地层破裂压力预测技术综述
- 格式:pdf
- 大小:276.87 KB
- 文档页数:4
泥页岩地层孔隙压力的预测方法左 星1 何世明1 黄 桢2 范兴亮2 李 薇1 曾永清3(11西南石油大学,四川成都610500;21四川石油管理局川东开发公司,重庆400021;31塔里木油田公司勘探事业部,新疆库尔勒841000) 摘 要 勘探开发过程中,由于地层孔隙压力预测不准,时常造成井眼坍塌、破裂,这不但影响了工程的进行,而且带来了巨大的经济损失。
因此,准确预测地层孔隙压力,对钻井设计中钻井液密度的选择和合理的井身结构设计起着重要作用,同时也是打好一口井的重要因素。
文中概述了关于地层孔隙压力预测的一系列方法,并通过实例来说明如何准确预测,最后针对预测方法的局限性提出了一些建议。
关键词 勘探开发 预测 地层孔隙压力 钻井液密度 地层孔隙压力预测方法的理论基础是压实理论、均衡理论及有效应力理论,预测方法有钻速法、地球物理方法(地震波)、测井法(声波时差)等。
目前单一应用某一种方法是很难准确评价一个地区或区块的地层孔隙压力,往往需要运用多种方法形成一种规范的预测准则[1],来进行综合分析和解释。
地层孔隙压力评价方法可分为2类:一类是利用地震资料或已钻井资料进行预测,建立单井或区块地层压力剖面,用于钻井工程设计、施工;另一类是钻井过程中监测地层压力,掌握地层压力实际变化,确定现行钻井措施及溢流监控。
3 目前常用的地层孔隙压力预测方法有钻前预测地层压力、随钻检测地层压力和钻井后检测地层压力。
1 钻前预测地层压力由于在钻某一区块的第一口井时没有可用的测井资料及邻井相关数据,所以只能通过地震资料来估算地层压力[2]。
预测原理:地震波在地层中的传播速度与地层岩石的岩性压实程度、埋藏深度以及地质时代等因素有关。
一般情况下,地震波的传播速度随地层的埋藏深度的加大而增加,地震波在地层介质中的传播速度与岩层埋藏深度、岩石沉积时代和岩石密度成正比关系,与岩石孔隙度成反比关系,利用这些特性就可以对地层压力进行预测。
地层破裂压力梯度地层破裂压力梯度是指地下岩石或土层在垂直方向上的压力变化率。
在地球内部,地质力学过程会导致地层破裂和变形,这些力学过程对于石油、天然气勘探和开采等领域具有重要意义。
地层破裂压力梯度的研究可以帮助我们了解地下岩石的力学性质以及地质构造的演化过程。
在地质构造中,地层破裂压力梯度是一个重要的参数,它决定了岩石的破裂强度和变形能力。
了解地层破裂压力梯度可以帮助我们预测地震的发生,评估地下水资源的储量和分布,以及优化石油、天然气等资源的勘探和开采方案。
地层破裂压力梯度的大小与地下岩石的物理性质、地质构造和地下应力状态等因素有关。
一般来说,地层破裂压力梯度会随着深度的增加而增大。
这是因为地下岩石受到上方岩石的压力作用,导致岩石内部的应力逐渐增大。
当地下岩石的应力超过其承载能力时,就会发生破裂。
地层破裂压力梯度的大小还受到地层的岩性、韧性和渗透性等因素的影响。
一般来说,岩石的压力梯度与其岩性和韧性呈正相关关系,而与其渗透性呈负相关关系。
岩性和韧性较高的岩石可以承受更大的压力,而渗透性较高的岩石则会减小地层破裂压力梯度。
地下应力状态也是影响地层破裂压力梯度的重要因素。
地下应力是地质构造过程中形成的,它包括地壳的自重应力、板块运动引起的构造应力以及热胀冷缩引起的热应力等。
这些应力作用于地下岩石上,导致地层破裂压力梯度的形成和变化。
在石油、天然气勘探和开采过程中,地层破裂压力梯度的研究对于确定钻井参数、设计井筒完整性和评估油气藏的储量和产能具有重要意义。
通过测量地层破裂压力梯度,可以评估地下岩石的稳定性,预测井筒的稳定性,避免钻井事故和井壁塌陷等问题的发生。
在地震学研究中,地层破裂压力梯度也是一个重要的参数。
通过研究地层破裂压力梯度的变化规律,可以预测地震的发生和破裂过程,评估地震的破坏程度和危险性,为地震灾害的防治提供科学依据。
地层破裂压力梯度是地下岩石在垂直方向上的压力变化率,对于石油、天然气勘探和开采、地震学研究等领域具有重要意义。
一、地层压力预测软件有:1.JASON软件Jason软件是一套综合应用地震、测井和地质等资料解决油气勘探开发不同阶段储层预测和油气藏描述实际问题的综合平台。
