高中18-4玻尔的原子模型教案
- 格式:doc
- 大小:42.00 KB
- 文档页数:6
高中物理18.4 波尔的原子模型导学案新人教版选修18、4 波尔的原子模型导学案新人教版选修3-5【学习目标】1、知道玻尔原子理论的基本假设、2、知道能级、能级跃迁,会计算原子能级跃迁时辐射或吸收光子的能量、3、知道玻尔对氢光谱的解释以及玻尔理论的局限性、【重点难点】1、玻尔原子理论的基本假设、2、会计算原子能级跃迁时辐射或吸收光子的能量、【学习内容】课前自学一、玻尔原子理论的基本假设1、轨道量子化围绕原子核运动的电子轨道半径只能是某些_______、_______数值,这种现象叫做轨道量子化、2、能量量子化(1)定态:电子在不同的轨道对应不同的____,在这些状态中尽管电子在做变速运动,却不向外________,在这些状态中原子是_____、(2)能量量子化:电子在不同轨道对应不同的状态,原子在不同的状态中具有不同的____,因轨道是量子化的,所以原子的能量也是_________,____________实验充分说明了这一点、 (3)能级:把量子化的_______称为能级,其中能量最低的状态叫做基态,其他的状态叫做_______、处于____的原子最稳定、3、跃迁条件(1)跃迁:当电子由能量较高(较低)的定态轨道跳到能量较低(较高)的定态轨道的过程、(2)电磁辐射:当电子在不同的定态轨道间跃迁时就会放出或吸收一定频率的______,光子的能量值为:hν=________ (其中h是普朗克常量,ν是光子的频率,Em是高能级能量,En是低能级能量)、4、几个基本概念(1)量子数:现代物理学认为原子的可能状态是________,各状态的标号1,2,3,4,……,叫做______,一般用n表示、 (2)基态:原子能量_____的状态、(3)激发态:原子能量较____的状态(相对于基态)、(4)电离:原子丢失____的过程、二、玻尔理论对氢光谱的解释原子从较高的能态向低能态跃迁时,放出光子的能量等于前后两个能级之差,由于原子的能级是分立的,所以放出的光子的能量也是分立的,因此原子的发射光谱只有一些分立的亮线、三、玻尔模型的局限性1、玻尔理论的成功之处玻尔理论第一次将_____观念引入原子领域、提出了定态和____的概念,成功解释了氢原子光谱的实验规律、2、玻尔理论的局限性过多地保留了经典理论,即保留经典粒子的观念,把电子的运动看做经典力学描述下的轨道运动、核心知识探究一、玻尔氢原子理论1、轨道量子化围绕原子核运动的电子轨道半径只能是某些分立的数值,这种现象叫轨道量子化,例如:r1=0、053 nm,r2=0、212 nm,r3=0、477 nm…,即rn=n2r1,n=1,2,3,2、定态及原子能量量子化不同的电子轨道对应着不同的原子状态,在这些状态中不向外辐射能量,这就是定态、原子在不同的定态中具有不同的能量,能量是量子化的、例如:E1=-13、6 eV,E2=-3、4 eV,E3=-1、51 eV…,即En=,n=1,2,3…、3、原子的能级跃迁原子从一个定态跃迁到另一个定态,它辐射或吸收一定频率的光子,即hν=Em-En,从高能级向低能级跃迁时辐射能量,反之吸收能量,辐射或吸收的能量为两能级的能级差、二、原子跃迁注意的几个问题1、跃迁与电离跃迁是指原子从一个定态到另一个定态的变化过程,而电离则是指原子核外的电子获得一定能量挣脱原子核的束缚成为自由电子的过程、2、原子跃迁条件与规律原子的跃迁条件hν=E初-E终适用于光子和原子作用而使原子在各定态之间跃迁的情况,以下两种情况则不受此条件限制、 (1)光子和原子作用而使原子电离的情况原子一旦电离,原子结构即被破坏,因而不再遵守有关原子结构的理论、如基态氢原子的电离能为13、6 eV,只要大于或等于13、6 eV的光子都能被基态的氢原子吸收而发生电离,只不过入射光子的能量越大,原子电离后产生的自由电子的动能越大、 (2)实物粒子和原子作用而使原子激发的情况当实物粒子和原子相碰时,由于实物粒子的动能可全部或部分地被原子吸收,所以只要入射粒子的动能大于或等于原子某两定态能量之差,均可以使原子受激发而向较高能级跃迁,但原子所吸收的能量仍不是任意的,一定等于原子发生跃迁的两个能级间的能量差、3、直接跃迁与间接跃迁原子从一种能量状态跃迁到另一种能量状态时,有时可能是直接跃迁,有时可能是间接跃迁、两种情况下辐射(或吸收)光子的频率可能不同、4、一个原子和一群原子氢原子核外只有一个电子,这个电子在某个时刻只能处在某一个可能的轨道上,在某段时间内,由某一轨道跃迁到另一个轨道时,可能的情况只有一种,但是如果容器中盛有大量的氢原子,这些原子的核外电子跃迁时就会有各种情况出现了、即:一群氢原子处于量子数为n的激发态时,可能辐射出的光谱条数为N==C,而一个氢原子处于量子数为n的激发态上时,最多可辐射出n-1条光谱线、5、跃迁时电子动能、原子势能与原子能量的变化当轨道半径减小时,库仑引力做正功,原子的电势能Ep减小,电子动能增大,原子能量减小向外辐射能量、反之,轨道半径增大时,原子电势能增大,电子动能减小,原子能量增大,从外界吸收能量、【课堂小结与反思】【课后作业与练习】1、玻尔在他提出的原子模型中所作的假设有()A、原子处在具有一定能量的定态中,虽然电子做变速运动,但不向外辐射能量B、原子的不同能量状态与电子沿不同的圆轨道绕核运动相对应,而电子的可能轨道的分布是不连续的C、电子从一个轨道跃迁到另一个轨道时,辐射(或吸收)一定频率的光子D、电子跃迁时辐射的光子的频率等于电子绕核做圆周运动的频率2、氢原子的核外电子由离原子核较远的轨道跃迁到离核较近的轨道上时,下列说法中正确的是()A、氢原子的能量增加B、氢原子的能量减少C、氢原子要吸收一定频率的光子D、氢原子要放出一定频率的光子3、仔细观察氢原子的光谱,发现它只有几条不连续的亮线,其