高考数学高频考点提分密码第二部分 导数
- 格式:doc
- 大小:35.00 KB
- 文档页数:6
2018年高考理科数学全国卷二导数压轴题解析已知函数2()x f x e ax =-.(1) 若1a =,证明:当0x ≥时,()1f x ≥. (2) 若()f x 在(0,)+∞只有一个零点,求a . 题目分析:本题主要通过函数的性质证明不等式以及判断函数零点的问题考察学生对于函数单调性以及零点存在定理性的应用,综合考察学生化归与分类讨论的数学思想,题目设置相对较易,利于选拔不同能力层次的学生。
第1小问,通过对函数以及其导函数的单调性以及值域判断即可求解。
官方标准答案中通过()()x g x e f x -=的变形化成2()x ax bx c e C -+++的形式,这种形式的函数求导之后仍为2()x ax bx c e -++这种形式的函数,指数函数的系数为代数函数,非常容易求解零点,并且这种变形并不影响函数零点的变化。
这种变形思想值得引起注意,对以后导数命题有着很大的指引作用。
但是,这种变形对大多数高考考生而言很难想到。
因此,以下求解针对函数()f x 本身以及其导函数的单调性和零点问题进行讨论,始终贯穿最基本的导函数正负号与原函数单调性的关系以及零点存在性定理这些高中阶段的知识点,力求完整的解答该类题目。
题目解答:(1)若1a =,2()x f x e x =-,()2x f x e x '=-,()2x f x e ''=-.当[0,ln 2)x ∈时,()0f x ''<,()f x '单调递减;当(ln 2,)x ∈+∞时,()0f x ''>,()f x '单调递增; 所以()(ln 2)22ln 20f x f ''≥=->,从而()f x 在[0,)+∞单调递增;所以()(0)1f x f ≥=,得证. (2)当0a ≤时,()0f x >恒成立,无零点,不合题意.当0a >时,()2x f x e ax '=-,()2x f x e a ''=-.当[0,ln 2)x a ∈时,()0f x ''<,()f x '单调递减;当(ln 2,)x a ∈+∞时,()0f x ''>,()f x '单调递增;所以()(ln 2)2(1ln 2)f x f a a a ''≥=-.当02ea <≤时,()0f x '≥,从而()f x 在[0,)+∞单调递增,()(0)1f x f ≥=,在(0,)+∞无零点,不合题意.当2ea >时,易证2ln 2a a >. (0)10f '=>,(ln 2)0f a '<,由(1)可知,22(2)=(2)10a f a e a '->>.由零点存在性定理可知必然存在一点1(0,ln 2)x a ∈使得1()0f x '=,2(ln 22)x a a ∈,使得2()0f x '=;所以当1(0,)x x ∈时,()0f x '>,()f x 单调递增,12(,)x x x ∈,()0f x '<,()f x 单调递减,2(,)x x ∈+∞,()0f x '>,()f x 单调递增,即当2x x =时()f x 取得极小值2222()x f x e ax =-由2()0f x '=得222x e a x = 从而222222()(2)2x x e f x e ax x =-=-当22x =时,即24e a =时,极小值2()0f x =恰好成立,此时在()f x 在(0,)+∞只有一个零点2x =,满足题意.当224e e a <<时,即212x <<时(易证2xe x在(1,)+∞单调递增),极小值2()0f x >,此时在(0,)+∞无零点,不合题意.x当24e a >时,即22x >时,(0)10f =>,2()0f x <, 32(3)(3)0a f a e a a =-> (易证313x e x >恒成立),由零点存在性定理可知()f x 在区间2(0,)x 和2(,3)x a 各有一根,不合题意.综上所述,24e a =.。
高考导数常用知识点导数作为高中数学中重要的概念之一,在高考中占据着很大的比重。
掌握导数的常用知识点是解决导数相关问题的基础。
本文将介绍高考中常出现的导数知识点,帮助同学们在备考过程中更好地掌握导数的应用。
一、导数的定义与求导法则1. 导数的定义导数表示函数在某一点处的变化率,定义为函数变化的极限。
对于函数y=f(x),导数可表示为f'(x)、dy/dx或者y',其中f'(x)表示导数的常用符号。
2. 常用求导法则(1) 基本导数法则- 常数函数的导数为0;- 幂函数求导,指数为n的幂函数的导数为nx^(n-1);- 指数函数求导,底数为e的指数函数的导数仍然是它自己;- 对数函数求导,以e为底的对数函数的导数为1/x。
(2) 基本四则运算法则- 和差法则:(f±g)'=f'±g';- 乘法法则:(f·g)'=f'·g+g'·f;- 商法则:(f÷g)'=(f'·g-g'·f)/g^2。
(3) 复合函数的求导法则- 链式法则:若y=f(g(x)),则y'=(dy/dg)·(dg/dx)。
二、常用导数函数1. 基本初等函数的导数(1) 常数函数的导数为0;(2) 幂函数的导数为nx^(n-1),其中n为常数;(3) 指数函数的导数为e^x;(4) 对数函数的导数为1/x。
2. 三角函数的导数(1) 正弦函数的导数为cosx;(2) 余弦函数的导数为-sinx;(3) 正切函数的导数为sec^2x。
