关于分段函数定积分的计算
- 格式:pdf
- 大小:148.35 KB
- 文档页数:3
高三数学积分试题答案及解析1.如图所示,在边长为1的正方形OABC中任取一点P,则点P恰好取自阴影部分的概率为()A.B.C.D.【答案】C【解析】由题意知,这是一个几何概型概率的计算问题.正方形的面积为,阴影部分的面积为,故选.【考点】1.定积分的应用;2.几何概型.2.如图,在边长为(为自然对数的底数)的正方形中随机撒一粒黄豆,则他落到阴影部分的概率为______.【答案】【解析】由对数函数与指数函数的对称性,可得两块阴影部分的面积相同..所以落到阴影部分的概率为.【考点】1.几何概型.2.定积分.3.二项式()的展开式的第二项的系数为,则的值为( ) A.B.C.或D.或【答案】A【解析】∵展开式的第二项的系数为,∴,∴,∵,∴,当时,.【考点】二项式定理、积分的运算.4. [2013·江西高考]若S1=,S2=,S3=,则S1,S2,S3的大小关系为()A.S1<S2<S3B.S2<S1<S3C.S2<S3<S1D.S3<S2<S1【答案】B【解析】S1==x3=,S2==lnx=ln2,S3==e x=e2-e=e(e-1)>e>,所以S2<S1<S3,故选B.5. [2014·琼海模拟]如图所示,则由两条曲线y=-x2,x2=-4y及直线y=-1所围成图形的面积为________.【答案】【解析】由图形的对称性,知所求图形的面积是位于y轴右侧图形面积的2倍.由得C(1,-1).同理,得D(2,-1).故所求图形的面积S=2{[--(-x2)]dx+[--(-1)]dx}=2[-]=2[-(-x)]=.6.如图,阴影区域是由函数的一段图象与x轴围成的封闭图形,那么这个阴影区域的面积是()A.B.C.D.【答案】B【解析】根据余弦函数的对称性可得,曲线从到与x轴围成的面积与从到与轴围成的面积相等,∴由函数的一段图象与轴围成的封闭图形的面积,,故选B.【考点】定积分求面积。
定积分专项训练1、计算定积分⎠⎛01(e x +2x)d x = .2、计算定积分421dx x ⎰= .3、计算定积分=+⎰-213d )(x x x .4、计算定积分40(|1||3|)x x dx -+-=⎰ __________.5、计算定积分121(sin )x x dx -+=⎰___________6、计算定积分2)x dx -=⎰_______________.7、设20lg 0()30ax x f x x t dt x >⎧⎪=⎨+⎪⎩⎰…,若((1))1f f =,则a = .8、曲线22y x =与x 轴及直线1x =所围图形的面积为 .10、由曲线y =,直线2y x =-及y 轴所围成的图形的面积为 。
11、由直线x=0,3,3==-y x ππ与曲线y=cosx 所围成的封闭图形的面积 。
12、曲线3cos (0)2y x x π=≤≤与坐标轴所围成的面积是________. 13、已知e 是自然对数的底数,⎩⎨⎧≤+>=.0,130,)(x x x e x f x ,计算定积分⎰-42)(x d x f =.14、设0a >.若曲线y =,0x a y ==所围成封闭图形的面积为2a ,则a =______.15、求下列定积分:(1)⎠⎛0a (3x 2-x +1)d x (2)⎠⎛12(e 2x +1x )d x 解: 解:姓名()班级()定积分专项训练1、计算定积分10(2)+⎰x e x dx = 。
被积函数22,x x e x e x ++的原函数为1121200(2)()1)(0).x x e x dx e x e e +=++-+=⎰|=(e2、计算定积分421dx x⎰= 。
3、计算定积分=+⎰-21 3d )(x x x .4、【答案】10 分三段逐一求积分。
5、计算定积分121(sin )x x dx -+=⎰___________【方法总结】1.计算简单定积分的步骤:(1)把被积函数变为幂函数、正弦函数、余弦函数、指数函数与常数的和或差; (2)利用定积分的性质把所求的定积分化为若干个定积分的和或差; (3)分别用求导公式求出F (x ),使得F ′(x )=f (x ); (4)利用牛顿-莱布尼兹公式求出各个定积分的值; (5)计算所求定积分的值. 2.求定积分的常用技巧:(1)求被积函数,要先化简,再求积分.(2)求被积函数为分段函数的定积分,依据定积分“对区间的可加性”,分段积分再求和.(3)对于含有绝对值符号的被积函数,要先去掉绝对值号才能积分. 6、计算定积分20)x dx -=⎰_______________.