分步计数与分类计数
- 格式:ppt
- 大小:815.00 KB
- 文档页数:37
分类和分步计数原理的应用1. 什么是分类和分步计数原理1.1 分类原理分类原理是一种问题解决方法,通过将问题分解为多个相互独立的小问题,并将这些小问题的解决方案组合起来,从而解决整个问题。
分类原理可以帮助我们更好地理解和解决复杂的问题。
1.2 分步计数原理分步计数原理是一种计数方法,通过将一个复杂的问题分解为多个简单的步骤,并分别计算每个步骤的可能性,最终将这些可能性相乘得到整个问题的解决方案的总数。
分步计数原理在组合数学和概率论等领域有着广泛的应用。
2. 分类和分步计数原理的应用案例2.1 应用案例一:排列组合问题在某个班级中,有5个男生和3个女生,要从中选出一支由3个人组成的小组,其中一定要包括一名男生和一名女生。
我们可以使用分类原理和分步计数原理来解决这个问题。
2.1.1 分类首先,我们将问题分解为两个独立的小问题,即从男生中选出一名和女生中选出一名作为小组的成员。
2.1.2 分步计数第一步选择一名男生,有5种可能性;第二步选择一名女生,有3种可能性。
根据分步计数原理,两个步骤的可能性要相乘,即有5 * 3 = 15种不同的组合方式。
因此,从中选出一支由3个人组成的小组的总数为15。
2.2 应用案例二:密码破解假设一个密码由4个数字组成,每个数字的取值范围是0-9。
我们需要使用分类原理和分步计数原理来计算可能的密码数量。
2.2.1 分类将问题分解为四个独立的小问题,即每个数字的取值范围为0-9。
2.2.2 分步计数根据分步计数原理,每个数字的取值范围为10种可能性。
因此,整个密码的可能性为10 * 10 * 10 * 10 = 10000种。
即有10000种不同的密码。
3. 总结分类和分步计数原理是解决问题的重要方法,在数学、计算机科学、概率论等领域都有着广泛的应用。
通过将问题分解为多个独立的小问题,并计算每个小问题的可能性,可以更好地解决复杂的问题。
在本文中,我们通过两个应用案例,演示了分类和分步计数原理的具体应用过程。
分类加法计数原理与分步乘法计数原理1.分类计数问题:要计算一些集合中满足其中一种条件的元素的数目。
可以将该集合分为若干个子集,分别计算每个子集中满足条件的元素的数目,然后将这些数目相加即可得到最终的结果。
例如,一些班级有30个学生,其中有10个男生和20个女生,要计算全班学生中身高超过1.7米的男生的人数。
可以将问题分解为两个部分,分别计算身高超过1.7米的男生和身高不超过1.7米的男生的人数,然后将这两个数目相加即可得到最终的结果。
2.多重条件计数问题:要计算满足多个条件的元素的数目。
可以将满足不同条件的元素分为不同的类别,然后计算每个类别中满足条件的元素的数目,最后将这些数目相加得到最终的结果。
例如,一些商店有3种颜色的衬衫(红色、蓝色和绿色),每种颜色的衬衫分别有5件、3件和4件。
要计算购买2件衬衫的方法数目,其中要求至少购买一件红色的衬衫。
可以将购买2件衬衫分为两种情况:一种是购买一件红色的衬衫和一件其他颜色的衬衫,另一种是购买两件红色的衬衫。
然后分别计算这两种情况下的购买方法数目,最后将这两个数目相加即可得到最终的结果。
分步乘法计数原理是指将一个计数问题分解为若干个步骤,每个步骤的计数独立进行,最后将每个步骤的计数结果相乘得到最终的结果。
该方法的基本思想是通过分步骤计数来简化问题,使得每个步骤的计数更加直观和容易。
分步乘法计数原理通常适用于以下两种情况:1.顺序计数问题:要计算一些事件发生的不同顺序的可能性。
可以将该事件分为若干个步骤,分别计算每个步骤的可能性,然后将这些可能性相乘得到最终的结果。
例如,一些球队有10名队员,要计算选择3名队员组成一支首发阵容的方法数目。
可以将选择队员分为三个步骤:先选择首发中锋(有10种选择),然后选择首发后卫(有9种选择),最后选择首发前锋(有8种选择)。
然后将这三个步骤的选择数目相乘即可得到最终的结果。
2.分步限制问题:要计算满足多个条件的元素的数目。
分类计数原理和分步计数原理的理解与简单应用(833200)新疆奎屯市第一高级中学特级教师 王新敞分类计数原理与分步计数原理是计数问题的基本原理,体现了解决问题时将其分解的两种常用方法,即把问题分类解决和分步解决.分类计数原理:做一件事情,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法那么完成这件事共有12n N m m m =+++ 种不同的方法分步计数原理:做一件事情,完成它需要分成n 个步骤,做第一步有1m 种不同的方法,做第二步有2m 种不同的方法,……,做第n 步有n m 种不同的方法,那么完成这件事有12n N m m m =⨯⨯⨯ 种不同的方法两个基本原理的作用:计算做一件事完成它的所有不同的方法种数两个基本原理的区别:一个与分类有关,一个与分步有关;加法原理是“分类完成”,乘法原理是“分步完成”原理浅释:①分类计数原理(加法原理)中,“完成一件事,有n 类办法”,是说每种办法“互斥”,即每种方法都可以独立地完成这件事,同时他们之间没有重复也没有遗漏.进行分类时,要求各类办法彼此之间是相互排斥的,不论那一类办法中的哪一种方法,都能独立完成这件事.只有满足这个条件,才能直接用加法原理,否则不可以.