如图所示,在三棱台A′B′C′-ABC中,截去三棱锥A′-ABC,则剩余部分是()A.三棱锥B.四棱锥C.三棱柱D.三棱台答案B解析由题图知剩余的部分是四棱锥A′-BCC′B′.6.下面图形中是正方体展开图的是()答案A解析由正方体表面展开图性质知A是正方体的展开图;B折叠后第一行两个面无法折起来,而且下边没有面,故不能折成正方体;C缺少一个正方形;D折叠后有一个面重合,另外还少一个面,故不能折成正方体.故选A.7.若棱台上、下底面的对应边之比为1∶2,则上、下底面的面积之比是()A.1∶2 B.1∶4 C.2∶1 D.4∶1答案B解析由棱台的结构特征知,棱台上、下底面是相似多边形,面积比为对应边之比的平方,故选B.8.五棱柱中,不同在同一个侧面且不同在同一个底面的两顶点的连线称为它的对角线,那么一个五棱柱对角线的条数共有()A.20 B.15 C.12 D.10答案D解析如图,在五棱柱ABCDE-A1B1C1D1E1中,从顶点A出发的对角线有两条:AC1,AD1,同理从B,C,D,E点出发的对角线均有两条,共2×5=10(条).二、填空题9.以三棱台的顶点为三棱锥的顶点,这样可以把一个三棱台分成________个三棱锥.答案3解析如图,分割为A1-ABC,B-A1CC1,C1-A1B1B,3个棱锥.10.一个长方体共顶点的三个面的面积分别是2,3,6,则这个长方体对角线的长是________.答案6解析设长方体长、宽、高为x,y,z,则yz=2,xz=3,yx=6,三式相乘得x2y2z2=6,即xyz=6,解得x=3,y=2,z=1,所以x2+y2+z2=3+2+1= 6.11.如图,已知正三棱锥P-ABC的侧棱长为2,底面边长为2,Q是侧棱P A的中点,一条折线从A点出发,绕侧面一周到Q点,则这条折线长度的最小值为________.答案32 2解析沿着棱P A把三棱锥展开成平面图形,所求的折线长度的最小值就是线段AQ的长度,令∠P AB=θ,则θ=60°,在展开图中,AQ=322,故答案为322.三、解答题12.试从正方体ABCD-A1B1C1D1的八个顶点中任取若干,连接后构成以下空间几何体,并且用适当的符号表示出来.(1)只有一个面是等边三角形的三棱锥;(2)四个面都是等边三角形的三棱锥;(3)三棱柱.解(1)如图所示,三棱锥A1-AB1D1(答案不唯一).(2)如图所示,三棱锥B1-ACD1(答案不唯一).(3)如图所示,三棱柱A1B1D1-ABD(答案不唯一).13.在一个长方体的容器中,里面装有少量水,现将容器绕着其底部的一条棱倾斜,在倾斜的过程中.(1)水面的形状不断变化,可能是矩形,也可能变成不是矩形的平行四边形,对吗?(2)水的形状也不断变化,可以是棱柱,也可能变为棱台或棱锥,对吗?(3)如果倾斜时,不是绕着底部的一条棱,而是绕着其底部的一个顶点,上面的第(1)题和第(2)题对不对?解(1)不对;水面的形状就是用一个与棱(倾斜时固定不动的棱)平行的平面截长方体时截面的形状,因而可以是矩形,但不可能是其他非矩形的平行四边形.(2)不对;水的形状就是用与棱(将长方体倾斜时固定不动的棱)平行的平面将长方体截去一部分后,剩余部分的几何体,此几何体是棱柱,水比较少时,是三棱柱,水多时,可能是四棱柱或五棱柱,但不可能是棱台或棱锥.(3)用任意一个平面去截长方体,其截面形状可以是三角形,四边形,五边形,六边形,因而水面的形状可以是三角形,四边形,五边形,六边形;水的形状可以是棱锥,棱柱,但不可能是棱台.故此时(1)对,(2)不对.四、探究与拓展14.一个无盖的正方体盒子的平面展开图如图,A,B,C是展开图上的三点,则在正方体盒子中,∠ABC=________.答案60°解析将平面图形翻折,折成空间图形,可得∠ABC=60°.15.如图,已知长方体ABCD-A1B1C1D1.(1)这个长方体是棱柱吗?如果是,是几棱柱?为什么?(2)用平面BCEF把这个长方体分成两部分,各部分几何体的形状是什么?解(1)是棱柱.是四棱柱.因为长方体中相对的两个面是平行的,其余的每个面都是矩形(四边形),且每相邻的两个矩形的公共边都平行,符合棱柱的结构特征,所以是棱柱.(2)各部分几何体都是棱柱,分别为棱柱BB1F-CC1E和棱柱ABF A1-DCED1.。
