泰州市初中数学青年教师基本功大赛笔试试卷
- 格式:doc
- 大小:26.00 KB
- 文档页数:6
初中数学青年教师教学基本功竞赛专业技能考试数 学 试 卷(试卷满分120分,考试时间120分钟)第一部分 基础知识(共30分)一、选择题(本大题共8小题,每题2分,共16分.将答案选项直接填写在题中括号内)1.教育的根本任务是( ).A.传授知识B.增强技能C.教书育人D.学会认知 2. 课外校外教育与课内教育的共同之处在于,它们都是( ).A.受教学计划和教学大纲规范的B.有目的、有计划、有组织进行的C.师生共同参与的D.学生自愿选择的 3. 教师在教育工作中要做到循序渐进,这是因为 ( ).A.学生只有机械记忆的能力B.教师的知识、能力是不一样的C.教育活动中要遵循人的身心发展的一般规律D.教育活动完全受到人的遗传素质的制约 4. 在教育活动中,教师负责组织、引导学生沿着正确的方向,采用科学的方法,获得良好的发展,这句话的意思是说( ).A.学生在教育活动中是被动的客体B.教师在教育活动中是被动的客体C.要充分发挥教师在教育活动中的主导作用D.教师在教育活动中是不能起到主导作用 5. 身处教育实践第一线的研究者与受过专门训练的科学研究者密切协作,以教育实践中存在的某一问题作为研究对象,通过合作研究,再把研究结果应用到自身从事的教育实践中的一种研究方法,这种研究方法是( ).A.观察法B.读书法C.文献法D.行动研究法 6. 注意的两种最基本的特性是( ) .A.指向性与选择性B.指向性与集中性C.指向性与分散性D.集中性与紧张性 7. 班级授课制的实施在我国始于( ). A .唐代 B .清末C .民国初期 D .新中国成立8. 孔子说:“其身正,不令而行;其身不正,虽令不从。
”这反映教师劳动的哪种特点?( ) A .主体性 B .创造性 C .间接性 D .示范法二、填空题(本大题共3小题,每空格2分,共14分.将答案直接填写在题中横线上)1.义务教育阶段的数学课程标准应体现基础性、普及性、__________, 使数学教育面向全体学生,实现:①人人学有价值的数学;②_________________________;③___ ___________________________。
泰州市初中数学青年教师基本功大赛笔试试卷参考答案第Ⅰ卷一、基础知识(40分):(一)填空题(共5小题,每小题3分,计15分)1.知识与技能、过程方法、情感、态度、价值观。
2.勒奈·笛卡尔。
3.“勾股定理”的图形。
4.罗素悖论。
5.皮亚杰、科恩伯格、斯滕伯格、卡茨、维果斯基。
(填两个)(二)简答题(共5小题,每小题5分,计25分)6.答:(1)将任一个给定的角三等分。
(2)立方倍积问题:求作一个正方体的棱长,使这个正方体的体积是已知正方体体积的二倍。
(3)化圆为方问题:求作一个正方形,使它的面积和已知圆的面积相等。
7.答:化归思想、从特殊到一般思想、建模思想、算法多样化、数形结合思想、方程思想、极端化思想……8.答:(1)激发学生的数学学习兴趣和学习动机;(2)培养学生将问题情境数学化的能力;(3)养成学生关注情境问题的数学本质和数学特性,用数学的眼光、数学的视角关注问题、审视世界的思维习惯;(4)增强学生数学应用意识,感受数学与生活的联系。
9.答:(维果斯基的)“最近发展区理论”认为,学生的发展有两种水平:一种是学生的现有水平,另一种是学生可能的发展水平,两者之间的差距就是最近发展区。
所谓“知道什么”就是学生的“现有水平”,“能够知道什么”就是“学生可能的发展水平”,从而着眼于学生的最近发展区,根据学生认知水平,为学生提供带有难度的内容,调动学生的积极性,发挥其潜能,在教师的引导、同伴的帮助和自己的努力下,超越最近发展区而达到其困难发展到的水平。
10.答:八上从图形变换角度出发,利用轴对称性,通过图形变换,想象、类比、归纳得出结论,重点发展学生几何直观能力、合情推理能力;九上是从证明的角度出发,通过演绎推理得出结论,有相对严密的逻辑体系,重点发展学生的演绎推理能力、逻辑思维能力。
两者的区别是:出发点不同、得到结论的方法不同、对学生能力要求不同。
联系是:几何直观、合情推理是逻辑思维、演绎推理的前提和基础,而后者是前者的深化与发展。
初中数学青年教师解题比赛及答案近年来,随着数学教育的不断发展与普及,初中数学教师的教学水平成为提高学生数学能力的重要关键。
为了促进教师专业发展和提高解题能力,初中数学青年教师解题比赛应运而生。
本文将介绍该比赛的背景和目标,并提供部分解题答案作为参考。
一、比赛背景与目标初中数学青年教师解题比赛作为一项专业化竞赛活动,旨在提高青年教师的数学思维和解题能力,加强他们对数学知识的理解和应用。