3. 反三角函数的导数(1) 反正弦函数的导数为1/√(1-x^2);(2) 反余弦函数的导数为-1/√(1-x^2);(3) 反正切函数的导数为1/(1+x^2)。
三、高级求导法则1. 高阶导数高阶导数指多次求导后得到的导函数。
数学高考知识点导数总结一、导数的定义1. 导数的定义:设函数y=f(x),若极限lim┬(Δx→0)(f(x+Δx)-f(x))/Δx存在,则称这一极限为函数y=f(x)在点x处的导数,记作f'(x),即f'(x)=lim┬(Δx→0)(f(x+Δx)-f(x))/Δx2. 几何意义:函数y=f(x)在点x处的导数f'(x)表示函数曲线在点(x,f(x))处的切线的斜率。
3. 物理意义:导数也可以表示物理上的速度、加速度等概念,即导数表示函数在某一点的瞬时变化率。
4. 导数的存在性:函数在某一点处存在导数的充分必要条件是函数在该点处的左、右导数存在且相等。
二、导数的计算1. 基本函数的导数:(1)常数函数:(k)'=0(2)幂函数:(xⁿ)'=nxⁿ⁻¹(3)指数函数:(aˣ)'=aˣlna(4)对数函数:(logₐx)'=1/(xlna)(5)三角函数:(sinx)'=cosx,(cosx)'=-sinx,(tanx)'=sec²x(6)反三角函数:(arcsinx)'=1/√(1-x²),(arccosx)'=-1/√(1-x²),(arctanx)'=1/(1+x²)2. 基本导数公式:(1)和差法则:(u±v)'=u'±v'(2)积法则:(uv)'=u'v+uv'(3)商法则:(u/v)'=(u'v-uv')/v²(4)复合函数求导:若y=u(v(x)),则y'=(du/dv)·v'(x)3. 隐函数求导:当函数关系式中含有自变量的隐函数,利用导数的基本运算法则以及求导公式进行求导。
4. 参数方程求导:设x=x(t),y=y(t),则dy/dx=(dy/dt)/(dx/dt)5. 高阶导数的计算:若函数f(x)的导数存在,则f'(x)也是一个函数,可以继续求导,得到f''(x)、f'''(x)等高阶导数。
高中高考导数考点知识点高中数学是高考的重要科目之一,其中导数是一个重要的考点。
导数是微积分中的一个重要概念,它是函数在某一点处的变化率。
在高考中,导数的考察主要涉及到函数的求导和应用。
本文将介绍高中高考导数考点的知识点,帮助同学们对导数的理解和掌握。
一、导数的定义和求导法则导数的定义是函数在某一点处的极限值,用符号f’(x)表示。
求导的法则主要包括常数的导数为0、幂函数的导数、指数函数和对数函数的导数、三角函数的导数以及求导法则的综合运用。
1.1 常数的导数为0常数函数的导数为0,即f'(c)=0,其中c为常数。
1.2 幂函数的导数幂函数f(x) = x^n (n为正整数)的导数为f'(x) = nx^(n-1)。
1.3 指数函数和对数函数的导数指数函数f(x) = a^x (a>0, a≠1)和自然对数函数f(x) = ln(x)的导数分别为f'(x) = a^xlna和f'(x) = 1/x。
1.4 三角函数的导数三角函数的导数是根据基本三角函数的导数法则得出的。
常用的三角函数的导数有:f'(x) = cos(x)、f'(x) = sin(x)、f'(x) = -sin(x)和f'(x) = cos(x)。
1.5 求导法则的综合运用在求导过程中,可以根据求导法则进行综合运用,例如使用常数乘法法则、和差法则、乘积法则、商法则和复合函数求导法则等。
二、导数的性质和运算法则导数具有一些重要的性质和运算法则,这些性质和法则在求导过程中起到了重要的作用。
2.1 导数的性质导数具有以下性质:导数存在的函数必然是连续的、导数可以表示切线的斜率、若在某点导数存在则函数在该点可导等。
2.2 导数的运算法则导数具有一些运算法则,如常数倍法则、和差法则、乘积法则、商法则、复合函数导数法则和逆函数导数法则等。
这些法则可以帮助我们更快地求得函数的导数。
高考函数导数知识点总结高考是每位学生人生中的重要阶段,而数学则是高考中最为重要的一门科目之一。
在高考数学中,函数导数是一个必备的知识点。
函数导数的掌握不仅能为学生在高考中取得更好的成绩,还能为其今后的学习和工作打下坚实的数学基础。
下面对常见的函数导数知识点进行总结和归纳,希望对高考学生有所帮助。
一、导数的定义和求法1. 导数的定义:导数是函数在某一点处的瞬时变化率,用极限的概念表示。
2. 导数的求法:- 基本求导公式:常数函数的导数为0;幂函数的导数为其指数乘以幂函数的底数的幂次减1。
- 乘法法则:若u(x)、v(x)为可导函数,则(uv)(x)的导数为u(x)·v'(x) + v(x)·u'(x)。
- 除法法则:若u(x)、v(x)为可导函数,并且v(x)不等于0,则(u/v)'(x)的导数为[u'(x)·v(x) - v'(x)·u(x)] / [v(x)]的平方。
- 复合函数求导法则:若y=f(u),u=g(x)为可导函数,则y=f(g(x))的导数为f'(u)·g'(x)。
二、常见函数的导数1. 幂函数及其特殊情况:- f(x) = ax^n的导数为f'(x) = a·n·x^(n-1)。
- f(x) = x^n的导数为f'(x) = n·x^(n-1)。
