1. 当A=Ø时,只有 只有B={1,2}得1组解 组解; 时 只有 得 组解 2. 当A={1}时,B={2}或{1,2},得2组解 组解; 时 或 得 组解 3. 当A={2}时,B={1}或{1,2},得2组解 组解; 时 或 得 组解
4. 当A={1,2}时,B=Ø或{1}或{2}或{1,2},得4组解 时 或 或 或 得 组解 由加法原理,共有 由加法原理 共有1+2+2+4=9组解 共有 组解 为两个“ 需将两种元素(1与 装 法2: 设A,B为两个“口袋”,需将两种元素 与2)装 为两个 口袋” 需将两种元素 任一元素至少装入一个袋中分两步可办好此事: 入,任一元素至少装入一个袋中分两步可办好此事 任一元素至少装入一个袋中分两步可办好此事 步装“ 可装入 不装入B,也可装入 可装入A不装入 也可装入B不装入 第1步装“1”,可装入 不装入 也可装入 不装入 步装 A,还可既装入 又装入 有3种装法 还可既装入A又装入 种装法; 还可既装入 又装入B,有 种装法 步装“ 同样有 种装法.由乘法原理 同样有3种装法 由乘法原理,共有 第2步装“2”,同样有 种装法 由乘法原理 共有 步装 3 × 3=9 种装法
N=10×10×10×10=104 × × ×
个四位数字号码。 答:可以组成10000个四位数字号码。 可以组成 个四位数字号码 本题的特点 数字可以重复使用,例如0000 特点是 0000, 本题的特点是数字可以重复使用,例如0000, 1111,1212等等 与分步计数原理比较, 等等, 1111,1212等等,与分步计数原理比较,这里完成每 m=10, n=4个步骤 个步骤, 一步的方法数 m=10,有n=4个步骤,结果是总个数
N=m1 +m2 +L +mn =