§1.1 第1课时棱柱、棱锥、棱台的结构特征基础过关1.三棱锥的四个面中可以作为底面的有()A.1个B.2个C.3个D.4个2.四棱柱有几条侧棱,几个顶点()A.四条侧棱、四个顶点B.八条侧棱、四个顶点C.四条侧棱、八个顶点D.六条侧棱、八个顶点3.观察如图所示的四个几何体,其中判断不正确的是()A.①是棱柱B.②不是棱锥C.③不是棱锥D.④是棱台4.如图,将装有水的长方体水槽固定底面一边后将水槽倾斜一个小角度,则倾斜后水槽中的水形成的几何体的形状是________.5.下列说法正确的有________(填序号).①棱柱的侧面都是平行四边形;②棱锥的侧面为三角形,且所有侧面都有一个公共点;③棱台的侧面有的是平行四边形,有的是梯形;④棱台的侧棱所在直线均相交于同一点;⑤多面体至少有四个面.6.如图所示的几何体中,所有棱长都相等,分析此几何体的构成?有几个面、几个顶点、几条棱?7.如图,在边长为2a的正方形ABCD中,E,F分别为AB,BC的中点,沿图中虚线将3个三角形折起,使点A、B、C重合,重合后记为点P.问:(1)折起后形成的几何体是什么几何体?(2)这个几何体共有几个面,每个面的三角形有何特点?(3)每个面的三角形面积为多少?能力提升8.某同学制作了一个对面图案相同的正方体礼品盒(如图),则这个正方体礼品盒的表面展开图应该为()9.在正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱对角线的条数共有()A.20B.15C.12D.1010.在正方体上任意选择4个顶点,它们可能是如下各种空间图形的4个顶点,这些空间图形是________.(写出所有正确结论的编号)①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体.11.长方体ABCD-A1B1C1D1(如图所示)中,AB=3,BC=4,A1A=5,现有一甲壳虫从A出发沿长方体表面爬行到C1来获取食物,试画出它的最短爬行路线,并求其路程的最小值.探究创新12.如图,在4×3的纸上用线条勾画出一个图形,使每一格作为一个面,能折成一个正方体.你能画出4个这样的图形吗?【参考答案】基础过关1.【解析】由于三棱锥的每一个面均可作为底面,应选D.【答案】D2.【解析】四棱柱有四条侧棱、八个顶点(可以结合正方体观察求得).【答案】C3.【解析】结合棱柱、棱锥、棱台的定义可知①是棱柱,②是棱锥,④是棱台,③不是棱锥,故B错误.【答案】B4.【解析】由于倾斜角度较小,所以倾斜后水槽中水形成的几何体的形状应为四棱柱.【答案】四棱柱5.【解析】棱柱是由一个平面多边形沿某一方向平移而形成的几何体,因而侧面是平行四边形,故①对.棱锥是由棱柱的一个底面收缩为一个点而得到的几何体,因而其侧面均是三角形,且所有侧面都有一个公共点,故②对.棱台是棱锥被平行于底面的平面所截后,截面与底面之间的部分,因而其侧面均是梯形,且所有的侧棱延长后均相交于一点(即原棱锥的顶点),故③错④对.⑤显然正确.因而正确的有①②④⑤.【答案】①②④⑤6.解:这个几何体是由两个同底面的四棱锥组合而成的八面体.有8个面,都是全等的正三角形;有6个顶点;有12条棱.7.解:(1)如图,折起后的几何体是三棱锥.(2)这个几何体共有4个面,其中△DEF为等腰三角形,△PEF为等腰直角三角形,△DPE 和△DPF均为直角三角形.(3)S△PEF=12a2,S△DPF=S△DPE=12×2a×a=a2,S△DEF=S正方形ABCD-S△PEF-S△DPF-S△DPE=(2a)2-12a2-a2-a2=32a2.