原因是()A、氢原子只有几个能级B、氢原子只能发出平行光C、氢原子有时发光,有时不发光D、氢原子辐射的光子的能量是不连续的,所以对应的光的频率也是不连续的4、根据玻尔的氢原子理论,电子在各条可能轨道上运动的能量是指()A、电子的动能B、电子的电势能C、电子的电势能与动能之和D、电子的动能、电势能和原子核能之和5、氢原子辐射出一个光子后()A、电子绕核旋转半径增大B、电子的动能增大C、氢原子的电势能增大D、原子的能级增大6、根据玻尔理论解释的氢原子模型,量子数n越大,则( )A、电子运动轨道半径越大B、核外电子绕行速率越大C、氢原子定态能量越大D、原子的电势能越大7、氢原子从基态跃迁到激发态时,下列论述中正确的是( )A、动能变大,势能变小,总能量变小B、动能变小,势能变大,总能量变大C、动能变大,势能变大,总能量变大D、动能变小,势能变小,总能量变小8、下列叙述中,哪些符合玻尔理论( )A、电子可能轨道的分布是不连续的B、电子从一条轨道跃迁到另一个轨道上时,原子将辐射或吸收一定的能量C、电子的可能轨道上绕核做加速运动,不向外辐射能量D、电子没有确定的轨道,只存在电子云9、根据玻尔氢原子模型,氢原子核外一个电子在第一轨道、第二轨道分别运行时,它运动的( )A、轨道半径之比为1:4B、运行速率之比为4:1C、运行周期之比为1:8D、动能之比为4:1。
4 原子的核式结构模型三维教学目标1、知识与技能(1)了解原子结构模型建立的历史过程及各种模型建立的依据;(2)知道粒子散射实验的实验方法和实验现象,及原子核式结构模型的主要内容。
2、过程与方法(1)通过对粒子散射实验结果的讨论与交流,培养学生对现象的分析中归纳中得出结论的逻辑推理能力;(2)通过核式结构模型的建立,体会建立模型研究物理问题的方法,理解物理模型的演化及其在物理学发展过程中的作用;(3)了解研究微观现象。
3、情感、态度与价值观(1)通过对原子模型演变的历史的学习,感受科学家们细致、敏锐的科学态度和不畏权威、尊重事实、尊重科学的科学精神;(2)通过对原子结构的认识的不断深入,使学生认识到人类对微观世界的认识是不断扩大和加深的,领悟和感受科学研究方法的正确使用对科学发展的重要意义。
教学重点:(1)引导学生自主思考讨论在于对粒子散射实验的结果分析从而否定葡萄干布丁模型,得出原子的核式结构;(2)在教学中渗透和让学生体会物理学研究方法,渗透三个物理学方法:模型方法,黑箱方法和微观粒子的碰撞方法。
教学难点:引导学生小组自主思考讨论在于对粒子散射实验的结果分析从而否定葡萄干布丁模型,得出原子的核式结构教学方法:教师启发、引导,学生讨论、交流。
教学用具:投影片,多媒体辅助教学设备。
(一)引入新课汤姆生发现电子,根据原子呈电中性,提出了原子的葡萄干布丁模型。
用动画展示原子葡萄干布丁模型。
(二)进行新课αααα1、粒子散射实验原理、装置(1)粒子散射实验原理:问题:汤姆生提出的葡萄干布丁原子模型是否对呢?原子的结构非常紧密,用一般的方法是无法探测它的内部结构的,要认识原子的结构,需要用高速粒子对它进行轰击。
而粒子具有足够的能量,可以接近原子中心。
它还可以使荧光屏物质发光。
如果粒子与其他粒子发生相互作用,改变了运动方向,荧光屏就能够显示出它的方向变化。
研究高速的粒子穿过原子的散射情况,是研究原子结构的有效手段。
第4节玻尔的原子模型1.丹麦物理学家玻尔提出玻尔理论的基本假设(1)定态假设:原子只能处于一系列不连续的能量状态之中,这些状态中能量是稳定的。
(2)跃迁假设:原子从一个定态跃迁到另一个定态,辐射或吸收一定频率的光子。
hν=E m-E n。
(3)轨道假设:原子的不同能量状态跟电子沿不同的圆形轨道绕核运动相对应。
2.氢原子的轨道半径r n=n2r1,n=1,2,3,…氢原子的能量:E n=1n2E1,n=1,2,3,…一、玻尔原子理论的基本假设1.玻尔原子模型(1)原子中的电子在库仑力的作用下,绕原子核做圆周运动。
(2)电子绕核运动的轨道是量子化的。
(3)电子在这些轨道上绕核的转动是稳定的,且不产生电磁辐射。
2.定态当电子在不同轨道上运动时,原子处于不同的状态,原子在不同的状态中具有不同的能量,即原子的能量是量子化的,这些量子化的能量值叫做能级,原子具有确定能量的稳定状态,称为定态。
能量最低的状态叫做基态,其他的能量状态叫做激发态。
3.跃迁当电子从能量较高的定态轨道(其能量记为E m)跃迁到能量较低的定态轨道(其能量记为E n,m>n)时,会放出能量为hν的光子,该光子的能量hν=E m-E n,这个式子被称为频率条件,又称辐射条件。
二、玻尔理论对氢光谱的解释1.解释巴耳末公式(1)按照玻尔理论,从高能级跃迁到低能级时辐射的光子的能量为hν=E m-E n。
(2)巴耳末公式中的正整数n和2正好代表能级跃迁之前和之后所处的定态轨道的量子数n和2。
并且理论上的计算和实验测量的里德伯常量符合得很好。
2.解释氢原子光谱的不连续性原子从较高能级向低能级跃迁时放出光子的能量等于前后两个能级差,由于原子的能级是分立的,所以放出的光子的能量也是分立的,因此原子的发射光谱只有一些分立的亮线。
三、玻尔理论的局限性1.成功之处玻尔理论第一次将量子观念引入原子领域,提出了定态和跃迁的概念,成功解释了氢原子光谱的实验规律。
玻尔的原子模型★新课标要求(一)知识与技能1.了解玻尔原子理论的主要内容。
2.了解能级、能量量子化以及基态、激发态的概念。
(二)过程与方法通过玻尔理论的学习,进一步了解氢光谱的产生。
(三)情感、态度与价值观培养我们对科学的探究精神,养成独立自主、勇于创新的精神。
★教学重点玻尔原子理论的基本假设★教学难点玻尔理论对氢光谱的解释。
★教学方法教师启发、引导,学生讨论、交流。