该比赛通过精心设计的解题题目,考察参赛教师的数学知识储备、解题思路和创新能力,提升他们的教学实践能力和教育教学水平。
二、比赛筹备与参与初中数学青年教师解题比赛由当地教育行政部门、学校和专业团体共同筹备组织。
组织方根据不同年级和内容设置一系列题目,参赛教师需在规定时间内提交解答。
在比赛过程中,还可以结合教学实践和学生需求,设置一些案例分析和教学设计环节。
三、比赛题型与参赛要求初中数学青年教师解题比赛的题型多样,包括选择题、填空题、计算题、证明题等。
参赛教师需要熟练掌握各种数学知识,具备良好的数学分析和解题能力,灵活运用各类解题方法。
参赛教师需按照以下要求提交解答:1. 解题思路清晰、步骤完整:解题过程应该有条不紊,清晰地呈现出解决问题的思考过程和策略。
2. 结果准确、合理:答案应当准确无误,同时要注重解题的合理性和严谨性。
3. 简洁明了、易读易懂:解答应采用准确、简洁的语言表达,以便于阅读和理解。
四、答题示例以下是初中数学青年教师解题比赛的一道选择题和一道填空题的部分答案,供参考:1. 选择题:根据下列数据,判断A和B哪一个数大:A. 0.45B. 0.5解答:由于0.45小于0.5,所以B数大于A数。
2. 填空题:已知两个夹角的比是2:3,其中较小的夹角为40°,则另一个夹角度数为____°。
解答:设较小的夹角为2x,根据题意可得:2x/3x = 40°/x,解得x = 20°,所以另一个夹角度数为3x = 60°。
江苏省市直学校-初中数学青年教师基本功大赛笔试试题(一)(总2页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--学校:_________姓名:_________初中数学青年教师基本功大赛笔试试题(一)(考试时间:90分钟;满分:120分)一、基础知识(共10小题,每个空格2分,计40分)1.义务教育《数学课程标准》的基本理念认为,数学是人类的一种文化,它的内容、思想、_____________________和_____________________是现代文明的重要组成部分.2.义务教育《数学课程标准》中不仅使用了“了解(认识)、理解、掌握、______________________”等刻画知识技能的目标动词,而且使用了“经历(感受)、体验(体会)、______________________”等刻画数学活动水平的过程性目标动词,从而更好地体现了《标准》对学生在数学思考、解决问题以及情感与态度等方面的要求.3.义务教育《数学课程标准》建议:7~9年级的数学教学应结合具体的数学内容采用“问题情境——_________________________________——_____________________________________”的模式展开.4.苏科版义务教育课程标准实验教科书七~九年级数学教材的主要特点有:(1)以“生活数学”、“活动思考”为主线;(2)注重课程内容的“整合”;(3)_________________________________________;(4)__________________________________________;(5)注重帮助教师更好地理解《标准》的理念.5.在苏科版义务教育课程标准实验教科书七~九年级数学教材中,“_____________________________”、“数量、位置的变化”、“_____________________________”这3章是“数与代数”与“空间与图形”这两个学习领域部分内容的整合.6.苏科版义务教育课程标准实验教科书七~九年级数学教材对“数与代数”的主干内容(方程、不等式、函数合计8章)的整体设计如下:(1)从实际问题到方程、不等式或函数——这是“________________________”的过程;(2)解决数学问题——解方程(组)、解不等式(组)或研究函数的图象与性质;(3)用方程(组)、不等式(组)或函数解决实际问题——这是“___________________________”的过程.7.刘徽创造的求圆面积和圆周率的“__________________________”,为我国取得圆周率计算史上的领先地位奠定了基础;祖冲之编制的《__________________________》,首次考虑到岁差的计算,其日、月运行周期的数据也比当时颁行的历法精确.8.我国关于勾股定理的最早记录出现在《__________________________》这部著作里;“方田”是《_____________________》的开卷章,主要论述了各种平面图形的地亩面积算法及分数的运算法则.9. 