能力提升8.【解析】两个☆不能并列相邻,B、D错误;两个※不能并列相邻,C错误,故选A.也可通过实物制作检验来判定.【答案】A9.【解析】正五棱柱任意不相邻的两条侧棱可确定一个平面,每个平面可得到正五棱柱的两条对角线,5个平面共可得到10条对角线,故选D.【答案】D10.【解析】在正方体ABCD-A1B1C1D1上任意选择4个顶点,它们可能是如下各种空间图形的4个顶点,这些空间图形是:①矩形,如四边形ACC1A1;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体,如A-A1BD;④每个面都是等边三角形的四面体,如A-CB1D1;⑤每个面都是直角三角形的四面体,如A-A1DC,所以填①③④⑤.【答案】①③④⑤11.解:把长方体的部分面展开,如图所示.对甲、乙、丙三种展开图利用勾股定理可得AC1的长分别为90、74、80,由此可见乙是最短线路,所以甲壳虫可以先在长方形ABB1A1内由A到E,再在长方形BCC1B1内由E 到C1,也可以先在长方形AA1D1D内由A到F,再在长方形DCC1D1内由F到C1,其最短路程为74.探究创新12. 解:。
111.1.1 棱柱、棱锥、棱台的结构特征编者:刘胜芳 审核:高一数学组 学习目标:1、观察实物模型及图片,增强学生的直观感知2、能根据几何结构特征对空间物体进行分类3、理解多面体及旋转体的有关概念4、会用语言概述棱柱、棱锥、棱台的结构特征 学习重点让学生感受大量空间实物及模型,概括出棱柱、棱锥、棱台结构特征 学习难点如何让学生概括棱柱、棱锥、棱台结构特征 学习过程:探究1、多面体与旋转体的相关概念问题:观察课本上P 2的16张图片的形状,请将这些图片中的物体分成两类,并说明分类的标准是什么?(提示:根据围成几何体的面是否都是平面来分类)新知1、__________________________________叫做多面体,_________________叫做多面体的面,_______________________________叫做多面体的棱, ___________________叫做多面体的顶点。
按围成多面体的面数分为:________________________________ 一个多面体最少有____个面, 棱柱、棱锥、棱台均是多面体。
新知2、_____________________________________________________叫做旋转体, 这条定直线叫做__________________,圆柱、圆锥、圆台都是_____________探究2、棱柱的结构特征问题:你能归纳下列图形共同的几何特征吗?新知3、______________________________________________________叫做棱柱 __________________叫做棱柱的底面,__________________叫做棱柱的侧面__________________叫做棱柱的侧棱,________________________叫做棱柱的顶点 按照底面边数分类,棱柱分为________________________ 棱柱的表示方法:_________________________________关于棱柱的几何特征注意三点: ① 有两个面互相平行 ② 其余各面是四边形 ③ 各侧棱平行思考:有两个面互相平行,其余各面都是平行四边形的几何体是棱柱吗?探究3、棱锥的结构特征问题:埃及金字塔是人类建筑的奇迹之一,它具有什么样的几何特征呢?并分析下面两个图形具有的共同点?