★教学用具:投影片,多媒体辅助教学设备★课时安排1 课时★教学过程(一)引入新课复习提问:1.α粒子散射实验的现象是什么?2.原子核式结构学说的内容是什么?3.卢瑟福原子核式结构学说与经典电磁理论的矛盾教师:为了解决上述矛盾,丹麦物理学家玻尔,在1913年提出了自己的原子结构假说。
(二)进行新课1.玻尔的原子理论(1)能级(定态)假设:原子只能处于一系列不连续的能量状态中,在这些状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量。
这些状态叫定态。
(本假设是针对原子稳定性提出的)(2)跃迁假设:原子从一种定态(设能量为E n )跃迁到另一种定态(设能量为E m )时,它辐射(或吸收)一定频率的光子,光子的能量由这两种定态的能量差决定,即 n m E E h -=ν(h 为普朗克恒量)(本假设针对线状谱提出)(3)轨道量子化假设:原子的不同能量状态跟电子沿不同的圆形轨道绕核运动相对应。
原子的定态是不连续的,因此电子的可能轨道的分布也是不连续的。
(针对原子核式模型提出,是能级假设的补充)2.玻尔根据经典电磁理论和牛顿力学计算出氢原子的电子的各条可能轨道半径和电子在各条轨道上运动时的能量(包括动能和势能)公式:轨道半径:12r n r n =n=1,2,3……能 量: 121E nE n = n=1,2,3……式中r 1、E 1、分别代表第一条(即离核最近的)可能轨道的半径和电子在这条轨道上运动时的能量,r n 、E n 分别代表第n 条可能轨道的半径和电子在第n 条轨道上运动时的能量,n 是正整数,叫量子数。
波尔的原子模型【学习目标】1.知道玻尔原子理论基本假设的主要内容.2.了解能级、跃迁、能量量子化以及基态、激发态等概念.3.能用玻尔原子理论简单解释氢原子光谱.【重点难点】重点:玻尔原子理论的基本假设难点:利用玻尔原子理论解释氢原子跃迁的现象【导学】一、玻尔原子理论的基本假设1.定态假设:原子只能处于一系列_______的能量状态中,在这些状态中原子是_____的.电子虽然绕核旋转,但并不向外辐射能量,这些状态叫_____2.能量假设:原子从_________的定态轨道(其能量为E m)跃迁到_______的定态轨道(其能量为E n)时,它______一定频率的光子,光子的能量由这两个定态的能量差决定,即hν=E m-E n.3.轨道假设:原子的不同能量状态对应于电子不同的运行轨道,原子的定态是______的,因而电子的可能轨道也是______的.二、玻尔理论对氢光谱的解释1.氢原子的能级图2.解释巴耳末公式(1)按照玻尔理论,从高能级跃迁到低能级时辐射的光子的能量为___________(2)巴耳末公式中的正整数n和2正好代表电子跃迁之前和跃迁之后所处的_________的量子数n和2.3.解释氢原子光谱的不连续性原子从较高能级向低能级跃迁时放出光子的能量等于前后____________.由于原子从较高能级向低能级是_______的,所以放出的光子的能量也是_______的,因此原子的发射光谱只有一些分立的亮线.三、玻尔理论的局限性1.玻尔理论的成功之处在于把量子思想引入了原子结构理论,提出了_______和跃迁的概念,成功地解释了氢原子光谱的实验规律.2.玻尔理论的不足之处在于保留了_________的观念,把电子的运动仍看做经典力学描述下的轨道运动,没有彻底摆脱________理论的框架.【导练】题组一对玻尔理论的理解1.根据玻尔理论,下列关于氢原子的论述正确的是( )A.若氢原子由能量为E n的定态向低能级跃迁,则氢原子要辐射的光子能量为hν=E nB.电子沿某一轨道绕核运动,若圆周运动的频率为ν,则其发光的频率也是νC.一个氢原子中的电子从一个半径为r a的轨道自发地直接跃迁到另一半径为r b的轨道,已知r a>r b,则此过程原子要辐射某一频率的光子D.氢原子吸收光子后,将从高能级向低能级跃迁题组二氢原子的跃迁规律分析2.在氢原子能级图中,横线间的距离越大,代表氢原子能级差越大,下列能级图中,能形象表示氢原子最低的四个能级的是( )3.大量氢原子从n=5的激发态,向低能级跃迁时,产生的光谱线条数是( )A.4条 B.6条C.8条 D.10条4.一群氢原子处于同一较高的激发态,它们向较低激发态或基态跃迁的过程中( )A.可能吸收一系列频率不同的光子,形成光谱中的若干条暗线B.可能发出一系列频率不同的光子,形成光谱中的若干条亮线C.只吸收频率一定的光子,形成光谱中的一条暗线D.只发出频率一定的光子,形成光谱中的一条亮线5.氢原子的能级图如图所示,欲使一处于基态的氢原子释放出一个电子而变成氢离子,氢原子需要吸收的能量至少是( ) A .13.6 eV B .10.20 eV C .0.54 eVD .27.20 eV6.如图所示为氢原子的能级图,若用能量为10.5 eV 的光子去照射一群处于基态的氢原子,则氢原子( ) A .能跃迁到n =2的激发态上去 B .能跃迁到n =3的激发态上去 C .能跃迁到n =4的激发态上去 D .以上三种说法均不对7.用频率为ν0的光照射大量处于基态的氢原子,在所发射的光谱中仅能观测到频率分别为ν1、ν2、ν3的三条谱线,且ν3>ν2>ν1,则( ) A .ν0<ν1 B .ν3=ν2+ν1 C .ν0=ν1+ν2+ν3 D.1ν1=1ν2+1ν38.μ子与氢原子核(质子)构成的原子称为μ氢原子,它在原子核物理的研究中有重要作用.图3为μ氢原子的能级示意图,假定光子能量为E 的一束光照射容器中大量处于n =2能级的μ氢原子,μ氢原子吸收光子后,发出频率为ν1、ν2、ν3、ν4、ν5和ν6的光子,且频率依次增大,则E 等于( ) A .h (ν3-ν1)B .h (ν3+ν1)C .hν3D .hν49.