17世纪最伟大的数学成就是_________________,由此产生了数学的一些分支,如无究级数、泛函数分析等,这些学科的总称也常常叫做数学分析;欧拉把e,,i,0,1这几个量统一在一个令人叫绝的关系“__________________________”中,有人称该公式是最美的公式.10.毕达哥拉斯学派认为“___________________________”,虽然这一观念是错误的,但也从一个侧面强调了数学对客观世界的重要作用,这是人类数学化思想的最初表述形式;该学派还认为,“_____________________________________________”,这是他们对科学美所持的基本观点.二、解题能力测试(共5题,每题16分,计80分)1。
初中数学青年教师基本功大赛笔试试卷题目一:选择题(共20题,每题2分,共40分)1. 设x=2,y=3,则表达式3x+2y的值为()。
A. 12B. 13C. 14D. 152. 已知矩形的长为5 cm,宽为3 cm,则该矩形的面积是()。
A. 8 cm²B. 13 cm²C. 15 cm²D. 18 cm²3. 下列选项中,是2的倍数的数是()。
A. 9B. 15C. 20D. 254. 简化下列代数式:4x - (3x - 2)的结果是()。
A. x + 2B. x - 1C. x - 2D. x + 15. 若甲乘以乙的结果是18,而甲除以乙的结果是6,那么甲和乙分别是()。
A. 15、3B. 9、2C. 12、2D. 6、16. 若一辆汽车以每小时60公里的速度行驶,那么它行驶1小时30分钟可走的距离是()。
A. 45公里B. 60公里C. 75公里D. 90公里7. 已知等腰直角三角形斜边的长度为5 cm,则该三角形的底边长度是()。
A. 3 cmB. 4 cmC. 5 cmD. 6 cm8. 小明的体重是45千克,增加了15%,则他的体重变为()。
A. 50.25千克B. 52千克C. 51.75千克D. 48.75千克9. 若5x−3=12,y+7=15,则x的值是()。
A. 3B. 4C. 6D. 910. 已知正方形的面积是64 cm²,则该正方形的边长是()。
A. 4 cmB. 6 cmC. 8 cmD. 16 cm11. 若一辆自行车的速度为每小时20公里,行驶了4小时,则它行驶的总路程为()。
A. 40公里B. 60公里C. 80公里D. 100公里12. 两个角互为互补角,若其中一个角的度数是45°,则另一个角的度数是()。
A. 45°B. 60°C. 75°D. 90°13. 小明有一笔钱,他把其中的3/5存入银行,剩下的40元放在家里。
专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个三角形的两边分别为8cm和10cm,且这两边的夹角为60°,则这个三角形的周长为多少cm?A. 16cmB. 26cmC. 28cmD. 无法确定2. 下列函数中,哪一个函数是增函数?A. y = 2x + 3B. y = x^2 4x + 4C. y = x^3D. x = 13. 已知一组数据2,3,5,7,x,若这组数据的平均数为5,则x 的值为多少?A. 1B. 4C. 6D. 84. 下列命题中,真命题是?A. 对顶角相等B. 对顶角互补C. 对顶角互余D. 对顶角都是直角5. 若一个正方形的对角线长为10cm,则这个正方形的面积为多少cm^2?A. 50cm^2B. 100cm^2C. 200cm^2D. 250cm^2二、判断题(每题1分,共5分)1. 若一个四边形的对角线互相平分,则这个四边形是矩形。
()2. 任何两个奇数之和都是偶数。
()3. 两个函数如果它们的图像关于y轴对称,那么这两个函数是相等的。
()4. 若一组数据的方差为0,则这组数据中的每个数都相等。
()5. 在直角坐标系中,两点之间的距离公式是d = √((x2 x1)^2 + (y2 y1)^2)。
()三、填空题(每题1分,共5分)1. 若一个等差数列的首项为3,公差为2,则第10项为______。
2. 若一个等边三角形的边长为6cm,则这个三角形的面积为______cm^2。
3. 若一个正方形的边长为8cm,则这个正方形的对角线长为______cm。
4. 若一个函数的图像关于x轴对称,则这个函数是______函数。
5. 在直角坐标系中,点(3, 4)关于原点对称的点为______。
四、简答题(每题2分,共10分)1. 简述等差数列的定义及通项公式。
2. 简述等边三角形的性质。
3. 简述正方形的性质。
4. 简述一次函数的性质。