Jason 的重要特点就是随着越来越多的非地震信息(测井,测试,地质)的引入,由地震数据推演的油气藏参数模型的分辨率和细节会得到不断的改善。
用户可根据需要由Jason 的模块构建自己的研究流程。
其反演模块包括:InverTrace:递归反演稀疏脉冲反演InverTrace_plus:稀疏脉冲反演RockTrace:弹性反演InverMod:特征反演(主组分分析)StatMod:随机模拟随机反演FunctionMod:函数运算压力预测原理:由JASON反演出地层速度,速度计算垂直有效应力,进而求出孔隙流体压力。
2、地层孔隙压力和破裂压力预测和分析软件DrillWorks/PREDICTGNG软件功能:•趋势线(参考线)的建立--手工--最小二乘方拟合--参考线库•页岩辨别分析•上覆岩层梯度分析--体积密度测井--密度孔隙度测井--用户定义方法(程序)•孔隙压力分法--指数方法电阻率、D一指数声波、电导率地震波--等效深度方法电阻率、D--指数声波--潘尼派克方沾--用户定义方法(程序)•压裂梯度分法--伊顿方法--马修斯和凯利方法--用户定义方法(程序)•系统支持项目和油井数据库•系统支持所有趋势线方法•系统包括交叉绘图功能•用户定义方法(程序)•包括全套算子•系统支持井与井之间的关联分析•系统支持岩性显示•系统支持随钻实时分析•系统支持随钻关联分析•多用户网络版本数据装载功能:•斯仑贝谢LIS磁盘输入•斯仑贝谢LIS磁带输入•CWLS LAS输入•ASCII输入•离散的表格输入•井眼测斜数据•测深/垂深表格用户范围:•美国墨西哥湾•北海•西部非洲•南美•尼日利亚三角洲•南中国海•澳大利亚DrillWorks/PREDICTGNG 与其它软件的区别•世界上用得最多的地层压力软件•钻前预测、随钻监测和钻后检测•用户主导的软件系统•准确确定--上覆岩层压力梯度--孔隙压力梯度--破裂压力梯度•使用下列数据的任何组合来分析地层:-地震波速度-有线测井-MWD、LWD数据-重复地层测试(RFT)-泄漏试验(LOT)数据-录井资料-地质资料•面向现实世界中数据资料不尽人意、而新的方法又层出不穷的用户而设计的•地层压力软件平台:新的预测压力方法可通过"用户定义方法(程序)"编入系统软件用途:•准确预测地层压力•有效降低钻井成本•提高经济效益•优化井眼尺寸•优化泥浆和水力学•避免井涌和卡钻•减少地层污染•延伸套管鞋深度•减少套管数目•保障施工安全3、GeoPredict地层孔隙压力预测软件本程序基于当量深度法,根据钻进过程中钻时的快慢,并结合岩屑的岩性,由操作人员在图中用拖动鼠标的方式挑出的泥/页岩段,完成压力预测原理中首先选取泥/页岩段的过程。
Eaton法预测地层压力公式一、引言地层压力是油气勘探和开发中的一个重要参数,对于油气井设计和安全生产起着至关重要的作用。
因此,准确地预测地层压力成为了油田工程师的一项重要任务。
本文将介绍E at on法预测地层压力公式,该公式是根据地层参数以及工程实践总结而得出的,具有一定的应用价值。
二、E a t o n法简介E a to n法是一种经验法,根据地层成因、裂缝系统和岩石力学性质等因素,通过对现场地质数据的分析,得出一种预测地层压力的方法。
E a to n法的基本原理是通过地层参数的定量化,建立回归方程,从而获得预测地层压力的公式。
三、E a t o n法预测地层压力公式推导根据Ea to n法的原理,我们可以推导出如下的地层压力公式:地层压力(P)=0.052*密度(ρ)*地层深度(H)*泊松比(ν)*压缩性系数(C)其中,密度(ρ)表示地层的密度,地层深度(H)表示从地表到地层的垂直距离,泊松比(ν)表示地层的泊松比,压缩性系数(C)表示地层的压缩性系数。
四、地层参数的获取为了应用Ea to n法预测地层压力公式,我们需要获取地层参数。
下面介绍常用的获取地层参数的方法:密度(ρ):1.密度可以通过地质勘探和勘测数据来获取,包括岩心、测井和岩石物理测试等。
地层深度(H):2.地层的深度可以通过测井数据来获得,一般通过测井曲线上的深度值进行提取。