氢原子部分能级的示意图如图所示,不同色光的光子能量如下表所示:色光红橙黄绿蓝—靛紫光子能量范围(eV)1.61~2.002.00~2.072.07~2.142.14~2.532.53~2.762.76~3.10处于某激发态的氢原子,发射的光的谱线在可见光范围内仅有2条,其颜色分别为( ) A.红、蓝—靛B.黄、绿C.红、紫D.蓝—靛、紫题组三综合应用10.如图所示为氢原子最低的四个能级,当氢原子在这些能级间跃迁时,(1)有可能放出几种能量的光子?(2)在哪两个能级间跃迁时,所发出的光子波长最长?波长是多少?导练答案:1、 C 2、 C 3、 D 4、 B 5、 A 6、 D解析用能量为10.5 eV的光子去照射一群处于基态的氢原子,从能级差可知,若氢原子跃迁到某一能级上,则该能级的能量为10.5 eV-13.6 eV=-3.1 eV,根据氢原子的能级图可知,不存在能级为-3.1 eV的激发态,因此氢原子无法发生跃迁.7、 B 8、 C 9、 A解析由七种色光的光子的不同能量可知,可见光光子的能量范围在 1.61~3.10 eV,故可能是由第4能级向第2能级跃迁过程中所辐射的光子,E1=-0.85 eV-(-3.40 eV)=2.55 eV,即蓝—靛光;也可能是氢原子由第3能级向第2能级跃迁过程中所辐射的光子,E2=-1.51 eV-(-3.40 eV)=1.89 eV,即红光.10、解析(1)由N=C2n,可得N=C24=6种;(2)氢原子由第四能级向第三能级跃迁时,能级差最小,辐射的光子能量最小,波长最长,根据hν=E4-E3=-0.85-(-1.51) eV=0.66 eV,λ=hcE4-E3=6.63×10-34×3×1080.66×1.6×10-19m≈1.88×10-6 m.(注:可编辑下载,若有不当之处,请指正,谢谢!)。
4玻尔的原子模型
[教学目标]:
1.掌握玻尔理论的主要内容,理解原子的定态和能级的概念;
2.初步理解原子基态、激发态的概念,掌握能级图,了解能量辐射与吸收的规律;
3.通过对玻尔提出原子理论过程的讲述,培养学生创造能力,学习科学的研究方法。
[重点、难点分析]:
1.重点是玻尔的原子理论及量子思想;
2. 轨道能级的概念及对原子发光现象的解释是本节的难点.
[教学方法]:
1.在讲授过程中,通过提出矛盾——解决问题的基本思路,结合历史实际情况,加深学生对玻尔假设的认识;
2.本课将通过电脑进行形象的模拟,符合由感性到理性的认知过程。
[教具]:电子课件,投影仪,圆规
第二节.玻尔原子理论
一. 玻尔的原子理论:
假设一:(定态假设)
假设二:(跃迁假设)
假设三:(轨道假设)
二.氢原子的轨道半径和能量:r n= n2r1,
E n= E1/n2
n= 1,2,3......
n叫量子数
三.氢原子的能级:
基态
激发态__[ 结合演示]
能级跃迁。
《玻尔原子模型》教学设计,进行新课 回顾科学家们对原子结构的探索过程汤姆孙发现电子 → 否定原子不可分割 → 建立西瓜模型→ 不能解释 α 粒子散射实验 → 否定原子不可分割 → 建立卢瑟福核式结构模型 → 两个困难 不能解释原子的稳定性和原子光谱的分立特征 → 否定卢瑟福核式结构模型 → 建立新的原子理论玻尔在普朗克的量子化和爱因斯坦的光子说的基础上,提出了自己的原子模型,主要是轨道量子化假说,能量量子化假说,能级跃迁假说.1、玻尔的原子理论(1) 能级(定态)假设:原子只能处于一系列不连续的能量状态中,在这些状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量。
这些状态叫定态。
(本假设是针对原子稳定性提出的) (2) 轨道量子化假设:原子的不同能量状态跟电子沿不同的圆形轨道绕核运动相对应。
原子的定态是不连续的,因此电子的可能轨道的分布也是不连续的。
(针对原子核式模型提出,是能级假设的补充)2.玻尔根据经典电磁理论和牛顿力学计算出氢原子的电子的各条 可能轨道半径和电子在各条轨道上运动时的能量(包括动能和势能)公式:轨道半径: r =n 2r n=1,2,3…… n 1能 量 : E = 1E n=1,2,3…… n n21 式中 r 1、E 1、分别代表第一条(即离核最近的)可能轨道的半径和电子在这条轨道上运动时的能量,r n 、E n 分别代表第 n 条可能轨道的半径和电子在第 n 条轨道上运动时的能量,n 是正整数,叫量子数。
(3)跃迁假设:原子从一种定态(设能量为 E n )跃迁到另一种 定态(设能量为 E m )时,它辐射(或吸收)一定频率的光子,光子的能量由这两种定态的能量差决定,即 h ν =E m - E n (h 为普朗克恒量)(本假设针对线状谱提出)3、氢原子的能级图思考老师提出的问题。
在老师的引导思考回答问题。
思考学过的知识。
分组讨论得出通过分析、讨论、归纳,思考学过的知识。
4 玻尔的原子模型[目标定位] 1.知道玻尔原子理论基本假设的主要内容.2.了解能级、跃迁、能量量子化以及基态、激发态等概念.3.能用玻尔原子理论简单解释氢原子模型.一、玻尔原子理论的基本假设1.玻尔原子模型(1)原子中的电子在库仑引力的作用下,绕原子核做圆周运动.(2)电子绕核运动的轨道是量子化的.(3)电子在这些轨道上绕核的转动是稳定的,不产生电磁辐射.2.定态当电子在不同的轨道上运动时,原子处于不同的状态,具有不同的能量.即原子的能量是量子化的,这些量子化的能量值叫做能级.原子中这些具有确定能量的稳定状态,称为定态.能量最低的状态叫做基态,其他的状态叫做激发态,对应的电子在离核较远的轨道上运动.3.频率条件当电子从能量较高的定态轨道(其能量记为E m)跃迁到能量较低的定态轨道(能量记为E n,m >n)时,会放出能量为hν的光子,该光子的能量hν=E m-E n,该式称为频率条件,又称辐射条件.反之,当电子吸收光子时会从较低的能量态跃迁到较高的能量态,吸收的光子能量同样由频率条件决定.