②分步计数原理(乘法原理)中,“完成一件事,需要分成n 个步骤”,是说每个步骤都不足以完成这件事,这些步骤,彼此间也不能有重复和遗漏.如果完成一件事需要分成几个步骤,各步骤都不可缺少,需要依次完成所有步骤才能完成这件事,而各步要求相互独立,即相对于前一步的每一种方法,下一步都有m 种不同的方法,那么完成这件事的方法数就可以直接用乘法原理.可以看出“分”是它们共同的特征,但是,分法却大不相同.两个原理的公式是: 12n N m m m =+++ , 12n N m m m =⨯⨯⨯这种变形还提醒人们,分类和分步,常是在一定的限制之下人为的,因此,在这里我们大有用武之地:可以根据解题需要灵活而巧妙地分类或分步.强调知识的综合是近年的一种可取的现象.两个原理,可以与物理中电路的串联、并联类比.例1 电视台在“欢乐今宵”节目中拿出两个信箱,其中存放着先后两次竞猜中成绩优秀的观众来信,甲信箱中有30封,乙信箱中有20封.现由主持人抽奖确定幸运观众,若先确定一名幸运之星,再从两信箱中各确定一名幸运伙伴,有多少种不同的结果? 解:分两类:(1)幸运之星在甲箱中抽,再在两箱中各定一名幸运伙伴,有30×29×20=17400种结果;(2)幸运之星在乙箱中抽,同理有20×19×30=11400种结果.因此共有17400+11400=28800种不同结果.点评:在综合运用两个原理时,既要合理分类,又要合理分步,一般情况是先分类再分步. 例2 从集合{1,2,3,…,10}中,选出由5个数组成的子集,使得这5个数中的任何两个数的和不等于11,这样的子集共有多少个?解:和为11的数共有5组:1与10,2与9,3与8,4与7,5与6,子集中的元素不能取自同一组中的两数,即子集中的元素取自5个组中的一个数.而每个数的取法有2种,所以子集的个数为2×2×2×2×2=25=32.点评:解本题的关键是找出和为11的5组数,然后再用分步计数原理求解. 例2中选出5个数组成子集改为选出4个数呢? (答案:C 45·24=80个).例3 某城市在中心广场建造一个花圃,花圃分为6个部分(如下图).现要栽种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种同样颜色的花,不同的栽种方法有_____________种.(以数字作答) 解法一:从题意来看6部分种4种颜色的花,又从图形看知必有2组同颜色的花,从同颜色的花入手分类求. (1)②与⑤同色,则③⑥也同色或④⑥也同色,所以共有N 1=4×3×2×2×1=48种;(2)③与⑤同色,则②④或⑥④同色,所以共有N 2=4×3×2×2×1=48种;(3)②与④且③与⑥同色,则共有N 3=4×3×2×1=24种.所以,共有N =N 1+N 2+N 3=48+48+24=120种.解法二:记颜色为A 、B 、C 、D 四色,先安排1、2、3有A 34种不同的栽法,不妨设1、2、3已分别栽种A 、B 、C ,则4、5、6栽种方法共5种,由以下树状图清晰可见.根据分步计数原理,不同栽种方法有N =A 34×5=120. 答案:120点评:①解法一是常规解法,解法二安排4、5、6时又用了分类和列举的方法. ②较复杂的应用题,需确定或设计出完成事件的程序,依需要分类或分步(“类”与“类”之间独立且并列,“步”与“步”相依且连续)而每个程序都是简单的排列组合问题.例4 (1)有红、黄、白色旗子各n 面(n >3),取其中一面、二面、三面组成纵列信号,可以有多少不同的信号?(2) 有1元、5元、10元的钞票各一张,取其中一张或几张,能组成多少种不同的币值?(1) 解 因为纵列信号有上、下顺序关系,所以是一个排列问题,信号分一面、二面、三面三种情况(三类),各类之间是互斥的,所以用加法原理:①升一面旗,共有3种信号;②升二面旗,要分两步,连续完成每一步,信号方告完成,而每步又是独立的事件,故用乘法原理,因同色旗子可重复使用,故共有3×3=9种信号;③升三面旗,有3×3×3=27种信号.所以共有3+9+27=39种信号.(2) 解:计算币值与顺序无关,所以是一个组合问题,有取一张、二张、三张、四张四种情况,它们彼此是互斥的,用加法原理.因此,不同币值有=15(种)点评 (1) 排列、组合的区别在于顺序性,前者“有序”而后者“无序”;加法原理与654321D D C C D C BD 654C B D乘法原理的区别在于联斥性,前者“斥”——互斥独立事件,后者“联”——相依事件.因而有“顺序”决“问题”,“联斥”定“原理”的说法.(2)加、乘原理是排列、组合问题的理论依据,在分析问题和指导解题中起着关键作用,运用加法原理的关键在于恰当地分类(分情况),要使所分类别既不遗漏,也不重复;运用乘法原理的关键在于分步,要正确设计分步的程序,使每步之间既互相联系,又彼此独立.例5 d c b a ,,,排成一行,其中a 不排第一,b 不排第二,c 不排第三,d 不排第四的不同排法共有多少种?解:依题意,符合要求的排法可分为第一个排b,c,d 中的某一个,共3类,每一类中不同排法可采用画“树图”的方式逐一排出:符合题意的不同排法共有9种点评:按照分“类”的思路,本题应用了分类计数原理,为把握不同排列的规律,“树图”是一种具有直观现象的有效做法.分类计数和分步计数两个原理是排列组合计数的理论依据,类与类之间独立且并列,步与步相依且连续;计算关键:审题、判断分类还是分步?(分类相加,分步相乘)、判断排列还是组合?(有序排列、无序组合).。