分类与分步计数原理课件
- 格式:ppt
- 大小:1.75 MB
- 文档页数:20
分类计数原理与分步计数原理一、分类计数原理1.定义与基本概念2.描述设A和B为两个集合,其中,A,表示集合A的元素个数,则分类计数原理可以表示为:A∪B,=,A,+,B,-,A∩B3.应用举例例如,假设班有30个学生,其中20个学生喜欢音乐,25个学生喜欢摄影,而有10个学生既喜欢音乐又喜欢摄影。
那么根据分类计数原理,班上至少有多少学生既喜欢音乐又喜欢摄影呢?根据分类计数原理的公式,我们可以得到:A∪B,=,A,+,B,-,A∩B其中,A表示喜欢音乐的学生集合,B表示喜欢摄影的学生集合,A,表示喜欢音乐的学生人数,B,表示喜欢摄影的学生人数,A∩B,表示既喜欢音乐又喜欢摄影的学生人数。
带入已知条件,可以得到:A∪B,=20+25-10=35所以,至少有35个学生既喜欢音乐又喜欢摄影。
1.定义与基本概念分步计数原理(Principle of Multiplication)是指当一个任务可以分解为若干个相互独立的步骤进行时,事件的总数等于各步骤个数的乘积。
2.描述分步计数原理是一种基于排列和组合的计数方法,用于计算在一个事件中各步骤个数的乘积。
具体的描述如下:设任务可分解为若干个步骤进行,其中第i个步骤有n(i)种可能的选择,且各个步骤之间的选择是相互独立的。
此时,该任务的总数为:N=n(1)*n(2)*...*n(k)其中,N表示任务的总数,n(i)表示第i个步骤的选择个数,k表示步骤的总数。
3.应用举例例如,班有30个学生,其中有10个男生和20个女生,另外还有3个学科竞赛:数学竞赛、物理竞赛和化学竞赛。
如果每个竞赛只允许一位学生参加,并且每个学生只能参加一个竞赛,那么参加这三个竞赛的可能性有多少种呢?根据分步计数原理的公式,我们可以得到:N=n(1)*n(2)*n(3)其中,n(1)表示数学竞赛的参赛人数,n(2)表示物理竞赛的参赛人数,n(3)表示化学竞赛的参赛人数。
根据已知条件,数学竞赛只能有10个人参加,物理竞赛有30-10=20个人参加,化学竞赛有30-10-20=0个人参加(没有学生参加化学竞赛)。