【解析】:2dx ⎰等于圆224x y +=在第一象限的面积π,则2222201)22x dx dx xdx x ππ⎡⎤=-=-=-⎢⎥⎣⎦⎰⎰⎰.7、设20lg 0()30ax x f x x t dt x >⎧⎪=⎨+⎪⎩⎰…,若((1))1f f =,则a = .【思路点拨】分段函数问题通常需要分步进行计算或判断,从1x =算起是解答本题的突破口.【精讲精析】答案:1因为10x =>,所以(1)lg10f ==,又因为230()3af x x t dt x a =+=+⎰,所以3(0)f a =,所以31a =,1a =.8、曲线22y x =与x 轴及直线1x =所围图形的面积为 . 【答案】23【解析】依题意得知,曲线22y x =与x 轴及直线1x =所围图形的面积为123100222|33x dx x ==⎰.【解析】解:由微积分基本定理,可知由曲线32,x y x y ==围成的封闭图形的面积为12334100111(x x )dx x x |3412-=-=⎰ 10、由曲线y =,直线2y x =-及y 轴所围成的图形的面积为 。
定积分的基本计算方法定积分是微积分中的重要概念,它在各个领域都有着广泛的应用。
在学习定积分的基本计算方法之前,我们首先需要了解定积分的定义和性质。
定积分是对一个区间上的函数进行积分运算,其结果表示该函数在该区间上的“累积效应”。
定积分的计算方法包括定积分的基本性质、定积分的几何意义、定积分的计算公式等内容。
首先,定积分的基本性质是其线性性和可加性。
即定积分具有线性运算和可加性,这使得我们可以通过分段函数的积分来计算复杂函数的定积分。
其次,定积分的几何意义是曲线下面积的计算。
对于给定的函数$f(x)$,其在区间$[a,b]$上的定积分$\int_{a}^{b}f(x)dx$表示函数曲线与$x$轴之间的面积。
这一性质使得定积分在几何和物理问题中有着广泛的应用。
定积分的计算公式包括基本积分公式、换元积分法、分部积分法等。
其中,基本积分公式是我们计算定积分的基础,而换元积分法和分部积分法则是在计算复杂函数的定积分时常用的方法。
在实际应用中,我们经常会遇到一些特殊的函数,如三角函数、指数函数、对数函数等。
针对这些特殊函数,我们需要掌握它们的定积分计算方法,以便能够准确地计算出定积分的值。
除了基本计算方法外,定积分还有一些重要的性质和定理,如定积分中值定理、定积分中的平均值定理等。
这些定理不仅有助于我们理解定积分的概念,还可以帮助我们在实际问题中进行定积分的计算和应用。
总之,定积分的基本计算方法是微积分学习的重要内容,它不仅有着理论上的重要性,还有着广泛的应用价值。
通过对定积分的基本计算方法的学习和掌握,我们可以更好地理解定积分的概念和性质,为将来的学习和工作打下坚实的基础。
定积分复习重点定积分的考查频率不是很高,本讲复习主要掌握定积分的概念和几何意义,使用微积分基本定理计算定积分,使用定积分求曲边图形的面积和解决一些简单的物理问题等. 1.定积分的运算性质1212(1)()()().(2)[()()]()().(3)()()()().bbaab bb aaab c baackf x dx k f x dx k f x f x dx f x dx f x dx f x dx f x dx f x dx =±=±=+⎰⎰⎰⎰⎰⎰⎰⎰为常数其中a<c<b2.微积分基本定理如果()f x 是区间[a ,b]上的连续函数,并且'()()F x f x =,那么()()()baf x dx F b F a =-⎰,这个结论叫微积分基本定理,又叫牛顿—莱布尼兹公式。
3.求定积分的方法(1)利用微积分基本定理就定积分 ①对被积分函数,先简化,再求定积分.例如:230(1-2sin)2d πθθ⎰注:322()3x x '=,(-cos )sin x x '=②分段函数,分段求定积分,再求和.(被积函数中带有绝对值符号时,计算的基本思路就是用分段函数表示被积函数,以去掉绝对值符号,然后应用定积分对积分区间的可加性,分段进行计算)1.计算积分⎰---322|32|dx x x解1. 由于在积分区间]3,2[-上,被积函数可表示为⎩⎨⎧≤<-----≤≤---=--.31,)32(,12,32|32|222x x x x x x x x 所以⎰---322|32|dx x x 13)32()32(312122=-----=⎰⎰---dx x x dx x x .(2)利用定积分的几何意义求定积分如定积分12014x dx π-=⎰,其几何意义就是单位圆面积的14。
(课本P60 B 组第一题) (3)利用被积函数的奇偶性a. 若()f x 为奇函数,则()0aa f x dx -=⎰;b. 若()f x 为偶函数,则0()()a aa f x dx f x dx-=⎰⎰2;其中0a >。