新知4、______________________________________________________叫做棱锥 _______________________叫做棱锥的底面,__________________叫做锥柱的侧面 _____________________叫做棱锥的侧棱,_____________________叫做棱锥的顶点按照底面边数分类,棱锥分为________________________ 棱锥的表示方法:_________________________________注意:三棱锥是最简单的空间几何体,有四个面,每个面都是三角形 探究4、棱台的结构特征问题:假设用一把大刀把右图的上半部分平行地切掉,则切掉部分是什么形状?剩余部分呢?ACBPA C BP2新知5、_______________________________________________________ 叫做棱台 ___________________________分别叫做棱台的上底面和下底面,________________叫棱台的侧面,____________________叫棱台的侧棱, __________________叫棱台的顶点,两底面间的距离叫棱台的高。
第一课时 棱柱、棱锥、棱台的结构特征[提出问题观察下列图片:问题1:图片(1)(2)(3)中的物体的形状有何特点? 提示:由若干个平面多边形围成.问题2:图片(4)(5)(6)(7)的物体的形状与(1)(2)(3)中有何不同?提示:(4)(5)(6)的表面是由平面与曲面围成的,(7)的表面是由曲面围成的. 问题3:图片(4)(5)(6)(7)中的几何体是否可以看作平面图形绕某定直线旋转而成? 提示:可以. [导入新知] 1.空间几何体1.对于多面体概念的理解,注意以下两个方面:(1)多面体是由平面多边形围成的,围成一个多面体至少要四个面.一个多面体由几个面围成,就称为几面体.(2)多面体是一个“封闭”的几何体,包括其内部的部分. 2.棱柱具有以下结构特征和特点:(1)侧棱互相平行且相等,侧面都是平行四边形.(2)两个底面与平行于底面的截面是全等的多边形,如图a 所示.(3)过不相邻的两条侧棱的截面是平行四边形,如图b 所示. (4)有两个面平行,其余各面都是平行四边形的几何体不一定是棱柱,如图c 所示.3.对于棱锥要注意有一个面是多边形,其余各面都是三角形的几何体不一定是棱锥,必须强调其余各面是共顶点的三角形,如图d所示.4.棱台中各侧棱延长后必相交于一点,否则不是棱台.[例1](1)所有的面都是平行四边形;(2)每一个面都不会是三角形;(3)两底面平行,并且各侧棱也平行;(4)被平面截成的两部分可以都是棱柱.其中正确说法的序号是________.[答案] (3)(4)[类题通法]有关棱柱的结构特征问题的解题策略(1)紧扣棱柱的结构特征进行有关概念辨析.①两个面互相平行;②其余各面是四边形;③相邻两个四边形的公共边互相平行.求解时,首先看是否有两个平行的面作为底面,再看是否满足其他特征.(2)多注意观察一些实物模型和图片便于反例排除.[活学活用]下列说法正确的是( )A.有两个面平行,其余各面都是四边形的几何体叫棱柱B.有两个面平行,其余各面都是平行四边形的几何体叫棱柱C.各个侧面都是正方形的四棱柱一定是正方体D.九棱柱有9条侧棱,9个侧面,侧面均为平行四边形答案:D[例2](1)用一个平面去截棱锥,底面和截面之间的部分组成的几何体叫棱台;(2)棱台的侧面一定不会是平行四边形;(3)棱锥的侧面只能是三角形;(4)由四个面围成的封闭图形只能是三棱锥;(5)棱锥被平面截成的两部分不可能都是棱锥.其中说法正确的序号是________.[答案] (2)(3)(4)[类题通法]判断棱锥、棱台形状的两个方法(1)举反例法:结合棱锥、棱台的定义举反例直接判断关于棱锥、棱台结构特征的某些说法不正确.(2)直接法:下列说法正确的有( )①由五个面围成的多面体只能是四棱锥;②仅有两个面互相平行的五面体是棱台;③两个底面平行且相似,其余各面都是梯形的多面体是棱台;④有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台.A.0个B.1个C.2个D.3个答案:A[例3][解] 由几何体的侧面展开图的特点,结合棱柱,棱锥,棱台的定义,可把侧面展开图还原为原几何体,如图所示:所以①为五棱柱,②为五棱锥,③为三棱台.