2. 三角函数及其反函数:- f(x) = sin(x)的导数为f'(x) = cos(x)。
- f(x) = cos(x)的导数为f'(x) = -sin(x)。
- f(x) = tan(x)的导数为f'(x) = sec^2(x)。
- f(x) = arcsin(x)的导数为f'(x) = 1/√(1-x^2)。
- f(x) = arccos(x)的导数为f'(x) = -1/√(1-x^2)。
新高考导数知识点归纳高中导数是高中数学中的一个重要概念,它描述了函数在某一点处的变化率。
新高考中,导数的知识点归纳主要包括以下几个方面:1. 导数的定义:导数是函数在某一点处切线的斜率,数学上定义为函数在某一点的极限值。
如果函数\( f(x) \)在点\( x_0 \)处可导,则其导数表示为\( f'(x_0) \)。
2. 导数的几何意义:导数的几何意义是曲线在某一点处的切线斜率,它反映了函数值随自变量变化的快慢。
3. 导数的物理意义:在物理学中,导数常用来描述速度和加速度。
例如,位移对时间的导数是速度,速度对时间的导数是加速度。
4. 基本导数公式:- 常数函数的导数是0。
- \( (x^n)' = nx^{n-1} \),其中\( n \)是实数。
- \( (\sin x)' = \cos x \),\( (\cos x)' = -\sin x \)。
- \( (e^x)' = e^x \)。
5. 导数的运算法则:- 和差法则:\( (f(x) \pm g(x))' = f'(x) \pm g'(x) \)。
- 乘积法则:\( (f(x)g(x))' = f'(x)g(x) + f(x)g'(x) \)。
- 商法则:\( \left(\frac{f(x)}{g(x)}\right)' =\frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2} \)。
- 链式法则:\( (f(g(x)))' = f'(g(x))g'(x) \)。
6. 高阶导数:高阶导数是导数的导数,例如一阶导数的导数称为二阶导数,记作\( f''(x) \)。
7. 导数的应用:- 求函数的极值点。
- 判断函数的凹凸性。
- 求解实际问题,如最优化问题。
8. 隐函数求导:当函数以隐式形式给出时,求导需要使用隐函数求导法则。
第二章 函数与导数第7课时 指数函数、对数函数及幂函数(1)第三章 (对应学生用书(文)、(理)20~21页),1. (必修1P 63习题2改编)用分数指数幂表示下列各式(a>0,b>0): (1) 3a 2=________;(2) a a a =________;(3) ⎝⎛⎭⎫3a 2·ab 3=________.答案:(1) a 23 (2) a 78 (3) a 76b 322. (必修1P 80习题6改编)计算:(lg5)2+lg2×lg50=________. 答案:1解析:原式=(lg5)2+lg2×(1+lg5)=lg5(lg2+lg5)+lg2=1.3. (必修1P 80习题12改编)已知lg6=a ,lg12=b ,则用a 、b 表示lg24=________. 答案:2b -a解析:lg24=lg 1446=2lg12-lg6=2b -a.4. (必修1P 63习题6改编)若a +a -1=3,则a 32-a -32=______.答案:±4解析:a 32-a -32=(a 12-a -12)(a +a -1+1).∵ (a 12-a -12)2=a +a -1-2=1,∴ (a 12-a -12)=±1,∴ 原式=(±1)×(3+1)=±4. 5. 已知实数a 、b 满足等式⎝ ⎛⎭⎪⎫12a =⎝ ⎛⎭⎪⎫13b,下列五个关系式:① 0<b <a ;② a<b <0;③ 0<a <b ;④ b<a <0;⑤ a=b. 其中所有不可能成立的关系式为________.(填序号) 答案:③④解析:条件中的等式⇔2a =3b⇔a lg2=b lg3.若a ≠0,则lg2lg3b a =∈(0,1).(1)当a >0时,有a >b >0,即关系式①成立,而③不可能成立; (2)当a <0时,则b <0,b >a ,即关系式②成立,而④不可能成立; 若a =0,则b =0,故关系式⑤可能成立.1. 根式(1) 根式的概念① n a n=⎩⎪⎨⎪⎧a (n 为奇数),|a|=⎩⎪⎨⎪⎧a (a≥0),-a (a<0)(n 为偶数); ② (n a)n =a(注意a 必须使na 有意义). 2. 有理指数幂(1) 分数指数幂的表示① 正数的正分数指数幂是a mn ,m 、n∈N *,n>1); ② 正数的负分数指数幂是a -m n =1a m n=1(a>0,m 、n∈N *,n>1);③ 0的正分数指数幂是0,0的负分数指数幂无意义.(2) 有理指数幂的运算性质① a s a t =a s +t(a>0,t 、s∈Q );② (a s )t =a st(a>0,t 、s∈Q );③ (ab)t =a t b t(a>0,b >0,t∈Q ). 3. 对数的概念 (1) 对数的定义如果a b=N ,那么就称b 是以a 为底N 的对数,记作log a N =b ,其中a 叫做对数的底数,N 叫做真数.(2) 几种常见对数4. 