定积分与微积分基本定理教学重点:定积分的概念、定积分的几何意义.求简单的定积分,微积分基本定理的应用教学难点:定积分的概念、求曲边图形面积.一.定积分的概念回忆前面曲边图形面积,变速运动的路程等问题的解决方法,这几个问题都有什么共同点呢?分割→以直代曲→求和→取极限(逼近一般地,设函数()f x 在区间[,]a b 上连续,分割 用分点0121i i n a x x x x x x b -=<<<<<<<=L L 将区间[,]a b 等分成n 个小区间,每个小区间长度为x ∆(b ax n-∆=), 以直代曲 在每个小区间[]1,i i x x -上取一点()1,2,,i i n ξ=L ,每份小曲边梯形的面积近似为()i f x ξ∆ 求和:11()()nnn i i i i b aS f x f nξξ==-=∆=∑∑取极限 如果x ∆无限接近于0(亦即n →+∞)时,上述和式n S 无限趋近于常数S ,那么称该常数S 为函数()f x 在区间[,]a b 上的定积分。
记为:()baS f x dx =⎰其中()f x 成为被积函数,x 叫做积分变量,[,]a b 为积分区间,b 积分上限,a 积分下限。
思考 定积分()baf x dx ⎰是一个常数还是个函数?即n S 无限趋近的常数S (n →+∞时)称为()baf x dx ⎰,而不是n S .常见定积分 曲边图形面积:()baS f x dx =⎰;变速运动路程21()t t S v t dt =⎰;变力做功 ()baW F r dr=⎰理解 本来 面积=底⨯高 路程=速度⨯时间 功=力⨯位移因为都是不规则的,所以都用先分割,再以直代曲,这样就可以相乘了,再求和 ,再取极限。
二.定积分的几何性质 定积分()baf x dx ⎰表示由直线,(),0x a x b a b y ==≠=和曲线()y f x =所围成的曲边梯形(如图中的阴影部分)的面积,。
§2 微积分基本定理学习目标 1.直观了解并掌握微积分基本定理的含义.2.会利用微积分基本定理求函数的积分.知识点 微积分基本定理(牛顿—莱布尼茨公式)思考1 已知函数f (x )=2x +1,F (x )=x 2+x ,则ʃ10(2x +1)d x 与F (1)-F (0)有什么关系?答案 由定积分的几何意义知,ʃ10(2x +1)d x =12×(1+3)×1=2,F (1)-F (0)=2,故ʃ10(2x +1)d x =F (1)-F (0).思考2 对一个连续函数f (x )来说,是否存在唯一的F (x ),使得F ′(x )=f (x )?答案 不唯一.根据导数的性质,若F ′(x )=f (x ),则对任意实数c ,都有[F (x )+c ]′=F ′(x )+c ′=f (x ).梳理 (1)微积分基本定理①条件:f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ); ②结论:ʃb a f (x )d x =F (b )-F (a );③符号表示:ʃb a f (x )d x =F (x )|b a =F (b )-F (a ).(2)常用函数积分公式表1.若F ′(x )=f (x ),则F (x )唯一.( × )2.微积分基本定理中,被积函数f (x )是原函数F (x )的导数.( √ )3.应用微积分基本定理求定积分的值时,被积函数在积分区间上必须是连续函数.( √ )类型一 求定积分命题角度1 求简单函数的定积分 例1 求下列定积分.(1)ʃ21⎝⎛⎭⎫1x -3cos x d x ; (2)2π2sin cos d 22x x x⎛⎫- ⎪⎝⎭⎰; (3)ʃ30(x -3)(x -4)d x .考点 利用微积分基本定理求定积分 题点 利用微积分基本定理求定积分 解 (1)ʃ21⎝⎛⎭⎫1x -3cos x d x =(ln x -3sin x )|21 =(ln 2-3sin 2)-(ln 1-3sin 1)=ln 2-3sin 2+3sin 1.(2)∵⎝⎛⎭⎫sin x 2-cos x 22=1-2sin x 2cos x 2 =1-sin x , ∴2π2sin cos d 22x x x ⎛⎫- ⎪⎝⎭⎰=π20(1sin )d x x ⎰-=π20(cos )|x x +=⎝⎛⎭⎫π2+cos π2-(0+cos 0)=π2-1. (3)∵(x -3)(x -4)=x 2-7x +12,∴ʃ30(x -3)(x -4)d x =ʃ30(x 2-7x +12)d x=⎪⎪⎝⎛⎭⎫13x 3-72x 2+12x 30=⎝⎛⎭⎫13×33-72×32+12×3-0=272. 