高能级E m低能级E n【深度思考】是不是所处的能级越高的氢原子,向低能级跃迁时释放的光子能量越大?答案不一定.氢原子从高能级向低能级跃迁时,所释放的光子能量一定等于能级差,氢原子所处的能级越高,跃迁时能级差不一定越大,释放的光子能量不一定越大.【例1】根据玻尔理论,下列关于氢原子的论述正确的是( )A.若氢原子由能量为E n的定态向低能级跃迁时,氢原子要辐射的光子能量为hν=E n B.电子沿某一轨道绕核运动,若圆周运动的频率为ν,则其发光的频率也是νC.一个氢原子中的电子从一个半径为r a的轨道自发地直接跃迁到另一半径为r b的轨道,已知r a>r b,则此过程原子要辐射某一频率的光子D .氢原子吸收光子后,将从高能级向低能级跃迁解析 原子由高能级向低能级跃迁满足频率条件,辐射的光子能量为h ν=E n -E m ,同样吸收满足频率条件的光子后会从低能级跃迁到高能级;原子辐射的能量与电子在某一轨道上绕核的运动无关.答案 C【例2】 氢原子的核外电子从距核较近的轨道跃迁到距核较远的轨道的过程中( )A .原子要吸收光子,电子的动能增大,原子的电势能增大B .原子要放出光子,电子的动能减小,原子的电势能减小C .原子要吸收光子,电子的动能增大,原子的电势能减小D .原子要吸收光子,电子的动能减小,原子的电势能增大解析 根据玻尔理论,氢原子核外电子在离核较远的轨道上运动能量较大,必须吸收一定能量的光子后,电子才能从离核较近的轨道跃迁到离核较远的轨道,故B 错;氢原子核外电子绕核做圆周运动,由原子核对电子的库仑力提供向心力,即k e 2r 2=m v 2r ,又E k =12mv 2,所以E k =ke 22r.由此式可知:电子离核越远,即r 越大时,电子的动能越小,故A 、C 错;由r 变大时,库仑力对核外电子做负功,因此电势能增大,从而判断D 正确.答案 D当氢原子从低能量态E n 向高能量态E m (n <m )跃迁时,r 增大,E k 减小,E p 增大(或r 增大时,库仑力做负功,电势能E p 增大),E 增大,故需吸收光子能量,所吸收的光子能量h ν=E m -E n .二、玻尔理论对氢光谱的解释1.氢原子能级图如图1所示图12.解释巴耳末公式按照玻尔理论,从高能级跃迁到低能级时辐射的光子的能量为hν=E m-E n.巴耳末公式中的正整数n和2正好代表能级跃迁之前和之后所处的定态轨道的量子数n和2.3.解释气体导电发光通常情况下,原子处于基态,基态是最稳定的,原子受到电子的撞击,有可能向上跃迁到激发态,处于激发态的原子是不稳定的,会自发地向能量较低的能级跃迁,放出光子,最终回到基态.4.解释氢原子光谱的不连续性原子从高能级向低能级跃迁时放出的光子的能量等于前后两个能级之差,由于原子的能级是分立的,所以放出的光子的能量也是分立的,因此原子的发射光谱只有一些分立的亮线.5.解释不同原子具有不同的特征谱线不同的原子具有不同的结构,能级各不相同,因此辐射(或吸收)的光子频率也不相同.【深度思考】(1)观察氢原子能级图(图1),当氢原子处于基态时,E1=-13.6 eV.通过计算,E n与E1在数值上有什么关系?(2)如果氢原子吸收的能量大于13.6 eV,会发生什么现象?答案(1)通过计算得:E n=E1n2(n=1,2,3,…)(2)hν=E m-E n适用于光子和原子在各定态之间跃迁情况,若吸收光子的能量大于或等于13.6 eV时,原子将会被电离.【例3】如图2所示为氢原子的能级图.用光子能量为13.06 eV的光照射一群处于基态的氢原子,则可能观测到氢原子发射的不同波的光有( )图2A .15种B .10种C .4种D .1种解析 基态的氢原子的能级值为-13.6 eV ,吸收13.06 eV 的能量后变成-0.54 eV ,原子跃迁到n =5能级,由于氢原子是大量的,故辐射的光子种类是n n -2=-2=10种.答案 B1.对能级图的理解:由E n =E 1n 2知,量子数越大,能级越密.量子数越大,能级差越小,能级横线间的距离越小.n =1是原子的基态,n →∞是原子电离时对应的状态.2.跃迁过程中吸收或辐射光子的频率和波长满足h ν=|E m -E n |,h c λ=|E m -E n |. 3.大量处于n 激发态的氢原子向基态跃迁时,最多可辐射n n -2种不同频率的光,一个处于激发态的氢原子向基态跃迁时,最多可辐射(n -1)种频率的光子.针对训练 图3为氢原子能级的示意图,现有大量的氢原子处于n =4的激发态,当向低能级跃迁时辐射出若干不同频率的光.关于这些光下列说法正确的是( )图3A .最容易表现出衍射现象的光是由n =4能级跃迁到n =1 能级产生的B .频率最小的光是由n =2能级跃迁到n =1能级产生的C .这些氢原子总共可辐射出3种不同频率的光D .用n =2能级跃迁到n =1能级辐射出的光照射逸出功为6.34 eV 的金属铂能发生光电效应答案 D解析 由ΔE =hc λ,知λ=hcΔE,则由n =4跃迁到n =1能级产生的光子能量最大,波长最短,所以该光子最不容易发生衍射现象,A 项错误;因由n =2能级跃迁到n =1能级产生的光子能量大于由n =4能级跃迁到n =3能级产生光子的能量,故其频率不是最小的,所以B 项错误;大量的氢原子由n =4的激发态向低能级跃迁,可能辐射出6种不同频率的光子,故C 项错误;由n =2能级跃迁到n =1能级辐射出光子的能量E =-3.4 eV -(-13.6)eV =10.2 eV.因E >W 逸=6.34 eV ,故D 项正确.三、玻尔理论的局限性1.玻尔理论的成功之处 玻尔理论第一次将量子观念引入原子领域,提出了定态和跃迁的概念,成功地解释了氢原子光谱的实验规律.2.玻尔理论的局限性 保留了经典粒子的观念,仍然把电子的运动看做经典力学描述下的轨道运动.1.