对数的性质与运算法则 (1) 对数的性质① alog a N =N ;② log a a N=N(a>0且a≠1). (2) 对数的重要公式① 换底公式:log b N =log a N log a b (a 、b 均大于零且不等于1);② log a b =1log b a .(3)对数的运算法则如果a>0且a≠1,M>0,N>0,那么 ① log a (MN)=log a M +log a N ; ② log a MN =log a M -log a N ;③ log a M n=nlog a M (n∈R ); ④ log am M n=n m log a M.[备课札记]题型1 指数幂的运算例1 化简下列各式(其中各字母均为正数): (1) 1.5-13×⎝ ⎛⎭⎪⎫-760+80.25×42+(32×3)6-⎝ ⎛⎭⎪⎫2323; (2) (a 23·b -1)-12·a -12·b 136a ·b 5;(3) a 43-8a 13b 4b 23+23ab +a 23÷⎝ ⎛⎭⎪⎫1-23b a ×3a.解:(1) 原式=⎝ ⎛⎭⎪⎫2313+234×214+22×33-⎝ ⎛⎭⎪⎫2313=2+108=110.(2) 原式=a -13·b 12·a -12·b 13a 16·b 56=a -13-12-16·b 12+13-56=1a.(3) 原式=a 13(a -8b )(2b 13)2+2b 13a 13+(a 13)2×a 13a 13-2b 13×a 13=a 13(a -8b )a -8b×a 13×a 13=a.备选变式(教师专享) 化简下列各式:(1) 12523+⎝ ⎛⎭⎪⎫12-2+34313-⎝ ⎛⎭⎪⎫127-13;(2) 56a 13·b -2·(-3a -12b -1)÷(4a 23·b -3)12.解:(1)33;(2)-5ab 4ab 2.题型2 对数的运算例2 求下列各式的值.(1) log 535+2log 12 2-log 5150-log 514;(2) log 2125×log 318×log 519.解:(1) 原式=log 535×5014+2log 12212=log 553-1=2.(2) 原式=lg 125lg2×lg 18lg3×lg 19lg5=-2lg5lg2×-3lg2lg3×-2lg3lg5=-12.变式训练(1) 计算:lg 12-lg 58+lg12.5-log 89·log 278;(2) 已知log 189=a ,18b=5,用a 、b 表示log 3645.解:(1) 原式=lg ⎝ ⎛⎭⎪⎫1258×12.5-lg9lg8·lg8lg27=1-2lg33lg3=13. (2) 由题意,得b =log 185,故log 3645=log 1845log 1836=log 189+log 185log 18324-log 189=a +b2-a.题型3 指数与对数的混合运算例3 已知实数x 、y 、z 满足3x =4y =6z>1. (1) 求证:2x +1y =2z;(2) 试比较3x 、4y 、6z 的大小.(1) 证明:令k =3x =4y =6z>1,则x =log 3k ,y =log 4k ,z =log 6k ,于是1x =log k 3,1y =log k 4,1z =log k 6,从而2x +1y =2log k 3+log k 4=log k 32+log k 4=log k 36=2log k 6,等式成立.(2) 解:由于k >1,故x 、y 、z >0.3x 4y =3log 3k 4log 4k =3lgklg34lgk lg4=3lg44lg3=lg43lg34=lg64lg81<1; 4y 6z =2log 4k 3log 6k =2lgklg43lgk lg6=2lg63lg4=lg62lg43=lg36lg64<1, 故3x <4y <6z.备选变式(教师专享)若xlog 34=1,求23x-2-3x2x +2-x 的值.解:由xlog 34=1,知4x=3, ∴23x-2-3x2x +2-x =()2x -2-x ()22x +2-2x +12x+2-x=(22x -1)(22x +2-2x+1)22x+1=(3-1)⎝ ⎛⎭⎪⎫3+13+13+1=136.1. (2013·四川)计算:lg 5+lg 20=________. 答案:1解析:lg 5+lg 20=lg(5×20)=lg10=1.2. (2013·长春调研)已知函数f(x)=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12x,x ≥4,f (x +1),则f(2+log 23)=________.答案:124解析:由3<2+log 23<4,得3+log 23>4,所以f(2+log 23)=f(3+log 23)=⎝ ⎛⎭⎪⎫123+log 23=⎝ ⎛⎭⎪⎫12log 224=124. 3. (2013·新课标)已知a =log 36,b =log 510,c =log 714,则a 、b 、c 的大小关系为________.答案:a>b>c解析:a =log 36=1+log 32,b =1+log 52,c =1+log 72,由于log 32>log 52>log 72,所以a>b>c.4. (2013·温州二模)已知2a =3b =6c,若a +b c ∈(k ,k +1),则整数k 的值是________.