反思与感悟 (1)当被积函数为两个函数的乘积或乘方形式时一般要转化为和的形式,便于求得原函数F (x ).(2)由微积分基本定理求定积分的步骤 第一步:求被积函数f (x )的一个原函数F (x ); 第二步:计算函数的增量F (b )-F (a ). 跟踪训练1 求下列定积分.(1)ʃ21⎝⎛⎭⎫x -x 2+1x d x ; (2)π222cos sin d 22x x x ⎛⎫- ⎪⎝⎭⎰;(3)ʃ94x (1+x )d x .考点 利用微积分基本定理求定积分 题点 利用微积分基本定理求定积分解 (1)ʃ21⎝⎛⎭⎫x -x 2+1x d x =⎪⎪⎝⎛⎭⎫12x 2-13x 3+ln x 21=⎝⎛⎭⎫12×22-13×23+ln 2-⎝⎛⎭⎫12-13+ln 1=ln 2-56.(2)π222cos sin d 22x x x ⎛⎫- ⎪⎝⎭⎰=π20cos d x x ⎰=π20sin |x =1. (3)ʃ94x (1+x )d x =ʃ94(x +x )d x =3292421|32x x ⎛⎫+ ⎪⎝⎭=322219932⎛⎫⨯+⨯ ⎪⎝⎭-322214432⎛⎫⨯+⨯ ⎪⎝⎭=2716.命题角度2 求分段函数的定积分 例2 求下列定积分:(1)f (x )=⎩⎪⎨⎪⎧sin x ,0≤x ≤π2,1,π2≤x ≤2,x -1,2<x ≤4,求ʃ40f (x )d x ;(2)ʃ20|x 2-1|d x .考点 分段函数的定积分 题点 分段函数的定积分 解(1)ʃ40f (x )d x =π2sin d x x ⎰+2π21d x ⎰+ʃ42(x -1)d x=π20(cos )|x -+2π2|x +⎪⎪⎝⎛⎭⎫12x 2-x 42=1+⎝⎛⎭⎫2-π2+(4-0)=7-π2. (2)ʃ20|x 2-1|d x =ʃ10(1-x 2)d x +ʃ21(x 2-1)d x= ⎪⎪⎝⎛⎭⎫x -13x 310+⎪⎪⎝⎛⎭⎫13x 3-x 21=2. 反思与感悟 分段函数定积分的求法(1)利用定积分的性质,转化为各区间上定积分的和计算.(2)当被积函数含有绝对值时,常常去掉绝对值号,转化为分段函数的定积分再计算.跟踪训练2 (1)ʃ1-1e |x |d x =_______.(2)已知f (x )=⎩⎪⎨⎪⎧2x +e x,0≤x ≤1,x -1x ,1<x ≤2,则ʃ20f (x )d x =______.考点 分段函数的定积分 题点 分段函数的定积分 答案 (1)2e -2 (2)e +32-ln 2解析 (1)ʃ1-1e |x |d x =ʃ0-1e -x d x +ʃ10e xd x=-e -x |0-1+e x |10=-e 0+e 1+e 1-e 0=2e -2.(2)ʃ20f (x )d x =ʃ10(2x +e x )d x +ʃ21⎝⎛⎭⎫x -1x d x =(x 2+e x )|10+⎪⎪⎝⎛⎭⎫12x 2-ln x 21=(1+e)-(0+e 0)+⎝⎛⎭⎫12×22-ln 2-⎝⎛⎭⎫12×1-ln 1 =e +32-ln 2.类型二 利用定积分求参数例3 (1)已知t >0,f (x )=2x -1,若ʃt 0f (x )d x =6,则t =________. (2)已知2≤ʃ21(kx +1)d x ≤4,则实数k 的取值范围为________. 考点 微积分基本定理的应用 题点 利用微积分基本定理求参数 答案 (1)3 (2)⎣⎡⎦⎤23,2解析 (1)ʃt 0f (x )d x =ʃt 0(2x -1)d x =t 2-t =6, 解得t =3或-2,∵t >0,∴t =3. (2)ʃ21(kx +1)d x =⎪⎪⎝⎛⎭⎫12kx 2+x 21=32k +1. 由2≤32k +1≤4,得23≤k ≤2.引申探究1.若将例3(1)中的条件改为ʃt 0f (x )d x =f ⎝⎛⎭⎫t 2,求t . 解 由ʃt 0f (x )d x =ʃt 0(2x -1)d x =t 2-t , 又f ⎝⎛⎭⎫t 2=t -1,∴t 2-t =t -1,得t =1.2.若将例3(1)中的条件改为ʃt 0f (x )d x =F (t ),求F (t )的最小值. 解 F (t )=ʃt 0f (x )d x =t 2-t =⎝⎛⎭⎫t -122-14(t >0), 当t =12时,F (t )min =-14.反思与感悟 (1)含有参数的定积分可以与方程、函数或不等式综合起来考查,先利用微积分基本定理计算定积分是解决此类综合问题的前提.