泊松比(ν):3.泊松比可以通过岩石物理测试或者地质勘探数据来获取,其中岩石物理测试是一种常用的手段。
压缩性系数(C):4.压缩性系数可以通过岩石力学实验室测试或者地质勘探数据来获得,其中岩石力学实验室测试是一种常用的手段。
五、案例分析以下是一个使用E ato n法预测地层压力的案例:假设某油田的地质数据如下:-密度(ρ):2.4g/c m³-地层深度(H):2500m-泊松比(ν):0.25-压缩性系数(C):3.5×10⁻⁰⁰M P a⁻¹根据Ea to n法的公式,我们可以计算出地层压力:地层压力(P)=0.052*2.4*2500*0.25*3.5×10⁻⁰⁰计算结果为地层压力(P)=65MP a六、总结E a to n法是一种常用的预测地层压力的方法,通过对地层参数的定量化,可以建立回归方程来得出地层压力的公式。
文献综述前言水力压裂是油田增产一项重要技术措施。
由地面以超过地层吸收能力的排量高压泵组将液体注入井中,此时,在井底附近便会蹩起压力,当蹩气的压力超过井壁附近地层的最小地应力和岩石抗张强度时,在地层中便会形成裂缝。
随之带有支撑剂的液体泵入缝中,裂缝不断向前延伸,这样,在地层中形成了具有一定长度、宽度及高度的填砂裂缝。
由于压裂形成的裂缝提高了产油层导流能力,使油气能够畅流入井内,从而起到了增产增注的作用。
为了完成水力压裂设计,在地层中造成增产效果的裂缝,需要了解与造缝有关的地应力、井筒压力、破裂压力等分布与大小。
这些因素控制着裂缝的几何尺寸,同时对与地面与井下设备的选择有关。
同时,用于水力压裂的压裂液的性能、数量,支撑剂的排布情况关系到裂缝的几何尺寸,压裂技术-端部脱砂技术,对提高压裂效果起到很大作用,这些因素关系到能否达到油田增产的目的,需要进行详细研究。
在建立适当的裂缝扩展模型的基础上,实现现场实际生产情况的模拟研究,对进一步优化水力压裂参数,提高压裂经济实用性起到很大作用。
这项油田增产措施自发展以来,得到国内外广泛采用,并且经不断的开发试验,已取得很大成效。
水力压裂技术的发展过程水力压裂技术自 1947 年美国堪萨斯州进行的的第一次试验成功以来,至今近已有60余年历史。
它作为油井的主要增产措施,正日益受到世界各国石油单位的重视及采用 ,其发展过程大致可分以下几个阶段:60 年代中期以前 ,各国石油公司的工作者们的研究工作已适应浅层的水平裂缝为主,此时的我国主要致力于油井解堵工作并开展了小型压裂试验。
60 年代中期以后 ,随着产层加深 ,从事此项事业的工作者以研究垂直裂缝为主。
已达成解堵和增产的目的。
这一时期 ,我国发展了滑套式分层压裂配套技术。
70 年代 ,工作进入到改造致密气层的大型水力压裂阶段。
我国在分层压裂技术的基础上 ,发展了蜡球选择性压裂工艺 ,以及化学堵水与压裂配套的综合技术。
80 年代 ,逐步进入了低渗油藏改造时期,并开始了优化水力压裂设计。
DOI:10.16660/ki.1674-098X.2004-9912-2780地层破裂压力计算方法研究进展及应用张广权 王丹丹(中国石化勘探开发研究院 北京 100083)摘 要:地层破裂压力预测不仅是钻井工程设计的基础,更是油气田经济高效开发的保障。
影响破裂压力的因素较多,与地层岩石弹性性质、孔隙压力、裂缝发育状况以及地应力等因素有关。
国内外在该参数的计算方面研究较多,很多研究人员提出了很多不同的计算方法,并且大量应用于现场实践中。
国外具有代表性的两种模式为Hubbert-Willis模式和Haimson-Fairhurst模式、三种计算方法包括伊顿法、史蒂芬法、安德森法。
国内主要有以黄荣樽为代表的一系列学者,通过改进模型、增加参数,建立了适合我国复杂地区的计算方法。
经过大量的实践和应用表明,地层破裂压力的预测在钻井工程和储气库评价和建设过程中起着极其重要的作用,是一个非常重要、不能忽视的参数。