答案:4解析:设2a =3b =6c=t ,则a =log 2t ,b =log 3t ,c =log 6t ,所以a +b c =log 2t log 6t +log 3t log 6t =log t 6log t 2+log t 6log t 3=log 26+log 36=2+log 23+log 32.因为2<log 23+log 32<3,所以4<a +bc <5,即整数k 的值是4.1. 设a =lge ,b =(lge)2,c =lg e ,则a 、b 、c 的大小关系是________.答案:a >c >b解析:本题考查对数函数的增减性,由1>lge>0,知a>b.又c =lge ,作商比较知c>b ,故a>c>b.2. 已知三数x +log 272,x +log 92,x +log 32成等比数列,则公比为________. 答案:3解析:∵ 三数x +log 272,x +log 92,x +log 32成等比数列,∴ (x +log 92)2=(x +log 272)(x +log 32),即⎝ ⎛⎭⎪⎫x +12log 322=⎝ ⎛⎭⎪⎫x +13log 32(x +log 32),解得x =-14log 32,∴ 公比q =x +log 32x +12log 32=3.3. 设a >1,若对任意的x∈[a,2a],都有y∈[a,a 2]满足方程log a x +log a y =3,则a 的取值范围是________.答案:a≥2解析:∵ a>1,x ∈[a ,2a], ∴ log a x ∈[1,1+log a 2].又由y∈[a,a 2],得 log a y∈[1,2], ∵ log a y =3-log a x ,∴ 3-log a x ∈[1,2], ∴ log a x ∈[1,2],∴ 1+log a 2≤2,log a 2≤1,即a≥2.4. 已知m 、n 为正整数,a >0且a≠1,且log a m +log a ⎝ ⎛⎭⎪⎫1+1m +log a ⎝ ⎛⎭⎪⎫1+1m +1+…+log a ⎝ ⎛⎭⎪⎫1+1m +n -1=log a m +log a n ,求m 、n 的值.解:左边=log a m +log a ⎝ ⎛⎭⎪⎫m +1m +log a ⎝ ⎛⎭⎪⎫m +2m +1+…+log a ⎝ ⎛⎭⎪⎫m +n m +n -1=log a ⎝ ⎛⎭⎪⎫m·m +1m ·m +2m +1·…·m +n m +n -1=log a (m +n),∴ 已知等式可化为log a (m +n)=log a m +log a n =log a mn. 比较真数得m +n =mn ,即(m -1)(n -1)=1.∵ m 、n 为正整数,∴ ⎩⎪⎨⎪⎧m -1=1,n -1=1,解得⎩⎪⎨⎪⎧m =2,n =2.1. 根式与分数指数幂的实质是相同的,通常利用分数指数幂的意义把根式的运算转化为幂的运算,从而可以简化计算过程.2. 对数运算法则是在化同底的情况下进行的,在对含有字母的对数式化简时必须保证恒等变形.3. 在解决指数、对数问题时,指数式与对数式的互化起着重要作用.请使用课时训练(B )第7课时(见活页).[备课札记]。
第1讲导数的概念及运算一、填空题1.设y=x2e x,则y′=________.解析y′=2x e x+x2e x=(2x+x2)e x.答案(2x+x2)e x2.已知函数f(x)的导函数为f′(x),且满足f(x)=2x·f′(1)+ln x,则f′(1)=________.解析由f(x)=2xf′(1)+ln x,得f′(x)=2f′(1)+1 x,∴f′(1)=2f′(1)+1,则f′(1)=-1.答案-13.曲线y=sin x+e x在点(0,1)处的切线方程是________.解析y′=cos x+e x,故切线斜率为k=2,切线方程为y=2x+1,即2x -y+1=0.答案2x-y+1=04.(2017·苏州调研)已知曲线y=ln x的切线过原点,则此切线的斜率为________.解析y=ln x的定义域为(0,+∞),且y′=1x,设切点为(x0,ln x0),则y′|x=x0=1x0,切线方程为y-ln x0=1x0(x-x0),因为切线过点(0,0),所以-ln x0=-1,解得x0=e,故此切线的斜率为1 e.答案1 e5.若曲线y=ax2-ln x在点(1,a)处的切线平行于x轴,则a=________.解析因为y′=2ax-1x,所以y′|x=1=2a-1.因为曲线在点(1,a)处的切线平行于x轴,故其斜率为0,故2a-1=0,解得a=1 2.答案1 26.(2017·南师附中月考)如图,y=f(x)是可导函数,直线l:y=kx+2是曲线y=f(x)在x=3处的切线,令g(x)=xf(x),其中g′(x)是g(x)的导函数,则g′(3)=________.解析由图形可知:f(3)=1,f′(3)=-13,∵g′(x)=f(x)+xf′(x),∴g′(3)=f(3)+3f′(3)=1-1=0. 答案07.(2017·苏北四市模拟)设曲线y=1+cos xsin x在点⎝⎛⎭⎪⎫π2,1处的切线与直线x-ay+1=0平行,则实数a=________.