(2)计算含有参数的定积分,必须分清积分变量与被积函数f (x )、积分上限与积分下限、积分区间与函数F (x )等概念.跟踪训练3 (1)已知x ∈(0,1],f (x )=ʃ10(1-2x +2t )d t ,则f (x )的值域是________.(2)设函数f (x )=ax 2+c (a ≠0).若ʃ10f (x )d x =f (x 0),0≤x 0≤1,则x 0的值为________.考点 微积分基本定理的应用 题点 利用微积分基本定理求参数 答案 (1)[0,2) (2)33解析 (1)f (x )=ʃ10(1-2x +2t )d t =(t -2xt +t 2)|10=-2x +2,x ∈(0,1]. ∴f (x )的值域为[0,2).(2)∵ʃ10f (x )d x =ʃ10(ax 2+c )d x=⎪⎪⎝⎛⎭⎫13ax 3+cx 10=a 3+c . 又f (x 0)=ax 20+c ,∴a 3=ax 20,即x 0=33或-33. ∵0≤x 0≤1,∴x 0=33.1.若ʃa 1⎝⎛⎭⎫2x +1x d x =3+ln 2,则a 的值是( ) A .5 B .4 C .3 D .2 考点 微积分基本定理的应用 题点 利用微积分基本定理求参数 答案 D解析 ʃa 1⎝⎛⎭⎫2x +1x d x =ʃa 12x d x +ʃa 11xd x =x 2|a 1+ln x |a 1=a 2-1+ln a =3+ln 2,解得a =2.2.π2312sin d 2θθ⎛⎫- ⎪⎝⎭⎰等于( )A .-32 B .-12 C.12 D.32考点 利用微积分基本定理求定积分 题点 利用微积分基本定理求定积分 答案 D 解析π2312sin d 2θθ⎛⎫- ⎪⎝⎭⎰=π3cos d θθ⎰=π30sin |θ=32. 3.设f (x )=⎩⎪⎨⎪⎧x 2,0≤x ≤1,2-x ,1<x ≤2,则ʃ20f (x )d x 等于( )A.34 B.45 C.56D .不存在考点 分段函数的定积分 题点 分段函数的定积分 答案 C解析 ʃ20f (x )d x =ʃ10x 2d x +ʃ21(2-x )d x = ⎪⎪13x 310+⎪⎪⎝⎛⎭⎫2x -12x 221=56. 4.已知函数f (x )=x n +mx 的导函数f ′(x )=2x +2,则ʃ31f (-x )d x =________.考点 微积分基本定理的应用 题点 微积分基本定理的综合应用 答案 23解析 ∵f (x )=x n +mx 的导函数f ′(x )=2x +2, ∴nx n -1+m =2x +2,解得n =2,m =2, ∴f (x )=x 2+2x ,则f (-x )=x 2-2x ,∴ʃ31f (-x )d x =ʃ31(x 2-2x )d x=⎪⎪⎝⎛⎭⎫13x 3-x 231=9-9-13+1=23. 5.求函数f (a )=ʃ10(6x 2+4ax +a 2)d x 的最小值.考点 微积分基本定理的综合应用 题点 微积分基本定理的综合应用解 ∵ʃ10(6x 2+4ax +a 2)d x =(2x 3+2ax 2+a 2x )|10=2+2a +a 2,∴f (a )=a 2+2a +2=(a +1)2+1, ∴当a =-1时,f (a )有最小值1.1.求定积分的一些常用技巧(1)对被积函数,要先化简,再求积分.(2)若被积函数是分段函数,依据定积分“对区间的可加性”,分段积分再求和. (3)对于含有绝对值符号的被积函数,要去掉绝对值符号才能积分.2.由于定积分的值可取正值,也可取负值,还可以取0,而面积是正值,因此不要把面积理解为被积函数对应图形在某几个区间上的定积分之和,而是在x 轴下方的图形面积要取定积分的相反数.一、选择题1.ʃ21⎝⎛⎭⎫e x +1x d x 等于( ) A .e 2-ln 2 B .e 2-e -ln 2 C .e 2+e +ln 2D .e 2-e +ln 2考点 利用微积分基本定理求定积分 题点 利用微积分基本定理求定积分 答案 D解析 ʃ21⎝⎛⎭⎫e x +1x =(e x +ln x )|21 =(e 2+ln 2)-(e +ln 1)=e 2-e +ln 2. 2.若π2(sin cos )d x a x x ⎰-=2,则实数a 等于( )A .-1B .1C .- 3D. 3考点 微积分基本定理的应用 题点 利用微积分基本定理求参数 答案 A 解析π2(sin cos )d x a x x ⎰-=π20(cos sin )|x a x --=0-a -(-1-0)=1-a =2, ∴a =-1,故选A.3.