(对玻尔理论的理解)根据玻尔的原子结构模型,原子中电子绕核运转的轨道半径( )A .可以取任意值B .可以在某一范围内取任意值C .可以取不连续的任意值D .是一些不连续的特定值答案 D解析 按玻尔的原子理论:原子的能量状态对应着电子不同的运动轨道,由于原子的能量状态是不连续的,则其核外电子的可能轨道是分立的,且是特定的,故上述选项只有D 正确.2.(对玻尔理论的理解)氢原子辐射出一个光子后,根据玻尔理论,下列说法中正确的是( )A .电子绕核旋转的半径增大B .氢原子的能量增大C .氢原子的电势能增大D .氢原子核外电子的速率增大答案 D解析 氢原子辐射一个光子时能量减少,所以电子的轨道半径减小,速度增大,电势能减小,故选项D正确.3.(氢原子能级及跃迁)(多选)如图4所示为氢原子的能级图,A、B、C分别表示电子在三种不同能级跃迁时放出的光子,则下列判断中正确的是( )图4A.能量和频率最大、波长最短的是B光子B.能量和频率最小、波长最长的是C光子C.频率关系为νB>νA>νC,所以B的粒子性最强D.波长关系为λB>λA>λC答案ABC解析从图中可以看出电子在三种不同能级跃迁时,能级差由大到小依次是B、A、C,所以B光子的能量和频率最大,波长最短;能量和频率最小、波长最长的是C光子,所以频率关系式νB>νA>νC,波长关系是λB<λA<λC,所以B光子的粒子性最强,故选项A、B、C 正确,D错误.4.(氢原子能级及跃迁)(多选)用光子能量为E的光束照射容器中的氢气,氢原子吸收光子后,能发射频率为ν1、ν2、ν3的三种光子,且ν1<ν2<ν3.入射光束中光子的能量应是( ) A.hν3B.h(ν1+ν2)C.h(ν2+ν3) D.h(ν1+ν2+ν3)答案AB解析氢原子吸收光子后发射三种频率的光,可知氢原子由基态跃迁到了第三能级,能级跃迁如图所示,由图可知该氢原子吸收的能量为hν3或h(ν1+ν2).题组一对玻尔理论的理解1.(多选)玻尔在他提出的原子模型中所做的假设有( )A.原子处于称为定态的能量状态时,虽然电子做加速运动,但并不向外辐射能量B.原子的不同能量状态与电子沿不同的圆轨道绕核运动相对应,而电子的可能轨道的分布是不连续的C.电子从一个轨道跃迁到另一轨道时,辐射(或吸收)一定频率的光子D.电子在绕原子核做圆周运动时,稳定地产生电磁辐射答案ABC解析原子处于称为定态的能量状态时,虽然电子做加速运动,但并不向外辐射能量,故A 正确;原子的不同能量状态与电子沿不同的圆轨道绕核运动相对应,而电子的可能轨道的分布是不连续的,故B正确;电子从一个轨道跃迁到另一轨道时,辐射(或吸收)一定频率的光子,故C正确;电子在绕原子核做圆周运动时,不会产生电磁辐射,只有跃迁时才会出现,故D错误.2.(多选)关于玻尔原子理论的基本假设,下列说法中正确的是( )A.原子中的电子绕原子核做圆周运动,库仑力提供向心力B.氢原子光谱的不连续性,表明了氢原子的能级是不连续的C.原子的能量包括电子的动能和系统的势能,电子动能可取任意值,系统的势能只能取某些分立值D.电子由一条轨道跃迁到另一条轨道上时,辐射(或吸收)光子频率等于电子绕核运动的频率答案AB解析根据玻尔理论的基本假设知,原子中的电子绕原子核做圆周运动,库仑力提供向心力,故A正确;玻尔原子模型结合氢原子光谱,则表明氢原子的能量是不连续的.故B正确;原子的能量包括电子的动能和系统的势能,由于轨道是量子化的,则电子动能也是特定的值,故C错误;电子由一条轨道跃迁到另一条轨道上时,辐射(或吸收)的光子能量等于两能级间的能级差,D错误.3.(多选)下列说法正确的是( )A.玻尔对氢原子光谱的研究导致原子的核式结构模型的建立B.玻尔理论可以成功解释氢原子的光谱现象C.玻尔继承了卢瑟福原子模型,但对原子能量和电子轨道引入了量子化假设D.玻尔将量子观念引入原子领域,其理论能够解释氢原子光谱的特征答案BCD解析卢瑟福通过α粒子散射实验建立了原子核式结构模型,故A错误;玻尔理论成功地解释了氢原子的光谱现象.故B正确;玻尔的原子模型对应的是电子轨道的量子化,卢瑟福的原子模型核外电子可在任意轨道上运动,故C正确;玻尔将量子观念引入原子领域,其理论能够解释氢原子光谱的特征,故D正确.4.一群氢原子处于同一较高的激发态,它们向较低激发态或基态跃迁的过程中( )A .可能吸收一系列频率不同的光子,形成光谱中的若干条暗线B .可能发出一系列频率不同的光子,形成光谱中的若干条亮线C .只吸收频率一定的光子,形成光谱中的一条暗线D .只发出频率一定的光子,形成光谱中的一条亮线答案 B解析 当原子由高能级向低能级跃迁时,原子将发出光子,由于不只是两个特定能级之间的跃迁,所以它可以发出一系列频率的光子,形成光谱中的若干条亮线.5.根据玻尔理论,氢原子有一系列能级,以下说法正确的是( )A .当氢原子处于第二能级且不发生跃迁时,会向外辐射光子B .电子绕核旋转的轨道半径可取任意值C .处于基态的氢原子可以吸收10 eV 的光子D .大量氢原子处于第四能级向基态跃迁时会出现6条谱线答案 D解析 氢原子处于第二能级且向基态发生跃迁时,才会向外辐射光子.故A 错误.根据玻尔原子理论可知,电子绕核旋转的轨道半径是特定值.故B 错误.10 eV 的能量不等于基态与其他能级间的能级差,所以该光子能量不能被吸收.故C 错误.根据C 24=6知,大量处于n =4能级的氢原子跃迁时能辐射出6种不同频率的光子.故D 正确.6.根据玻尔理论,某原子从能量为E 的轨道跃迁到能量为E ′的轨道,辐射出波长为λ的光.以h 表示普朗克常量,c 表示真空中的光速,E ′等于( )A .E -h λcB .E +h λcC .E -h c λD .E +h c λ答案 C 解析 释放的光子能量为h ν=h c λ,所以E ′=E -h ν=E -h c λ.题组二 氢原子能级及跃迁7.