关键词:地层破裂压力 孔隙压力 地应力 储气库 钻井工程中图分类号:TE142 文献标识码:A 文章编号:1674-098X(2020)08(b)-0024-05 Research Progress and Application of Calculation Method ofFormation Fracture PressureZHANG Guangquan WANG Dandan(Sinopec Petroleum Explorastion and Production Research Institute, Beijing, 100083 China) Abstract: Prediction of formation fracture pressure is not only the basis of drilling engineering design, but also the guarantee of economic and efficient development of oil and gas fields. There are many factors that affect the fracture pressure. It is related to the elastic property of rock, pore pressure, fracture development and in-situ stress. In terms of calculation methods of formation rupture pressure, many domestic and foreign scholars have proposed calculation methods, and they are widely used in field practice. During which, there are two representative models abroad: Hubbert-Willis model and Haimson-Fairhurst model, and three representative calculation methods, including Eaton method, Stephen method, and Anderson method. By improving the model and adding parameters, a series of domestic scholars, represented by Huang Rongzun, have established a calculation method suitable for China’s complex areas. A large number of practices and applications have shown that the prediction of formation fracture pressure plays an extremely important role in the evaluation and construction of drilling engineering and gas storage, and is a very important parameter that cannot be ignored.Key Words: Fracture pressure; Pore pressure; Geostress; Gas storage; Drilling engineering地层破裂压力在油田开发过程中应用越来越广泛,该参数在油田上应用较为广泛,多应用于钻井、压裂、试油等工艺技术,以及在地下储气库选址、建设过程中,该参数尤为重要,关系到储气库能否安全平稳运行。
一、地层压力预测软件有:1.JASON软件Jason软件是一套综合应用地震、测井和地质等资料解决油气勘探开发不同阶段储层预测和油气藏描述实际问题的综合平台。
Jason 的重要特点就是随着越来越多的非地震信息(测井,测试,地质)的引入,由地震数据推演的油气藏参数模型的分辨率和细节会得到不断的改善。
用户可根据需要由Jason 的模块构建自己的研究流程。