[类题通法]1.解答此类问题要结合多面体的结构特征发挥空间想象能力和动手能力.2.若给出多面体画其展开图时,常常给多面体的顶点标上字母,先把多面体的底面画出来,然后依次画出各侧面.3.若是给出表面展开图,则可把上述程序逆推.[活学活用]水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的表面展开图(图中数字写在正方体的外表面上),若图中“0”上方的“2”在正方体的上面,则这个正方体的下面是( )A.1 B.7C.快D.乐答案:B1.柱、锥、台结构特征判断中的误区[典例] 如图所示,下列关于这个几何体的正确说法的序号为________.(1)这是一个六面体;(2)这是一个四棱台;(3)这是一个四棱柱;(4)此几何体可由三棱柱截去一个三棱柱得到;(5)此几何体可由四棱柱截去一个三棱柱得到.[解析] (1)正确,因为有六个面,属于六面体的范围;(2)错误,因为侧棱的延长线不能交于一点,所以不正确;(3)正确,如果把几何体放倒就会发现是一个四棱柱;(4)(5)都正确,如图所示.[答案] (1)(3)(4)(5)[易错防范]1.解答过程中易忽视侧棱的延长线不能交于一点,直观感觉是棱台,而不注意逻辑推理.2.解答空间几何体概念的判断题时,要注意紧扣定义,切忌只凭图形主观臆断.[成功破障]如图,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是( )A.棱柱B.棱台C.棱柱与棱锥的组合体D.不能确定答案:A[随堂即时演练]1.下列几何体中,棱柱的个数是( )A.1 B.2C.3 D.4答案:D2.下列图形经过折叠可以围成一个棱柱的是( )答案:D3.棱锥最少有________个面.答案:44.下列几何体中,________是棱柱,________是棱锥,________是棱台.(仅填相应序号)答案:③⑤①④5.(1)三棱锥、四棱锥、十五棱锥分别有多少条棱,多少个面?(2)有没有一个多棱锥,其棱数是2 016?若有,求出有多少个面;若没有,说明理由.解:(1)三棱锥有6条棱、4个面;四棱锥有8条棱、5个面;十五棱锥有30条棱、16个面.(2)有1 007个面.[课时达标检测]一、选择题1.下列图形中,不是三棱柱的展开图的是( )答案:C2.如图所示,在三棱台ABCA′B′C′中,截去三棱锥A′ABC,则剩余部分是( )A.三棱锥B.四棱锥C.三棱柱D.组合体答案:B3.下列说法正确的是( )①棱锥的各个侧面都是三角形;②三棱柱的侧面为三角形;③四面体的任何一个面都可以作为棱锥的底面;④棱锥的各侧棱长都相等.A.①②B.①③C.②③D.②④答案:B4.(广东高考)正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱对角线的条数共有( )A.20 B.15C.12 D.10答案:D5.下列命题正确的是( )A.用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台B.棱柱中两个互相平行的面一定是棱柱的底面C.棱台的底面是两个相似的正方形D.棱台的侧棱延长后必交于一点答案:D二、填空题6.面数最少的棱柱为________棱柱,共有________个面围成.答案:三 57.如图,M是棱长为2 cm的正方体ABCDA1B1C1D1的棱CC1的中点,沿正方体表面从点A到点M的最短路程是________ cm.答案:138.侧棱垂直于底面的棱柱叫做直棱柱.侧棱不垂直于底面的棱柱叫做斜棱柱.底面是正多边形的直棱柱叫做正棱柱.底面是平行四边形的四棱柱叫做平行六面体.