若S 1=ʃ21x 2d x ,S 2=ʃ211xd x ,S 3=ʃ21e xd x ,则S 1,S 2,S 3的大小关系为( ) A .S 1<S 2<S 3 B .S 2<S 1<S 3 C .S 2<S 3<S 1D .S 3<S 2<S 1考点 利用微积分基本定理求定积分 题点 利用微积分基本定理求定积分答案 B解析 因为S 1=ʃ21x 2d x =⎪⎪13x 321=13×23-13=73, S 2=ʃ211xd x =ln x |21=ln 2, S 3=ʃ21e x d x =e x |21=e 2-e =e(e -1).又ln 2<ln e =1,且73<2.5<e(e -1),所以ln 2<73<e(e -1),即S 2<S 1<S 3.4.ʃ30|x 2-4|d x 等于( )A.213B.223C.233D.253 考点 分段函数的定积分 题点 分段函数的定积分 答案 C解析 ∵|x 2-4|=⎩⎪⎨⎪⎧x 2-4,2≤x ≤3,4-x 2,0≤x ≤2,∴ʃ30|x 2-4|d x =ʃ32(x 2-4)d x +ʃ20(4-x 2)d x= ⎪⎪⎝⎛⎭⎫13x 3-4x 32+⎪⎪⎝⎛⎭⎫4x -13x 320=⎣⎡⎦⎤(9-12)-⎝⎛⎭⎫83-8+⎣⎡⎦⎤⎝⎛⎭⎫8-83-0 =-3-83+8+8-83=233.5.若函数f (x ),g (x )满足ʃ1-1f (x )g (x )d x =0,则称f (x ),g (x )为区间[-1,1]上的一组正交函数.给出三组函数:①f (x )=sin 12x ,g (x )=cos 12x ;②f (x )=x +1,g (x )=x -1; ③f (x )=x ,g (x )=x 2.其中为区间[-1,1]上的正交函数的组数为( ) A .0 B .1 C .2 D .3 考点 微积分基本定理的应用 题点 微积分基本定理的综合应用解析 对于①,ʃ1-1sin 12x cos 12x d x =ʃ1-112sin x d x =0, 所以①是区间[-1,1]上的一组正交函数;对于②,ʃ1-1(x +1)(x -1)d x =ʃ1-1(x 2-1)d x ≠0,所以②不是区间[-1,1]上的一组正交函数;对于③,ʃ1-1x ·x 2d x =ʃ1-1x 3d x =0,所以③是区间[-1,1]上的一组正交函数.6.若f (x )=x 2+2ʃ10f (x )d x ,则ʃ10f (x )d x 等于() A .-13 B .-1C.13 D .1考点 利用微积分基本定理求定积分题点 利用微积分基本定理求定积分答案 A解析 ∵f (x )=x 2+2ʃ10f (x )d x ,∴ʃ10f (x )d x = ⎪⎪⎝⎛⎭⎫13x 3+2x ʃ10f (x )d x 10=13+2ʃ10f (x )d x ,∴ʃ10f (x )d x =-13.7.设f (x )=⎩⎪⎨⎪⎧x 2,x ≤0,cos x -1,x >0,则ʃ1-1f (x )d x =________. 考点 分段函数的定积分题点 分段函数的定积分答案 sin 1-23解析 ʃ1-1f (x )d x =ʃ0-1x 2d x +ʃ10(cos x -1)d x=⎪⎪13x 30-1+(sin x -x )|10=⎣⎡⎦⎤13×03-13×(-1)3+[(sin 1-1)-(sin 0-0)] =sin 1-23. 8.已知f (x )=3x 2+2x +1,若ʃ1-1f (x )d x =2f (a )成立,则a =________.考点 微积分基本定理的应用题点 利用微积分基本定理求参数答案 -1或13解析 ʃ1-1f (x )d x =(x 3+x 2+x )|1-1=4, 2f (a )=6a 2+4a +2,由题意得6a 2+4a +2=4,解得a =-1或13. 9.从如图所示的长方形区域内任取一个点M (x ,y ),则点M 取自阴影部分的概率为________.考点 微积分基本定理的应用题点 微积分基本定理的综合应用答案 13解析 长方形的面积为S 1=3,S 阴=ʃ103x 2d x =x 3|10=1,则P =S 阴S 1=13.10.设f (x )=⎩⎪⎨⎪⎧lg x ,x >0,x +ʃa 03t 2d t ,x ≤0,若f (f (1))=1,则a =____________. 考点 微积分基本定理的应用题点 利用微积分基本定理求参数答案 1解析 因为x =1>0,所以f (1)=lg 1=0.又当x ≤0时,f (x )=x +ʃa 03t 2d t =x +t 3|a 0=x +a 3,所以f (0)=a 3.因为f (f (1))=1,所以a 3=1,解得a =1.11.