其反演模块包括:InverTrace:递归反演稀疏脉冲反演InverTrace_plus:稀疏脉冲反演RockTrace:弹性反演InverMod:特征反演(主组分分析)StatMod:随机模拟随机反演FunctionMod:函数运算压力预测原理:由JASON反演出地层速度,速度计算垂直有效应力,进而求出孔隙流体压力。
2、地层孔隙压力和破裂压力预测和分析软件DrillWorks/PREDICTGNG软件功能:•趋势线(参考线)的建立--手工--最小二乘方拟合--参考线库•页岩辨别分析•上覆岩层梯度分析--体积密度测井--密度孔隙度测井--用户定义方法(程序)•孔隙压力分法--指数方法电阻率、D一指数声波、电导率地震波--等效深度方法电阻率、D--指数声波--潘尼派克方沾--用户定义方法(程序)•压裂梯度分法--伊顿方法--马修斯和凯利方法--用户定义方法(程序)•系统支持项目和油井数据库•系统支持所有趋势线方法•系统包括交叉绘图功能•用户定义方法(程序)•包括全套算子•系统支持井与井之间的关联分析•系统支持岩性显示•系统支持随钻实时分析•系统支持随钻关联分析•多用户网络版本数据装载功能:•斯仑贝谢LIS磁盘输入•斯仑贝谢LIS磁带输入•CWLS LAS输入•ASCII输入•离散的表格输入•井眼测斜数据•测深/垂深表格用户范围:•美国墨西哥湾•北海•西部非洲•南美•尼日利亚三角洲•南中国海•澳大利亚DrillWorks/PREDICTGNG 与其它软件的区别•世界上用得最多的地层压力软件•钻前预测、随钻监测和钻后检测•用户主导的软件系统•准确确定--上覆岩层压力梯度--孔隙压力梯度--破裂压力梯度•使用下列数据的任何组合来分析地层: -地震波速度-有线测井-MWD、LWD数据-重复地层测试(RFT)-泄漏试验(LOT)数据-录井资料-地质资料•面向现实世界中数据资料不尽人意、而新的方法又层出不穷的用户而设计的•地层压力软件平台:新的预测压力方法可通过"用户定义方法(程序)"编入系统软件用途:•准确预测地层压力•有效降低钻井成本•提高经济效益•优化井眼尺寸•优化泥浆和水力学•避免井涌和卡钻•减少地层污染•延伸套管鞋深度•减少套管数目•保障施工安全3、GeoPredict地层孔隙压力预测软件本程序基于当量深度法,根据钻进过程中钻时的快慢,并结合岩屑的岩性,由操作人员在图中用拖动鼠标的方式挑出的泥/页岩段,完成压力预测原理中首先选取泥/页岩段的过程。
页岩地层的破裂压力地震预测方法马妮; 林正良; 胡华锋; 周单; 王世星【期刊名称】《《石油物探》》【年(卷),期】2019(058)006【总页数】9页(P926-934)【关键词】页岩; 破裂压力; 地震预测方法; 各向异性; 预测模型; 岩石强度参数【作者】马妮; 林正良; 胡华锋; 周单; 王世星【作者单位】中国石油化工股份有限公司石油物探技术研究院江苏南京211103【正文语种】中文【中图分类】P631在油气勘探开发过程中,会遇到许多与钻井、测井、压裂等方面密切相关的实际工程问题。
这些问题复杂多变,是油气藏岩石力学性质研究的重点和难点,内容涉及井壁稳定性、地应力、地层孔隙压力、岩石的力学性质、地层岩石可压裂性、地层的破裂压力与坍塌压力等方面[1]。
其中地层破裂压力的有效预测可为井壁稳定性、合理水力压裂设计、油层改造方案和安全钻井方案等提供可靠的依据。
地层的破裂压力定义为井壁受到拉伸破坏时所承受的临界井眼压力[1]。
现阶段获取地层破裂压力的方法主要有室内岩样破裂试验和测井资料估算。
通过室内岩样实验得到地层破裂压力是最为直接、有效的手段,但该方法所能获取的数据有限,且不具有连续性。
而利用测井资料计算破裂压力的方法能够得到沿井深连续分布的破裂压力曲线,具有较高的纵向分辨率[2-4],且经济可靠,因此被广泛应用于钻井工程。
关于地层破裂压力预测模型和方法的研究很多。
HUBBERT等[5]通过三轴压缩试验构建了首个地层破裂压力预测模型,即Hubbert-Willis模型。
MATTHEWS等[6]将骨架应力系数引入Hubbert-Willis模型,形成了新的地层破裂压力计算模型。
HAIMSON等[7]在水力压裂裂缝起裂和延伸规律研究的基础上,结合Biot有效应力原理推演了考虑渗流作用的破裂压力预测模型。