5. 简述两点之间的距离公式。
初级中学数学教师教学基本功比赛测试卷(一)一.新课程标准,填空。
(每空2分,共20分)1数学是人们对客观世界定性把握和________________ 、逐渐____________ .形成方法和理论,并进行广泛应用的过程。
2教师的主要任务是激发学生的________________________ ,向学生提供充分从事数学活动的机会,帮助学生成为学习的__________________ 33、初中阶段的数学内容分为数与代数、 _______________ .统计与概率和 ______________ 四个领域。
4、动手操作、________________ 、_______________ 是学生学习数学的重要方式。
5、不同的人在数学上得到不同的发展的意思是:教学要面向全体,必须适应每一位学生的_________________ :人的发展不可能整齐划一,必须____________________ ,尊重差异。
二、专业知识(共70分)(-)填空题(每小题2分,共8分)1、如图,己知C)O的半径为5,弦AB=8, P是弦AB上的任意一点,则OP的取值范围是 _________ o■2、已知关于X的不等式组Fi的整数解共有6个,则“的取值3— 2x>0范围是_______________3、若ΔABC 的三边"、b、C 满足条件:a2 + b2 + c2 + 338 = 1 Oa + 24Z? + 26c,则这个三角形最长边上的髙为_________ 。
4、抛物线y = 2(x-2)2-6的顶点为(7,已知),= -也+ 3的图象经过点C ,则这个一次函数图象与两坐标轴所囤成的三角形面积为____________ o(二)选择题(每小题3分,共12分)5、如图,由几个小正方体组成的立体图形的左视图是⅛⅛⅛⅛6.有5张写有数字的卡片(如图1),它们的背面都相同,现将它们背面朝上(如图2),从中翻开任意一张是数字2的概率是()图2(三)解答题(共50分)9. (本题满分6分)计算:4 l +2tan30υ- 10. (本题满分6分)因式分解:a :x : — 4+a c y 3—2a :xy: 11・(本题满分6分)某学校为了学生的身体健康,每天开展体冇活动一小时,开设排球、篮球、羽毛球、体操课•学生可根拯自己的爱好任选其中一项,老师根据学生报划情况进 行了统讣,并绘制了下边尚未完成的扇形统汁图和频数分布直方图,请你结合图中的信 息,解答下列问题:A. 15C. ~3 B.- 5 D. 1 27.正方形网格中, B.琴1C.-2 D. 2&已知甲、乙两组数据的平均数都是◎存则以下说法正确的是( A. 甲组数据比乙组数据的波动大 B. 乙组数据比甲组数据的波动大C. 甲组数据与乙组数据的波动一样大D •甲、乙两组数据的波动大小不能比较 2√3-IZAOB 如图放置,)(1) 该校学生报名总人数有多少人?(2) 选羽毛球的学生有多少人?选排球和篮球的人数分别占报轲总人数的百分之几?(3) 将两个统计图补充完整12.(本题满分10分)如图,点A ∙ B, G D 是直径为AB 的(Do 上四个点,C 是劣弧BD 的中点,AC 交BD 于点 E, AE=2, EC = 1.(1) 求证:ADEC AADC :(2)连结DO,试探究四边形OBCD 是否是菱形?若是,请你给予证明并求岀它的而积: 若不是,请说明理由.(3)延长AB 到乩 使BH =OB,求证:CH 是OO 的切线・13,(本题满分10分)某污水处理公司为学校建一座三级污水处理池,平面图形为矩形, 而积为200平方米(平面图如图22所示的ABCD ).已知池的外围墙建造单价为每米400元. 中间两条隔墙建造单价每米300元,池底建造的单价为每平方米80元(池墙的厚度不考虑)(1) 如果矩形水池恰好被隔墙分成三个正方形,试计算此项工程的总造价(精确到100 元)(2) 如果矩形水池的形状不受(1)中长、宽的限制,问预算45600元总造价,能否 完A 0 B成此项工程?试通过计算说明理由.(3)请给出此项工程的最低造价(多岀部分只展不超过100元就有效). D14,(本题满分12分)已知抛物线C1:y= -χ2+2πιx+n (In t"为常数,且m≠0,∕ι>0)的顶点为A,与y轴交于点C,抛物线C?与抛物线Cl关于y轴对称,英顶点为B,连结AU BC、AB.(1)写出抛物线C?的解析式:(2)当〃?=1时,判⅛∆ABC的形状,并说明理由:(3)抛物线G是否存在点P,使得四边形ABCP为菱形?如果存在,请求岀〃?的值;如果不存在,请说明理由.答案一. 新课标(20分)K 定量刻画.抽象概括2学习积极性.