设f (x )是一次函数,且ʃ10f (x )d x =5,ʃ10xf (x )d x =176,则f (x )的解析式为________. 考点 微积分基本定理的应用题点 利用微积分基本定理求参数答案 f (x )=4x +3解析 ∵f (x )是一次函数,∴设f (x )=ax +b (a ≠0),∴ʃ10f (x )d x =ʃ10(ax +b )d x =ʃ10ax d x +ʃ10b d x=12a +b =5, ʃ10xf (x )d x =ʃ10x (ax +b )d x=ʃ10(ax 2)d x +ʃ10bx d x =13a +12b =176. ∴⎩⎨⎧ 12a +b =5,13a +12b =176,解得⎩⎪⎨⎪⎧a =4,b =3. ∴f (x )=4x +3. 12.已知α∈⎣⎡⎦⎤0,π2,则当ʃα0(cos x -sin x )d x 取最大值时,α=________. 考点 微积分基本定理的应用题点 微积分基本定理的综合应用答案 π4解析 ʃα0(cos x -sin x )d x =(sin x +cos x )|α0=sin α+cos α-1=2sin ⎝⎛⎭⎫α+π4-1. ∵α∈⎣⎡⎦⎤0,π2,则α+π4∈⎣⎡⎦⎤π4,34π, 当α+π4=π2,即α=π4时, 2sin ⎝⎛⎭⎫α+π4-1取得最大值. 三、解答题13.已知f (x )=ʃx -a (12t +4a )d t ,F (a )=ʃ10[f (x )+3a 2]d x ,求函数F (a )的最小值.考点 微积分基本定理的应用题点 微积分基本定理的综合应用解 因为f (x )=ʃx -a (12t +4a )d t =(6t 2+4at )|x -a=6x 2+4ax -(6a 2-4a 2)=6x 2+4ax -2a 2,F (a )=ʃ10[f (x )+3a 2]d x =ʃ10(6x 2+4ax +a 2)d x=(2x 3+2ax 2+a 2x )|10=a 2+2a +2=(a +1)2+1≥1.所以当a =-1时,F (a )取到最小值为1.四、探究与拓展14.已知函数f (x )=⎩⎨⎧ (x +1)2,-1≤x ≤0,1-x 2,0<x ≤1,则ʃ1-1f (x )d x 等于( ) A.3π-812B.4+3π12C.4+π4D.-4+3π12 考点 分段函数的定积分题点 分段函数的定积分答案 B解析 ʃ1-1f (x )d x =ʃ0-1(x +1)2d x +ʃ101-x 2d x ,ʃ0-1(x +1)2d x = ⎪⎪13(x +1)30-1=13, ʃ101-x 2d x 以原点为圆心,以1为半径的圆的面积的四分之一, 故ʃ101-x 2d x =π4, 故ʃ1-1f (x )d x =13+π4=4+3π12. 15.已知f ′(x )是f (x )在(0,+∞)上的导数,满足xf ′(x )+2f (x )=1x2,且ʃ21[x 2f (x )-ln x ]d x =1. (1)求f (x )的解析式;(2)当x >0时,证明不等式2ln x ≤e x 2-2.考点 微积分基本定理的应用题点 微积分基本定理的综合应用(1)解 由xf ′(x )+2f (x )=1x2,得 x 2f ′(x )+2xf (x )=1x, 即[x 2f (x )]′=1x, 所以x 2f (x )=ln x +c (c 为常数),即x 2f (x )-ln x =c .又ʃ21[x 2f (x )-ln x ]d x =1,即ʃ21c d x =1,所以cx |21=1,所以2c -c =1,所以c =1.所以x 2f (x )=ln x +1,所以f (x )=ln x +1x 2. (2)证明 由(1)知f (x )=ln x +1x 2(x >0), 所以f ′(x )=1x ×x 2-2x (ln x +1)x 4=-2ln x -1x 3, 当f ′(x )=0时,x =12e -,f ′(x )>0时,0<x <12e -,f ′(x )<0时,x >12e -,所以f (x )在120,e -⎛⎫ ⎪⎝⎭上单调增,在12e ,-⎛⎫+∞ ⎪⎝⎭上单调减.所以f (x )max =12e f -⎛⎫ ⎪⎝⎭=e 2, 所以f (x )=ln x +1x 2≤e 2, 即2ln x ≤e x 2-2.。
定积分计算的方法与技巧摘要:定积分是积分学的重要组成部分,其概念抽象、难以理解、解题方法灵活多变。
本文讨论了定积分计算的各种方法与技巧。