侧棱与底面垂直的平行六面体叫做直平行六面体.底面是矩形的直平行六面体叫做长方体.棱长都相等的长方体叫做正方体.请根据上述定义,回答下面的问题:(1)直四棱柱________是长方体;(2)正四棱柱________是正方体.(填“一定”“不一定”或“一定不”)答案:(1)不一定(2)不一定三、解答题9.如图所示,长方体ABCDA1B1C1D1.(1)这个长方体是棱柱吗?如果是,是几棱柱?为什么?(2)用平面BCNM把这个长方体分成两部分,各部分形成的几何体还是棱柱吗?如果是,是几棱柱,并用符号表示;如果不是,请说明理由.解:(1)是棱柱,并且是四棱柱,因为长方体相对的两个面是互相平行的四边形(作底面),其余各面都是矩形(作侧面),且相邻侧面的公共边互相平行,符合棱柱的定义.(2)截面BCNM的上方部分是三棱柱BB1MCC1N,下方部分是四棱柱ABMA1DCND1.10.给出两块正三角形纸片(如图所示),要求将其中一块剪拼成一个底面为正三角形的三棱锥模型,另一块剪拼成一个底面是正三角形的三棱柱模型,请设计一种剪拼方案,分别用虚线标示在图中,并作简要说明.解:如图①所示,沿正三角形三边中点连线折起,可拼得一个底面为正三角形的三棱锥.如图②所示,正三角形三个角上剪出三个相同的四边形,其较长的一组邻边边长为三角形边长的14,有一组对角为直角,余下部分按虚线折成,可成为一个缺上底的底面为正三角形的三棱柱,而剪出的三个相同的四边形恰好拼成这个底面为正三角形的棱柱的上底.。
§1.1空间几何体的结构第1课时棱柱、棱锥、棱台的结构特征一、选择题1.下面多面体中有12条棱的是()A.四棱柱B.四棱锥C.五棱锥D.五棱柱考点空间几何体题点空间几何体结构判断答案 A解析∵n棱柱共有3n条棱,n棱锥共有2n条棱,∴四棱柱共有12条棱;四棱锥共有8条棱;五棱锥共有10条棱;五棱柱共有15条棱.故选A.2.有两个面平行的多面体不可能是()A.棱柱B.棱锥C.棱台D.以上都错考点空间几何体题点空间几何体结构判断答案 B解析由棱锥的结构特征可得.3.下列关于棱柱的说法中,错误的是()A.三棱柱的底面为三角形B.一个棱柱至少有五个面C.若棱柱的底面边长相等,则它的各个侧面全等D.五棱柱有5条侧棱、5个侧面,侧面为平行四边形考点棱柱的结构特征题点棱柱的结构特征的应用答案 C解析显然A正确;底面边数最少的棱柱是三棱柱,它有五个面,故B正确;底面是正方形的四棱柱,有一对侧面与底面垂直,另一对侧面不垂直于底面,此时侧面并不全等,故C 错误;D正确,故选C.4.下面图形中是正方体展开图的是()考点空间几何体的平面展开图题点多面体的平面展开图答案 A解析由正方体表面展开图性质知A是正方体的展开图;B折叠后第一行两个面无法折起来,而且下边没有面,故不能折成正方体;C缺少一个正方形;D折叠后有一个面重合,另外还少一个面,故不能折成正方体.故选A.5.如图所示,在三棱台A′B′C′-ABC中,截去三棱锥A′-ABC,则剩余部分是()A.三棱锥B.四棱锥C.三棱柱D.三棱台考点棱锥的结构特征题点棱锥的结构特征的应用答案 B解析由题图知剩余的部分是四棱锥A′-BCC′B′.6.若棱台上、下底面的对应边之比为1∶2,则上、下底面的面积之比是()A.1∶2 B.1∶4C.2∶1 D.4∶1考点棱锥的结构特征题点棱锥的结构特征的应用答案 B解析由棱台的结构特征知,棱台上、下底面是相似多边形,面积比为对应边之比的平方,故选B.7.如图,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是()A.棱柱B.棱台C.棱柱与棱锥的组合体D.不能确定考点棱柱的结构特征题点棱柱的结构特征的应用答案 A解析根据图可判断为底面是梯形或三角形的棱柱.8.如图都是正方体的表面展开图,还原成正方体后,其中两个完全一样的是()A.(1)(2) B.(2)(3) C.(3)(4) D.