解析∵y′=-1-cos xsin2x,∴由条件知1a=-1,∴a=-1.答案-18.(2015·全国Ⅱ卷)已知曲线y=x+ln x在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=________.解析由y=x+ln x,得y′=1+1x,得曲线在点(1,1)处的切线的斜率为k=y′|x=1=2,所以切线方程为y-1=2(x-1),即y=2x-1.又该切线与y=ax2+(a+2)x+1相切,消去y,得ax2+ax+2=0,∴a≠0且Δ=a2-8a=0,解得a=8.答案8二、解答题9.已知点M是曲线y=13x3-2x2+3x+1上任意一点,曲线在M处的切线为l,求:(1)斜率最小的切线方程;(2)切线l 的倾斜角α的取值范围.解 (1)y ′=x 2-4x +3=(x -2)2-1≥-1,所以当x =2时,y ′=-1,y =53,所以斜率最小的切线过点⎝ ⎛⎭⎪⎫2,53,斜率k =-1, 所以切线方程为3x +3y -11=0.(2)由(1)得k ≥-1,所以tan α≥-1,所以α∈⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫3π4,π. 10.已知曲线y =x 3+x -2在点P 0处的切线l 1平行于直线4x -y -1=0,且点P 0在第三象限.(1)求P 0的坐标;(2)若直线l ⊥l 1,且l 也过切点P 0,求直线l 的方程.解 (1)由y =x 3+x -2,得y ′=3x 2+1,由已知令3x 2+1=4,解之得x =±1.当x =1时,y =0;当x =-1时,y =-4.又∵点P 0在第三象限,∴切点P 0的坐标为(-1,-4).(2)∵直线l ⊥l 1,l 1的斜率为4,∴直线l 的斜率为-14.∵l 过切点P 0,点P 0的坐标为(-1,-4),∴直线l 的方程为y +4=-14(x +1),即x +4y +17=0.11.(2016·山东卷改编)若函数y =f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y =f (x )具有T 性质,下列函数:①y =sin x ;②y =ln x ;③y =e x ;④y =x 3.其中具有T 性质的是________(填序号).解析 若y =f (x )的图象上存在两点(x 1,f (x 1)),(x 2,f (x 2)),使得函数图象在这两点处的切线互相垂直,则f ′(x 1)·f ′(x 2)=-1.对于①:y ′=cos x ,若有cos x 1·cos x 2=-1,则当x 1=2k π,x 2=2k π+π(k∈Z)时,结论成立;对于②:y′=1x,若有1x1·1x2=-1,即x1x2=-1,∵x1>0,x2>0,∴不存在x1,x2,使得x1x2=-1;对于③:y′=e x,若有e x1·e x2=-1,即e x1+x2=-1.显然不存在这样的x1,x2;对于④:y′=3x2,若有3x21·3x22=-1,即9x21x22=-1,显然不存在这样的x1,x2.答案①12.(2017·合肥模拟改编)点P是曲线x2-y-ln x=0上的任意一点,则点P到直线y=x-2的最小距离为________.解析点P是曲线y=x2-ln x上任意一点,当过点P的切线和直线y=x-2平行时,点P到直线y=x-2的距离最小,直线y=x-2的斜率为1,令y=x2-ln x,得y′=2x-1x=1,解得x=1或x=-12(舍去),故曲线y=x2-ln x上和直线y=x-2平行的切线经过的切点坐标为(1,1),点(1,1)到直线y=x-2的距离等于2,∴点P到直线y=x-2的最小距离为 2.答案 213.若函数f(x)=12x2-ax+ln x存在垂直于y轴的切线,则实数a的取值范围是________.解析∵f(x)=12x2-ax+ln x,∴f′(x)=x-a+1x(x>0).∵f(x)存在垂直于y轴的切线,∴f′(x)存在零点,即x+1x-a=0有解,∴a=x+1x≥2(当且仅当x=1时取等号).答案[2,+∞)14.已知函数f(x)=x-2x,g(x)=a(2-ln x)(a>0).若曲线y=f(x)与曲线y=g(x)在x=1处的切线斜率相同,求a的值,并判断两条切线是否为同一条直线.解根据题意有f′(x)=1+2x2,g′(x)=-ax.曲线y=f(x)在x=1处的切线斜率为f′(1)=3,曲线y=g(x)在x=1处的切线斜率为g′(1)=-a,所以f′(1)=g′(1),即a=-3.曲线y=f(x)在x=1处的切线方程为y-f(1)=3(x-1).所以y+1=3(x-1),即切线方程为3x-y-4=0.曲线y=g(x)在x=1处的切线方程为y-g(1)=3(x-1),所以y+6=3(x-1),即切线方程为3x-y-9=0,所以,两条切线不是同一条直线.。
专题02 函数与导数小题部分【训练目标】1、 理解函数的概念,会求函数的定义域,值域和解析式,特殊是定义域的求法;2、 驾驭函数单调性,奇偶性,周期性的推断方法及相互之间的关系,会解决它们之间的综合问题;3、 驾驭指数和对数的运算性质,对数的换底公式;4、 驾驭指数函数和对数函数的图像与性质;5、 驾驭函数的零点存在定理,函数与方程的关系;6、 娴熟数形结合的数学思想在解决函数问题的运用;7、 娴熟驾驭导数的计算,导数的几何意义求切线问题;8、 理解并驾驭导数与函数单调性之间的关系,会利用导数分析函数的单调性,会依据单调性确定参数的取值范围;9、 会利用导数求函数的极值和最值,驾驭构造函数的方法解决问题。