关键词:定积分换元积分法分部积分法计算方法定积分与不定积分是积分学的两个组成部分,定积分不仅是积分学的基础,而且是概率统计、复变函数等课程的重要知识工具.定积分概念抽象、定理较多,学生不仅在理论学习中难以理解掌握,在定积分计算中难度也很大,往往面对一个题目,不知如何下手.因此,本文通过对各种题型、各种解题方法的分析研究,讨论了定积分计算的方法与技巧,希望对初学者有所帮助.一、利用定积分定义计算定积分定积分的思想方法是:“分割、取近似、求和、求极限”,实质是在连续区间上求和,我们通过例子来说明定积分定义的含义.例1.用定积分定义计算:edx.解:将区间[0,1]n等分,分成n个小区间[,],则每个小区间的长为Δx=,并取ξ=为右端点(i=1,2,…,n),得到:原式=f(ξ)Δx=e•==e-1.注:一般来说,用定义计算定积分是十分麻烦的,实际计算中,并不用上述方法.二、利用定积分性质估算定积分的值例2.估算定积分(1+sinx)dx的值解:f(x)=1+sinx在[,π]上的最大值为f()=2,最小值为f(π)=1,即:1≤1+sinx≤2,所以:π=1×(-)≤(1+sinx)dx≤2×(-)=2π.三、利用Newton-Leibniz公式计算定积分设f(x)在[a,b]上连续,且F′(x)=f(x),则f(x)dx=F(b)-F(a),这就是Newton-Leibniz公式.由此看出:Newton-Leibniz公式刻画了定积分与不定积分的紧密联系,它使得计算定积分时,只要找到被积函数f(x)的某个原函数F(x),F(x)在b,a两点的函数值的差就是所求的定积分.Newton-Le ibniz公式是最基本的定积分计算公式,而找到f(x)的原函数F(x)是应用这个公式的关键,所以,熟练使用Newton-Leibniz公式的关键是对不定积分的计算相当熟练.例3.计算定积分:(1)dx;(2)dx.解:(1)原式=(3x+)dx=[x+arctanx]=1+(2)原式=dx=tanx|=1四、利用定积分对积分区间的可加性计算定积分如果被积函数含有绝对值或平方根时,应按绝对值内或被开方式子的正负号将积分区间分段求定积分的代数和.同样,对分段函数的定积分,也应该按分段情况逐段积分.例4.计算定积分:(1);(2)f(x)dx,其中f(x)=x+1,x≤1x,x>1解:(1)原式==(cosx-sinx)dx+(sinx-cosx)dx=[sinx+cosx]+[-cosx-sinx]=2(-1)(2)f(x)dx=(x+1)dx+xdx=[x+x]+[x]=五、利用换元积分法计算定积分不定积分的换元积分法有两种类型,同样定积分的换元积分法也有两种类型:当用第一类换元积分法求定积分时,若未引进新的积分变量,则积分上、下限不变;当用第二类换元积分法求定积分时,由于引入了新的积分变量,因此,积分上、下限要作相应改变.例5.计算定积分:(1)(1-sinθ)dθ;(2)dx;(3)dx;(4)已知dx=,求a.解:(1)原式=dθ+(1-cosθ)dcosθ=π+[cosθ-cosθ]=π-(2)原式=d(x-1)=[(x-1)+arcsin(x-1)]=(3)令x=π-t,则原式=(-dt)=dt-dt所以,原式=dt=-[arctan(cost)]=.(4)令=t,即x=ln(t+1),dx=dt,则:原式=•dt=2arctant|=π-2arctan,由-2arctan=得:arctan=,所以a=ln2.六、利用分部积分法计算定积分分部积分法的公式为:uv′dx=[uv]-u′vdx,而如何确定恰当的u,v与不定积分的思想完全相同,当u,v选择不恰当时,很难算出定积分,具体求解时,有时须先换元,再分部积分.例6.计算定积分:dx解:令x=sint,dx=costdt,则:原式=costdt=-(cott)′tdt=-tcott|+cottdt=π+ln3.七、对称区间上的定积分的计算由公式f(x)dx=[f(x)+f(-x)]dx=2f(x)dx,f(x)为偶函数0,f(x)为奇函数,可计算对称区间上的定积分或者可化为对称区间上的定积分.例7.计算定积分:(1)I=sin(lnx)dx;(2)I=dx解:(1)令t=lnx,则I=esintdt=sint(e+e)dt=(e-e)(2)令t=lnx并应用得arctanu+arctan=得:I=(arctane+arctane)sintdt=sintdt=.注:从上例看出:对积分上限、下限互为倒数的区间[,a]上的定积分f(x)dx,可引入变换t=lnx,化为对称区间[-lna,lna]上的定积分f(x)dx=ef (e)dt.定积分的计算方法很多,除上面介绍的方法外,还有周期函数的定积分计算,建立递推公式计算定积分,等等,同时定积分的各计算方法不是孤立的,很多题目都可能是几种计算方法联合使用,只有多练习才能熟能生巧.。