主人3空间与图形、课题学习4自主探 究、合作交流5发展需要、承认差异二、 专业知识(共70分)(-)填空题(共8分)1、3≤(9P≤52、-5≤67<-4 3. — 4. 113(-)选择题(共12分))5、 A6、 B7、 D 8. B(三)解答题(共70分)9. 原式出+ 2x 逅—严学一2 •…. 3 3 (√3-l )(√3+l) = √3-(√3 + l)-2 = √3-√3-l-2二-310. a :x c — 4+aV - 2a :xy =(a :x :—2a 2∑3r ÷a 2y 2) —4 ......... 2 分=a' (X2xy+j r ) —4=a' (χ-y ) 2~22 =(a X -ay+2) ( a x - ay-2) 11・解:(1)设该校报需总人数为X 人,则由两个统讣图可得 40%x = 160.(2)设选羽毛球的人数为y,则由两个统计图可蒔y= 400×25% = 100 (人)・ ...................IOO因为选排球的人数是K )。
初中数学青年教师教学基本功比赛试题一、选择题1. 下列四个分数中,哪一个是一个无限循环小数?A. 0.9B. 0.45C. 0.16D. 0.252. 一个多面体的五个顶点互不相同,它的棱数比它的面数多3,那么这个多面体的面数是多少?A. 5B. 6C. 7D. 83. 下图中,小正方形的边长为1cm。
请问中间的五角星的面积是多少平方厘米?(图片)A. 2B. 2.5C. 34. 已知a:b = 2:3,b:c = 5:6,那么a:c =?A. 5:6B. 3:2C. 4:5D. 1:15. 若5的倒数加上4的倒数等于x的倒数,那么x的值是多少?A. 0.25B. 0.2C. 0.125D. 0.1二、填空题1. 如果a的值为5,b的值为3,那么a的正数次方与b的正数次方的和是多少?答案:1522. 以下列出了一组坐标,请问这些坐标中x轴上的最小值是多少?(6,1),(-3,2),(0,-5),(2,4)答案:-33. 某数的几何平均数是3,算术平均数是4,那么这个数是多少?4. 某个数增加了原来的60%,结果是48,那么这个数原来是多少?答案:305. 在一个等差数列中,首项是2,公差是3,那么这个数列的第11项是多少?答案:32三、解答题1. 一张纸的长度是18cm,宽度是15cm,这张纸的面积是多少平方厘米?2. 请用两种方法计算下列两个分数的和:1/4 + 1/63. 某个数的平方比这个数的三倍大21,求这个数。
4. 一根木棍从一头经过10cm的地方折断,两段的长度分别是3:4,请问原始木棍的长度是多少?5. 下图是一个等边三角形,求阴影部分的面积。
(图片)四、解答题1. 给定函数f(x) = 3x + 1,求f(4)和f(10)的值。
2. 某地一天的气温变化如下:上午9时,气温是18℃,到中午12时气温上升到30℃,下午的最高温度是35℃。
上述变化可以用什么样的图象来表示?3. 请找出以下等差数列中的规律,并给出下一个数:8,14,20,26,32,...4. 甲、乙两人一起筹集某项物资,甲筹集了总数的1/3,乙筹集了总数的2/5,剩下的部分由其他人筹集。
(典型)初中数学学科青年教师基本功大赛试题(附答案详解)一、选择题(10×2=20分,单选或多选) 1.现实中传递着大量的数学信息,如反映人民生活水平的“恩格尔系数”、预测天气情况的“降雨概率”、表示空气污染程度的“空气指数”、表示儿童智能状况的“智商”等,这表明数学术语日趋( )(A )人本化 (B )生活化 (C )科学化 (D )社会化 2. 导入新课应遵循( )(A )导入新课的方法应能激发学生的学习兴趣、学习动机,造成悬念,达到激发情感,提出疑问的作用(B )要以生动的语言、有趣的问题或已学过的知识,引入新知识、新概念 (C )导入时间应掌握得当,安排紧凑 (D )要尽快呈现新的教学内容3.下列关于课堂教学的改进,理念正确的是 ( ) (A )把学生看作教育的主体,学习内容和学习方法由学生作主 (B )促进学生的自主学习,激发学生的学习动机 (C )教学方法的选用改为完全由教学目标来决定(D )尽可能多的提供学生有效参与的机会,让学生自己去发现规律,进而认识规律 4.为了了解某地区初一年级7000名学生的体重情况,从中抽取了500名学生的体重,就这个问题来说,下面说法中正确的是( )(A )7000名学生是总体 (B ) 每个学生是个体(C )500名学生是所抽取的一个样本 (D ) 样本容量是500 5. 一个几何体的三视图如图2所示,则这个几何体是( )6.如图1,点A(m,n)是一次函数y=2x 的图象上的任意一点,AB 垂直于x 轴,垂足为B ,那么三角形ABO 的面积S关于m 的函数关系的图象大致为( )7.有三条绳子穿过一片木板,姊妹两人分别站在木板的左、右两边,各选该边的一条绳子。