氢原子的基态能量为E 1,下列四个能级图,正确代表氢原子的是( )答案 C解析 由氢原子能级图可知,量子数n 越大,能级越密,且各能级能量E n =E 1n 2,所以C 正确.8.汞原子的能级图如图1所示,现让一束光子能量为8.8 eV 的单色光照射到大量处于基态(能级数n =1)的汞原子上,能发出6种不同频率的色光.下列说法中正确的是( )图1A .最长波长光子的能量为1.1 eVB .最长波长光子的能量为2.8 eVC .最大频率光子的能量为2.8 eVD .最大频率光子的能量为4.9 eV答案 A解析 由题意知,吸收光子后汞原子处于n =4的能级,向低能级跃迁时,最大频率的光子能量为(-1.6+10.4)eV =8.8 eV ,最大波长(即最小频率)的光子能量为(-1.6+2.7)eV =1.1 eV ,故A 正确.9.(多选)如图2是氢原子的能级图,一群氢原子处于n =3能级,下列说法中正确的是( )图2A.这群氢原子发出的光子中,能量最大为10.2 eVB.从n=3能级跃迁到n=2能级时发出的光波长最长C.这群氢原子能够吸收任意光子的能量而向更高能级跃迁D.如果发出的光子中只有一种能使某金属产生光电效应,那一定是由n=3能级跃迁到n=1能级发出的答案BD解析由n=3能级跃迁到n=1能级,辐射的光子能量最大,ΔE=13.6 eV-1.51 eV=12.09 eV,从n=3能级跃迁到n=2能级辐射的光子能量最小,频率最小,则波长最长,故A错误,B正确;一群处于n=3能级的氢原子发生跃迁,吸收的能量必须等于两能级的能级差,故C 错误;如果发出的光子只有一种能使某金属产生光电效应,知这种光子为能量最大的一种,即由n=3能级跃迁到n=1能级发出的.故D正确.10.如图3所示,1、2、3、4为玻尔理论中氢原子最低的四个能级.处在n=4能级的一群氢原子向低能级跃迁时,能发出若干种频率不同的光子,在这些光中,波长最长的是( )图3A.n=4跃迁到n=1时辐射的光子B.n=4跃迁到n=3时辐射的光子C.n=2跃迁到n=1时辐射的光子D.n=3跃迁到n=2时辐射的光子答案 B11.(多选)如图4所示为氢原子的能级示意图,一群氢原子处于n=3的激发态,在自发跃迁中放出一些光子,用这些光子照射逸出功为2.25 eV的钾,下列说法正确的是( )图4A.这群氢原子能发出三种不同频率的光B.这群氢原子发出光子均能使金属钾发生光电效应C.金属钾表面逸出的光电子最大初动能一定小于12.09 eVD.金属钾表面逸出的光电子最大初动能可能等于9.84 eV答案 ACD解析 根据C 23=3知,这群氢原子能辐射出三种不同频率的光子,故A 正确;从n =3跃迁到n =1辐射的光子能量为13.6 eV -1.51 eV =12.09 eV>2.25 eV ,从n =2跃迁到n =1辐射的光子能量为13.6 eV -3.4 eV =10.2 eV>2.25 eV ,从n =3跃迁到n =2辐射的光子能量为3.4 eV -1.51 eV =1.89 eV<2.25 eV ,所以能发生光电效应的光有两种,故B 错误;从n =3跃迁到n =1辐射的光子能量最大,发生光电效应时,产生的光电子最大初动能最大,根据光电效应方程得,E km =h ν-W 0=12.09 eV -2.25 eV =9.84 eV.故C 、D 正确. 题组三 综合应用12.如图5所示为氢原子最低的四个能级,当氢原子在这些能级间跃迁时,图5(1)有可能放出几种能量的光子?(2)在哪两个能级间跃迁时,所发出的光子波长最长?波长是多少?(普朗克常量h =6.63×10-34 J·s,光速c =3.0×108 m/s)答案 (1)6 (2)第四能级向第三能级 1.88×10-6 m解析 (1)由N =C 2n ,可得N =C 24=6种;(2)氢原子由第四能级向第三能级跃迁时,能级差最小,辐射的光子能量最小,波长最长,根据hc λ=E 4-E 3=-0.85-(-1.51) eV =0.66 eV ,λ=hc E 4-E 3=6.63×10-34×3×1080.66×1.6×10-19 m≈1.88×10-6 m.13.氢原子在基态时轨道半径r 1=0.53×10-10m ,能量E 1=-13.6 eV.求氢原子处于基态时.(1)电子的动能;(2)原子的电势能;(3)用波长是多少的光照射可使其电离?答案 (1)13.6 eV (2)-27.2 eV (3)9.14×10-8 m解析 (1)设处于基态的氢原子核外电子速度大小为v 1,则k e 2r 21=mv 21r 1,所以电子动能 E k1=12mv 21=ke 22r 1=9×109-1922×0.53×10-10×1.6×10-19 eV ≈13.6 eV.(2)因为E 1=E k1+E p1,所以E p1=E 1-E k1=-13.6 eV -13.6 eV =-27.2 eV.(3)设用波长为λ的光照射可使氢原子电离,有hc λ=0-E 1 所以λ=-hc E 1=-6.63×10-34×3×108-13.6×1.6×10-19 m ≈9.14×10-8 m.。
玻尔的原子模型教案第一节:简介和背景知识在20世纪初,丹麦物理学家尼尔斯·玻尔提出了一种关于原子结构的新模型,这就是著名的玻尔原子模型。
本节将介绍原子结构的基本概念和背景知识,为学生打下扎实的基础。
第二节:玻尔原子模型的主要假设玻尔原子模型的提出基于几个主要假设,本节将详细介绍这些假设,并解释它们对原子结构的解释力。
第三节:玻尔原子模型的关键要点在这一节中,我们将重点讨论玻尔原子模型的几个关键要点,包括能级、轨道和跃迁。
我们将通过图示和实例来帮助学生更好地理解这些概念,并引导他们进行思考和讨论。
第四节:玻尔原子模型与实验观测玻尔原子模型的提出不仅是基于理论,更是与实验观测相结合的。