【温馨小提示】本章内容既是高考的重点,又是难点,再备考过程中应当大量解出各种题型,总结其解题方法,积累一些常用的小结论,会给解题带来极大的便利。
【名校试题荟萃】1、(福建省“永安一中、德化一中、漳平一中”2025届高三上学期12月三校联考)已知函数,若()1f x =-,则x = .【答案】12【解析】问题等价于;,无解。
2、(福建省“永安一中、德化一中、漳平一中”2025届高三上学期12月三校联考)已知函数1()1x f x x +=-的图像在点2,(2)f 处的切线与直线10ax y 平行,则实数a.A 2 .B 12 .C 12- D .2- 【答案】A【解析】由于,依据导数的几何意义及两直线平行的条件可知 。
3、(福建省上杭县第一中学2025届高三上学期期中考试)函数的图象可能是( )【答案】D【解析】先由推断函数的奇偶性可知函数为奇函数,图像关于原点对称,解除A,B ;当,解除C ,故选D 。
4、(福建省上杭县第一中学2025届高三上学期期中考试)已知函数()f x 是定义域为R 的偶函数,且,若()f x 在[]1,0-上是减函数,记,, ()0.52c f =,则( )A . a b c >>B . a c b >>C . b a c >>D . b a c >> 【答案】B5、(福建省上杭县第一中学2025届高三上学期期中考试)已知定义域为),0(+∞,为的导函数,且满意,则不等式的解集是( )A . )2,0(B . ),2(+∞C . )3,2(D . ),3(+∞ 【答案】D 【解析】构造函数,求导结合可知函数()g x 在定义域),0(+∞为减函数,不等式可化为,等价于,解得结果为),3(+∞。
第1页/共6页
2019高考数学高频考点提分密码第二部分
导数
作者:佚名
一、考试要求:
1、了解导数概念的实际背景。
2、理解导数的几何意义。
3、掌握函数y=xn(n∈N+)的导数公式,会求多项式函数的导数。
4、理解极大值、极小值、最大值、最小值的概念,并会用导数求多
项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值。
5、会利用导数求最大值和最小值的方法,解决科技、经济、社会中
的某些简单实际问题。
二、知识与方法
1、导数的定义
设函数y=f(x)在点x0及其近旁有定义,当自变量x在x0处有增量(或
称改为量)△x,那么函数y相应的有增量(或称改变量)△y,
△y=f(x0+△x)-f(x0)
比值就叫做函数y=f(x)在x0到x0+△x之间的平均变化率.
如果当△x→0时,有极限,我们就说函数y=f(x)在x0处可导,并把
这个极限值叫做函数f(x)在x0处的导数(或称变化率),记作f′(x0)
或y′|x=x0或f′(x)|x=x0.即:
f′(x0)=
这里须指出:f′(x0)是函数y=f(x)在x0点的导数值,瞬时速度就是位
第2页/共6页
移函数s(t)在点t0处的导数,即:S′(t0)=
2、求函数y=f(x)在x0点处的导数的步骤
⑴求函数的增量△y=f(x0+△x)-f(x0)
⑵求平均变化率:=.
⑶取极限,求函数在x0点的变化率,即导数:f′(x0)=.
3、“函数f(x)在点x0处的导数”、“导函数”及“导数”的概念间的区别
与联系:
⑴函数在一点处的导数,就是在该点的函数增量△y=f(x0+△x)-f(x0)
与自变量的增量△x之比的极限。它是一个常数,不是变量。
⑵如果函数y=f(x)在区间(a,b)内每一点处均可导,这时称y=f(x)在区
间(a,b)内可导,对于区间(a,b)内一个确定的值x0,都对应着一个确定
的导数f′(x0),这样的对应就构成了以区间(a,b)为定义域的一个新函
数,称为函数f(x)的导函数,简称导数,所以函数的导数是对某一区
间内任意一点x而言的。
⑶y=f(x)在x=x0处的导数f′(x0)就是导函数f′(x)在x=x0处的函数值,
即f′(x)|=f′(x0),值得注意的是:f′(x0)≠[f(x0)]′
4、导数的几何意义
⑴函数f(x)在点x0处有导数,则函数f(x)的曲线在该点处必有切线,
且导数值是该切线的斜率;但函数f(x)的曲线在点x0处有切线,函
数f(x)在该点处不一定可导。如f(x)=在x=0有切线,但不可导。
⑵函数y=f(x)在点x0处的导数的几何意义是指:曲线y=f(x)在点
P(x0,f(x0))处切线的斜率,即曲线y=f(x)在点P(x0,f(x0))处的切线的斜
第3页/共6页
率是f′(x0),切线方程为y-f(x0)=f′(x0)(x-x0)
5、常见函数的导数公式
⑴C′=0(C为常数)⑵(xn)′=nxn-1(n∈Q)
6、可导函数四则运算法则
设函数f(x)、g(x)都是可导函数,则:
(f(x)±g(x))′=f′(x)±g′(x)
三、导数的应用
1、利用导数判断函数的单调性
设函数y=f(x)在某区间内可导,并且在该区间内,f′(x)0,则f(x)在该
区间内为增函数;若在该区间内,f′(x)0,则f(x)在该区间内为减函数.