(1)(4)考点空间几何体的平面展开图题点多面体的平面展开图答案 B解析(1)图还原后,①⑤对面,②④对面,③⑥对面;(2)图还原后,①④对面,②⑤对面,③⑥对面;(3)图还原后,①④对面,②⑤对面,③⑥对面;(4)图还原后,①⑥对面,②⑤对面,③④对面;综上,可得还原成正方体后,其中两个完全一样的是(2)(3).9.在五棱柱中,不同在同一个侧面且不同在同一个底面的两顶点的连线称为它的对角线,那么一个五棱柱对角线的条数共有()A.20 B.15 C.12 D.10考点棱柱的结构特征题点与棱柱有关的运算答案 D解析如图,在五棱柱ABCDE-A1B1C1D1E1中,从顶点A出发的对角线有两条:AC1,AD1,同理从B,C,D,E点出发的对角线均有两条,共2×5=10(条).10.以三棱台的顶点为三棱锥的顶点,这样可以把一个三棱台分成的三棱锥的个数是( ) A .1 B .2 C .3 D .0 考点 棱锥的结构特征 题点 与棱锥有关的运算 答案 C解析 如图,分割为A 1-ABC ,B -A 1CC 1,C 1-A 1B 1B,3个棱锥.二、填空题11.如图,能推断这个几何体可能是三棱台的是________.(填序号)①A 1B 1=2,AB =3,B 1C 1=3,BC =4;②A 1B 1=1,AB =2,B 1C 1=1.5,BC =3,A 1C 1=2,AC =3; ③A 1B 1=1,AB =2,B 1C 1=1.5,BC =3,A 1C 1=2,AC =4; ④A 1B 1=AB ,B 1C 1=BC ,C 1A 1=CA . 考点 棱台的结构特征 题点 棱台的概念的应用 答案 ③解析 因为三棱台的上下底面相似,所以该几何体如果是三棱台,则△A 1B 1C 1∽△ABC , 所以A 1B 1AB =B 1C 1BC =A 1C 1AC.故选③.12.一个长方体共顶点的三个面的面积分别是2,3,6,则这个长方体对角线的长是________.考点 棱柱的结构特征 题点 与棱柱有关的运算答案 6解析设长方体长、宽、高为x,y,z,则yz=2,xz=3,yx=6,三式相乘得x2y2z2=6,即xyz=6,解得x=3,y=2,z=1,所以x2+y2+z2=3+2+1= 6.三、解答题13.试从正方体ABCD-A1B1C1D1的八个顶点中任取若干个点,连接后构成以下空间几何体,并且用适当的符号表示出来.(1)只有一个面是等边三角形的三棱锥;(2)四个面都是等边三角形的三棱锥;(3)三棱柱.考点空间几何体题点空间几何体结构应用解(1)如图所示,三棱锥A1-AB1D1(答案不唯一).(2)如图所示,三棱锥B1-ACD1(答案不唯一).(3)如图所示,三棱柱A1B1D1-ABD(答案不唯一).四、探究与拓展14.如图,已知正三棱锥P -ABC 的侧棱长为2,底面边长为2,Q 是侧棱P A 的中点,一条折线从A 点出发,绕侧面一周到Q 点,则这条折线长度的最小值为________.考点 空间几何体的平面展开图 题点 多面体的平面展开图 答案322解析 沿着棱P A 把三棱锥展开成平面图形,所求的折线长度的最小值就是线段AQ 的长度,因为点Q 是P A ′的中点,所以在展开图中,AQ =322,故答案为322.15.给出两块正三角形纸片(如图所示),要求将其中一块剪拼成一个底面为正三角形的三棱锥模型,另一块剪拼成一个底面是正三角形的三棱柱模型,请设计一种剪拼方案,分别用虚线标示在图中,并作简要说明.考点 棱锥的结构特征 题点 棱锥的结构特征的应用解 如图(1)所示,沿正三角形三边中点连线折起,可拼得一个底面为正三角形的三棱锥.如图(2)所示,正三角形三个角上剪出三个相同的四边形,其较长的一组邻边边长为三角形边长的14,有一组对角为直角,余下部分按虚线三角形的边折成,可成为一个缺上底的底面为正三角形的三棱柱,而剪出的三个相同的四边形恰好拼成这个底面为正三角形的棱柱的上底.。