若每边每条绳子被选中的机会相等,则两人选到同一条绳子的概率为( )(A)21 (B) 31 (C) 61(D) 91主视图左视图俯视图图2 (A ) (B ) (C ) (D )8.一次数学课上,老师让大家在一张长12cm 、宽5cm 的矩形纸片内,折出一个菱形。
初中数学青年教师教学根本功比赛试题根底知识测试题〔下关〕一、填空题〔共6小题,每空0.5分,计10分〕1.数学是研究________________________的科学,这一观点是由____________首先提出的.2.通过义务教育阶段的学习,学生能获得适应社会生活和进一步开展所必须的数学的____________、____________、____________、____________.3.维果斯基的“最近开展区理论〞认为学生的开展有两种水平:一种是学生的___________开展水平;另一种是学生_________________开展水平,两者之间的差异就是最近开展区.4.从数学史上看,有理数的概念传入我国存在着翻译上的错误,其原意是_________数,包括______________小数和______________小数,______________的发现,引发了第一次数学危机.5._________是概率论开展史上首先被人们研究的概率模型,它具有两个特征:一是_________、二是_______________.6.波利亚在其名著?怎样解题?中提出的解数学题的四个步骤是:_________________、_________________、_________________、_________________;他认为“怎样解题表〞有两个特点,即普遍性和_____________性.二、简答题〔共3小题,每题5分,计15分〕7.大约在公元前6世纪至4世纪之间,古希腊人遇到了令他们百思不得其解的三大尺规作图问题,这就是著名的古代几何学作图三大难题.请你简述这三大难题分别是什么?8.?义务教育数学课程标准?〔2011年版〕从知识与技能等四个方面对总目标进展了阐述.〔1〕请写出其他三个方面目标的名称;〔2〕请简述总目标的这四个方面之间的关系.9.“角平分线上的一点到角的两边距离相等〞这一结论在教版义务教育数学教材八上的?1.4线段、角的轴对称性?以及九上的?1.2直角三角形全等的判定?中都有所出现.请你结合教学实际,简述课本上八上和九上分别是如何引导学生得到这一结论的,说说它们之间的区别、联系和这样安排的意义.参考答案:1.数量关系和空间形式.2.根底知识、根本技能、根本思想、根本活动经历.3.现有,可能的.4.成比例的数,有限,无限循环,无理数.5.古典概型,〔试验结果的〕有限性,〔每个结果的〕等可能性.6.弄清问题、拟定方案、实施方案、回忆反思;常识.7.三等分角问题:将任一个给定的角三等分.立方倍积问题:求作一个正方体的棱长,使这个正方体的体积是正方体体积的二倍.化圆为方问题:求作一个正方形,使它的面积和圆的面积相等.8.〔1〕数学思考、问题解决、情感态度;〔2〕四个方面是一个有机的整体;教学要兼顾这四个目标,这些目标的实现,是学生受到良好数学教育的标志;后三个目标的开展离不开知识技能的学习,知识技能的学习必须有利于其他三个目标的实现.9.八上?1.4线段、角的轴对称性?中是通过学生动手操作,采取折纸的方法折出角的平分线,再过角平分线上一点折出角的两边垂线段,然后度量这两条线段的长度得出结论的;九上?1.2直角三角形全等的判定?是通过严格的推理论证,采用自己画图、写、求证并证明得出结论的.它们的区别是,一个是通过动手操作,一个是通过严格证明.联系是,前面的学习为后面的学习作铺垫,在进展严格的证明之前,学生已经熟练地掌握了这一结论的运用.意义是,符合学生的认知开展规律,使学生的认知从感性上升到理性,既培养了学生的动手能力,又培养了学生的推理论证能力.符带说明:1.专业技能比赛包括根底知识测试和解题能力测试两局部.根底知识测试容包括数学文化〔数学史〕常识和数学教育根底知识〔教材、课程标准、教育学、心理学、教学论、教学法等〕.解题能力测试容包括根底题〔教材中的根本定理、公式的证明,教材例题、习题、复习题〕与综合题〔与中考中档题难度相当〕.2.第1、2、8题考察对?课标?学习和理解情况〔称为课标板块〕;第4、5、7题结合教版初中数学教科书的教学容对数学史进展简单的考察〔称为数学史板块〕;第3、6、9题是对心理学、数学教育学、教材和教学法等相关知识的考察〔称为综合板块〕.2012年雨花台区小学数学青年教师教学根本功比赛教育教学知识常识比赛试卷〔总分值100分,时间60分钟〕成绩一、填空题:本大题共8个小题,共22个空,每空1分,共22分。