指出:若可导函数只有某区间的个别点处导数等于零,不影响函数在
该区间内的单调性,如y=x3,在(-∞,+∞)内,y=3x2≥0(只在x=0处y′=0)
不影响y=x3在(-∞,+∞)内为单调增加.
2、求可导函数f(x)单调区间的一般方法和步骤如下:
⑴确定函数f(x)的定义区间;
⑵求函数f(x)的导数f′(x);
⑶令f′(x)0,所得x的范围(区间)为函数f(x)的单调增区间;令f′(x)0,
得单调减区间.
3、利用导数求函数的极值
⑴极值的定义:设函数f(x)在点x0附近有定义,如果对x0左右近旁
的所有x值,都有
f(x)f(x0)
第4页/共6页
我们就说f(x0)是函数f(x)的一个极大值,记作y极大值=f(x0),
如果对x0左右近旁的所有x值,都有f(x)f(x0)
我们就说f(x0)是f(x)的一个极小值,记作y极小值=f(x0)
极大值、极小值统称为f(x)的极值.
指出:一个函数在给定区间上的极小值不一定小于极大值.(即极小值
可以大于或等于极大值);极值是函数的局部性质,它仅与左右近旁
的函数值进行比较;极值点一定是区间的内点。导数为零的点是该点
为极值点的必要条件,不是充分条件。
⑵极值的判定方法。
当函数f(x)在x0处连续时,判别f(x0)是极大(小)值的方法是:
①如果在x0在左侧近旁f′(x0)0,右侧近旁f′(x0)0,那么f(x0)是极大
值;
②如果在x0在左侧近旁f′(x0)0,右侧近旁f′(x0)0,那么f(x0)是极小
值.
⑶求函数的极值的步骤:
①求函数的定义域
②求导数f′(x)
③求导数f′(x)=0的根.
④检查f′(x)在方程f′(x)=0的根的左右的符号,如果左正、右负,那
么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处
取得极小值.
4、函数的最大值与最小值
第5页/共6页
⑴闭区间上的连续函数一定有最大值和最小值.(开区间上的连续函数
不一定有最大值和最小值).
⑵求闭区间[a,b]上的连续函数f(x)的最大值和最小值的步骤:
①求f(x)在(a,b)内的极值;
宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教谕”。至
元明清之县学一律循之不变。明朝入选翰林院的进士之师称“教习”。
到清末,学堂兴起,各科教师仍沿用“教习”一称。其实“教谕”在明清
时还有学官一意,即主管县一级的教育生员。而相应府和州掌管教育
生员者则谓“教授”和“学正”。“教授”“学正”和“教谕”的副手一律称“训
导”。于民间,特别是汉代以后,对于在“校”或“学”中传授经学者也
称为“经师”。在一些特定的讲学场合,比如书院、皇室,也称教师为
“院长、西席、讲席”等。②将f(x)的各极值与端点函数值f(a)、f(b)比
较,其中最大的一个是最大值,最小的一个是最小值.
“教书先生”恐怕是市井百姓最为熟悉的一种称呼,从最初的门馆、私
塾到晚清的学堂,“教书先生”那一行当怎么说也算是让国人景仰甚或
敬畏的一种社会职业。只是更早的“先生”概念并非源于教书,最初出
现的“先生”一词也并非有传授知识那般的含义。《孟子》中的“先生何
为出此言也?”;《论语》中的“有酒食,先生馔”;《国策》中的“先生
坐,何至于此?”等等,均指“先生”为父兄或有学问、有德行的长辈。
其实《国策》中本身就有“先生长者,有德之称”的说法。可见“先生”
之原意非真正的“教师”之意,倒是与当今“先生”的称呼更接近。看来,
“先生”之本源含义在于礼貌和尊称,并非具学问者的专称。称“老师”
第6页/共6页
为“先生”的记载,首见于《礼记?曲礼》,有“从于先生,不越礼而与
人言”,其中之“先生”意为“年长、资深之传授知识者”,与教师、老
师之意基本一致。⑶如果函数f(x)在开区间(a,b)或(-∞,+∞)内可导且
有惟一的极值点x0,那么当f(x0)是极大值时,f(x0)就是f(x)在该区
间上的最大值;当f(x0)是极小值时,f(x0)就是f(x)在该区间上的最小
值.
宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教谕”。至
元明清之县学一律循之不变。明朝入选翰林院的进士之师称“教习”。
到清末,学堂兴起,各科教师仍沿用“教习”一称。其实“教谕”在明清
时还有学官一意,即主管县一级的教育生员。而相应府和州掌管教育
生员者则谓“教授”和“学正”。“教授”“学正”和“教谕”的副手一律称“训
导”。于民间,特别是汉代以后,对于在“校”或“学”中传授经学者也
称为“经师”。在一些特定的讲学场合,比如书院、皇室,也称教师为
“院长、西席、讲席”等。
⑷对于实际问题,如果连续函数f(x)在区间(a,b)内只有一个点使
f′(x)=0,而且实际问题本身又可以知道f(x)在(a,b)内必定取得最大值
或最小值,则f(x0)就是所求的最大值或最小值,这时也就无须判断
是极大值还是极小值.点击查看全部《2019高考数学高频考点、提分
密码(10份)》