EATON[8]首次在破裂压力计算模型中引入了泊松比参数,并将上覆岩层压力设为变量,利用泊松比函数关系来表示上覆岩层压力与地层孔隙压力的关系。
一种地层破裂压力的估算方法作者:栾树来源:《科技创新导报》2011年第03期摘要:目前预测地层破裂压力的方法很多,多数方法中的参数需经过大量的岩心试验获取。
实际工作中我们常常遇到没有岩心实验数据或者数据不足的情况,本文提出的是一种利用现场实测数据的方法,通过实测数据反算计算公式中的参数,然后计算破裂压力。
在资料不全的情况下用此方法简单实用,现场应用亦很方便。
关键词:破裂压力侧压力系数地应力孔隙压力中图分类号:TE271 文献标识码:A 文章编号:1674-098X(2011)01(c)-0035-021 方法推导迄今国内外提出了许多预测地层破裂压力的方法,比较常用的有Eaton法、Stephen法、黄荣樽法等。
1.1 Eaton法(1)式中:-地层破裂压力;-地层的泊松比;-上覆岩层压力;-地层孔隙压力;适用于无水平构造应力的张性盆地。
1.2 Stephen法(2)式中:-构造应力系数;适用于存在水平均匀构造应力地层。
1.3 黄荣樽法(3)式中:T=α-3β-非均匀的地质构造应力系数;α、β-水平两个主应力方向的构造应力系数;St-地层的抗拉强度;适用于存在水平非均匀构造应力地层。
1.4 修正Holbrook方法1997年Holbrook发表了适于预测张性盆地裂缝扩展压力的一种方法:(1-Ф)表示地层的压实程度。
经现场验证该方法对于泥岩地层适用性较好,但对于砂岩地层预测值偏高。
2001年葛洪魁等人对该模型进行了如下修正:(5)式中,Фc-临界孔隙度,一般取Фc=0.4;n-岩石孔隙刚度系数,一般取1。
现场应用表明,修正后的模型具有较高的精度。
以上方法需要确定地层的泊松比、地层的构造应力系数、抗拉强度、室内岩心三轴试验和现场典型的破裂压力试验。
在实际利用测井资料计算地层破裂压力的工作中,我们经常遇到没有岩心实验数据或者资料不足的情况,此时可以直接借用邻井的破裂压力,但是这样做误差较大,尤其在构造比较复杂地区,本文介绍的方法主要是综合利用井本和邻井的资料计算地层破裂压力。
石油钻井地层压力预测与计算方法石油钻井地层压力预测与计算方法是石油钻井工程中非常重要的一项技术,它对于确定钻井的安全性、决策措施和钻井工艺起到了至关重要的作用。
在石油钻井过程中,地层压力是指在地层中由地层岩石的自重和上覆岩层压力产生的压力。
地层压力的准确预测和计算对于决策钻井贯通井段、选择钻井液密度和防喷措施等方面都有着至关重要的作用。
地层压力预测与计算的方法有很多种,根据所依据的理论基础和计算模型的不同,可以分为经验方法、物理模型方法和数学模型方法。
经验方法是根据统计和经验公式来进行地层压力预测和计算的方法。
这种方法是根据过去类似井的经验数据,通过对这些井的地层信息和地层压力数据的分析,建立了一些经验公式或预测模型,然后根据当前钻井井段的地层特征和钻井液情况,通过这些经验公式或预测模型来计算地层压力。
经验方法简单易行,适用范围广,但是精度相对较低。
物理模型方法是基于岩石力学和地层力学原理来进行地层压力预测和计算的方法。
这种方法是通过对地层力学性质和钻井液参数等进行实验室测试,然后根据物理模型和理论计算公式,将测试结果应用于井下实际情况的预测和计算。
物理模型方法具有一定的科学性和准确性,但是需要进行大量的实验和测试,成本较高。
数学模型方法是以数学计算为基础的地层压力预测和计算方法。
这种方法是通过建立数学方程和计算模型,根据井身中地层岩石的特征参数、地层参数和钻井液性质,利用计算机进行模拟和计算,得到地层压力的预测和计算结果。
数学模型方法是目前应用最广泛的方法之一,它具有较高的精度和准确性,但是需求模型参数较多,对计算机和软件的要求较高。
总结来说,石油钻井地层压力预测与计算方法有经验方法、物理模型方法和数学模型方法。
经验方法简单易行,适用范围广,但精度较低;物理模型方法具有科学性和准确性,但成本较高;数学模型方法精度高但需要大量参数和计算机支持。
在实际应用中,可以根据具体的情况和需求选择不同的方法进行地层压力预测和计算。