泰州市初中数学青年教师基本功大赛笔试试卷第Ⅰ卷一、基础知识(40分):(一)填空题(共5小题,每小题3分,计15分)1.数学课堂教学的三维目标是、、。
2.法国哲学家、物理学家、数学家、生理学家被称为解析几何学的创始人。
3.今天,世界各国的科学家们都在试探寻找“外星人”,科学家们一次又一次地向宇宙发射了地球上人类的形象、问候语言、自然音响、世界名曲等信号,尝试与“他们”通话、建立友谊。
数学家曾建议用作为人类探寻“外星人”并与“外星人”联系的语言。
4.1900年前后,在数学的集合论中出现了三个著名悖论,其中最重要的悖论,这些悖论触发了第三次数学危机。
5.课程标准的一个重要支撑理论是建构主义,其代表人物有:(填两个)(二)简答题(共5小题,每小题5分,计25分)6.大约在公元前6世纪至4世纪之间,古希腊人遇到了令他们百思不得其解的三大尺规作图问题,这就是著名的古代几何作图三大难题。
请你简述这三大难题分别是什么?7.请你说出几种数学思想方法(至少三种),并就其中一种思想方法举实例说明。
8.简述创设问题情境的目的是什么?9.爱因斯坦曾说:“大多数教师的提问是浪费时间,那些提问是想了解学生不知道什么,其实真正的提问艺术是要了解学生知道什么或能够知道什么”。
结合你的教学观,谈谈你对爱因斯坦这段话的理解。
10.“角平分线上的一点到角的两边距离相等”这一结论在苏科版义务教育数学教材八上的《1.4线段、角的轴对称性》以及九上的《1.2直角三角形全等的判定》中都有所出现。
请你结合教学实际,简述课本上八上和九上分别是如何引导学生得到这一结论的,说说它们之间的区别、联系和这样安排的意义。
二、解题能力(80分)1.(本小题10分)证明定理:斜边和一条直角边对应相等的两个直角三角形全等。
2.(本小题10分) 如图,某校一幢教学大楼的顶部竖有一块宣传牌CD.小明在山坡的坡脚A处测得宣传牌底部D的仰角为60°,沿山坡向上走到B处测得宣传牌顶部C的仰角为45°.已知山坡AB的坡度i=1:,AB=12米,AE=18米,求这块宣传牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据:≈1.414,≈1.732)3.(本小题10分) 用两种方法求函数的最值。
4.(本小题10分)小明在课外读物中看到这样一段文字和一幅图:下图是寻宝者得到的一幅藏宝地图,荒凉的海岛上没有藏匿宝藏的任何标志,只有A、B两块天然巨石。
寻宝者从其他文件资料上查到,岛上A、B两块巨石的直角坐标分别是A(2,1)和B(8,2),藏宝地P的坐标是(6,6)。
你能帮小明在地图上画出藏宝地的位置吗?请你设计出找出藏宝地的方案。
(设计找出藏宝地的简要步骤,画出示意图)5. (本小题12分) 从甲地到乙地有A1、A2两条路线,从乙地到丙地有B1、B2、B3三条路线,从丙地到丁地有C1、C2两条路线.一个人任意先了一条从甲地到丁地的路线.求他恰好选到B2路线的概率是多少?6. (本小题12分) 将宽为18cm的彩色矩形纸带AMCN裁剪成一个平行四边形ABCD(如图1).如图2是一个三棱柱包装盒,它的底面是边长为10cm的正三角形,三个侧面都是矩形.然后用平行四边形纸带ABCD按如图3 的方式把这个三棱柱包装盒的侧面进行包贴(要求包贴时没有重叠部分),纸带在侧面缠绕3圈,正好将这个三棱柱包装盒的侧面全部包贴满.求按图3方式包贴这个三棱柱包装盒所需的矩形纸带的长度.7 (本小题16分) 如图,在平面直角坐标系中,已知抛物线交轴于两点,交轴于点. (1)求此抛物线的解析式;(2)若此抛物线的对称轴与直线交于点D,作⊙D与x轴相切,⊙D交轴于点E、F两点,求劣弧EF的长;(3)设K为线段BO上一点,点T从点B出发,先沿x轴到达K点,再沿KC到达C点,若T点在x轴上运动的速度是它在直线KC上运动速度的2倍,试确定K点的位置,使T点按照上述要求到达C点所用的时间最短。
(4)P为此抛物线在第二象限图像上的一点,PG垂直于轴,垂足为点G,试确定P点的位置,使得△PGA的面积被直线AC分为1︰2两部分. (第7题图)第Ⅱ卷三、教学设计(80分):对给出的教材,请写出:教材分析、教学目标、重点难点分析、教学过程,板书设计、媒体使用、设计简要说明,并写出完整教学设计。
教材:苏科版义务教育课程标准实验教科书《数学(七年级下)》第6.5:《垂直》泰州市初中数学青年教师基本功大赛笔试试卷参考答案第Ⅰ卷一、基础知识(40分):(一)填空题(共5小题,每小题3分,计15分)1.知识与技能、过程方法、情感、态度、价值观。
2.勒奈·笛卡尔。
3.“勾股定理”的图形。
4.罗素悖论。
5.皮亚杰、科恩伯格、斯滕伯格、卡茨、维果斯基。
(填两个)(二)简答题(共5小题,每小题5分,计25分)6.答:(1)将任一个给定的角三等分。
(2)立方倍积问题:求作一个正方体的棱长,使这个正方体的体积是已知正方体体积的二倍。
(3)化圆为方问题:求作一个正方形,使它的面积和已知圆的面积相等。
7.答:化归思想、从特殊到一般思想、建模思想、算法多样化、数形结合思想、方程思想、极端化思想……8.答:(1)激发学生的数学学习兴趣和学习动机;(2)培养学生将问题情境数学化的能力;(3)养成学生关注情境问题的数学本质和数学特性,用数学的眼光、数学的视角关注问题、审视世界的思维习惯;(4)增强学生数学应用意识,感受数学与生活的联系。
9.答:(维果斯基的)“最近发展区理论”认为,学生的发展有两种水平:一种是学生的现有水平,另一种是学生可能的发展水平,两者之间的差距就是最近发展区。
所谓“知道什么”就是学生的“现有水平”,“能够知道什么”就是“学生可能的发展水平”,从而着眼于学生的最近发展区,根据学生认知水平,为学生提供带有难度的内容,调动学生的积极性,发挥其潜能,在教师的引导、同伴的帮助和自己的努力下,超越最近发展区而达到其困难发展到的水平。
10.答:八上从图形变换角度出发,利用轴对称性,通过图形变换,想象、类比、归纳得出结论,重点发展学生几何直观能力、合情推理能力;九上是从证明的角度出发,通过演绎推理得出结论,有相对严密的逻辑体系,重点发展学生的演绎推理能力、逻辑思维能力。
两者的区别是:出发点不同、得到结论的方法不同、对学生能力要求不同。
联系是:几何直观、合情推理是逻辑思维、演绎推理的前提和基础,而后者是前者的深化与发展。
这种安排充分考虑到学生的年龄与心理特征,遵循学生的认知规律,为学生搭建思维脚手架,促进学生思维能力螺旋上升。
二、解题能力(80分)1.(本小题10分)(见九上P9)2.(本小题10分) 作BH⊥CE,BG⊥AE,由i=1:,AB=12得∠BAG=30°,BG=6,AG=6 ,所以BH=GE=6 +18,由∠CBH=45°得CH=BH=6 +18。
在Rt△AED中,DE=AE·tan60°=18 ,故CD=CH+HE-DE=6 +18+6-18 =24-12 ≈24-12×1.732=3.216≈3.2(米)3.(本小题10分)方法1:二次函数配方法:= ,当即时=-5。
方法2:二次方程判别式法:因为,所以,,方法3:基本不等式法:= ,因为是定值,所以,当( 当然不小于0)时,,所以,即方法4 :导数法:显然,在(-∞,+∞)内连续,=0, ,显然,是[ , ]内的极值点,=-1,当时=4-8-1=-54.(本小题10分)(见八上教师用书P138—139)5. (本小题12分)如图:从甲到丁有2×3×2=12种走法,而经过线路共有2×1×2=4种走法,故P=6. (本小题12分) 如图:裁剪线AB与CD长恰好为三棱柱底面周长30cm,故由△CEB∽△AMB可知:,故所以CB=75所以CM=75+24=99(cm)7 (本小题16分)解:(1)∵抛物线经过点,,.∴,解得.∴抛物线的解析式为:.(2)易知抛物线的对称轴是.把x=4代入y=2x得y=8,∴点D的坐标为(4,8).∵⊙D与x轴相切,∴⊙D的半径为8.连结DE、DF,作DM⊥y轴,垂足为点M.在Rt△MFD中,FD=8,MD=4.∴cos∠MDF= .∴∠MDF=60°,∴∠EDF=120°.∴劣弧EF的长为:.(3)如图:设点T在KC上的速度为v,则时间。
∵∴∠OCB=60°,∠OBC=30°作点C关于x轴的对称点C′,则△CBC′为正三角形,∠OBC′=∠OBC=30°作TQ⊥BC′则TQ= TB,则TB+TC=CT+TQ要t最小,即CT+TQ最小,而CT+TQ是点C到直线C′B的折线长,只有当CT+TQ成为点C到直线C′B的垂线段时才最小,故作CH⊥BC′交OB于点K,则点K就是使运动时间最短的点。
∵△CBC′为正三角形,∴∠C′CH=30°∴OK=OC·tan30°=2故点K的坐标为(2,0)。
(3)设直线AC的解析式为y=kx+b. ∵直线AC经过点.∴,解得 .∴直线AC的解析式为:.设点,PG交直线AC于N,则点N坐标为.∵.∴①若PN︰GN=1︰2,则PG︰GN=3︰2,PG= GN. 即= .解得:m1=-3,m2=2(舍去).当m=-3时,= .∴此时点P的坐标为.②若PN︰GN=2︰1,则PG︰GN=3︰1,PG=3GN. 即= .解得:,(舍去).当时,= .∴此时点P的坐标为.综上所述,点P坐标为或.。