本节将通过一些实验结果来验证玻尔原子模型,并帮助学生了解科学研究中理论与实验的相互作用关系。
第五节:玻尔原子模型的局限性任何科学模型都有其局限性,玻尔原子模型也不例外。
本节将讨论玻尔原子模型的一些局限性,并解释为什么后来出现了更加完善的原子模型。
第六节:活动和实践在这一节中,我们将为学生设计一些与玻尔原子模型相关的活动和实践。
通过亲自参与实验和观察,学生将更好地理解和掌握玻尔原子模型的概念和原理。
第七节:总结在本节中,我们将对本教案进行总结,并强调玻尔原子模型在科学发展中的重要性。
我们将对学生进行知识回顾,并鼓励他们保持对科学的好奇心和探索精神。
通过以上教案的设计和实施,学生们将能够全面了解玻尔原子模型的基本概念和原理。
他们将通过活动和实践的参与,加深对玻尔原子模型的理解,并培养对科学的兴趣。
这将为他们未来的学习和科学研究奠定坚实的基础。
玻尔的原子模型教学目标:(一)知识与技能1、了解玻尔的三条假设。
2、通过公式和使学生了解原子能级、轨道半径和量子数的关系。
3、了解玻尔理论的重要意义。
(二)过程与方法培养学生对问题的分析和解决能力,初步了解原子的结构(三)情感、态度与价值观理解人类对原子的认识和研究经历了一个十分漫长的过程,这一过程也是辩证发展的过程。
教学重点:玻尔的原子模型、能级教学难点:玻尔的原子模型、能级教学方法:演示和启发式综合教学法。
教学用具:投影片,多媒体辅助教学设备教学过程:(一)引入新课前一节提到卢瑟福的原子核式结构学说跟经典的电磁理论产生了矛盾,这说明了经典的电磁理论不适用于原子结构,那么怎么解释原子是稳定的?又怎么解释原子发光的光谱不是连续光谱呢?核式结构学说在解释原子发光现象和原子的稳定性问题时遇到了空前的困难,玻尔在总结前人经验成果的基础上进一步研究,提出了自己的理论。
(二)新课教学1、玻尔的原子模型(1)原子的稳定性经典的电磁理论认为电子绕原子核旋转,由于电子辐射能量,因此随着它的能量减少,电子运行的轨道半径也减小,最终要落入原子核中。
玻尔在1913年结合普朗克的量子理论针对这一问题提出新的观点。
玻尔假设一:原子只能处于一系列不连续的能量状态中,在这些状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量,这些状态叫做定态。
说明:这一说法和事实是符合得很好的,电子并没有被库仑力吸引到核上,就像行星绕着太阳运动一样。
这里所说的定态是指原子可能的一种能量状态,有某一数值的能量,这些能量包含了电子的动能和电势能的总和。
(2)原子发光的光谱经典的电磁理论认为电子绕核运行的轨道不断的变化,它向外辐射电磁波的频率应该等于绕核旋转的频率。
因此原子辐射一切频率的电磁波,大量原子的发光光谱应该是连续光谱。
玻尔针对这一问题提出新的观点。
玻尔假设二:原子从一种定态()跃迁到另一种定态()时,它辐射(或吸收)一定频率的光子,光子的能量由这两种定态的能量差决定,即:。
第十八章原子结构新课标要求1.内容标准(1)了解人类探索原子结构的历史以及有关经典实验。
例1 用录像片或计算机模拟,演示α粒子散射实验。
(2)通过对氢原子光谱的分析,了解原子的能级结构。
例2 了解光谱分析在科学技术中的应用。
2.活动建议观看有关原子结构的科普影片。
新课程学习18.4 玻尔的原子模型★新课标要求(一)知识与技能1.了解玻尔原子理论的主要内容。
2.了解能级、能量量子化以及基态、激发态的概念。
(二)过程与方法通过玻尔理论的学习,进一步了解氢光谱的产生。
(三)情感、态度与价值观培养我们对科学的探究精神,养成独立自主、勇于创新的精神。
★教学重点玻尔原子理论的基本假设。
★教学难点玻尔理论对氢光谱的解释。
★教学方法教师启发、引导,学生讨论、交流。
★教学用具:投影片,多媒体辅助教学设备★课时安排1 课时★教学过程(一)引入新课复习提问:1.α粒子散射实验的现象是什么?2.原子核式结构学说的内容是什么?3.卢瑟福原子核式结构学说与经典电磁理论的矛盾教师:为了解决上述矛盾,丹麦物理学家玻尔,在1913年提出了自己的原子结构假说。
(二)进行新课1.玻尔的原子理论(1)能级(定态)假设:原子只能处于一系列不连续的能量状态中,在这些状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量。
这些状态叫定态。
(本假设是针对原子稳定性提出的)(2)跃迁假设:原子从一种定态(设能量为E n )跃迁到另一种定态(设能量为E m )时,它辐射(或吸收)一定频率的光子,光子的能量由这两种定态的能量差决定,即 n m E E h -=ν(h 为普朗克恒量)(本假设针对线状谱提出)(3)轨道量子化假设:原子的不同能量状态跟电子沿不同的圆形轨道绕核运动相对应。
原子的定态是不连续的,因此电子的可能轨道的分布也是不连续的。
(针对原子核式模型提出,是能级假设的补充)2.玻尔根据经典电磁理论和牛顿力学计算出氢原子的电子的各条可能轨道半径和电子在各条轨道上运动时的能量(包括动能和势能)公式:轨道半径:12r n r n = n=1,2,3……能 量: 121E nE n = n=1,2,3……式中r 1、E 1、分别代表第一条(即离核最近的)可能轨道的半径和电子在这条轨道上运动时的能量,r n 、E n 分别代表第n 条可能轨道的半径和电子在第n 条轨道上运动时的能量,n 是正整数,叫量子数。
3.氢原子的能级图从玻尔的基本假设出发,运用经典电磁学和经典力学的理论,可以计算氢原子中电子的可能轨道半径和相应的能量。
(1)氢原子的大小:氢原子的电子的各条可能轨道的半径r n : r n =n 2r 1, r 1代表第一条(离核最近的一条)可能轨道的半径r 1=×10-10 m例:n=2, r 2=×10-10m(2)氢原子的能级:①原子在各个定态时的能量值E n 称为原子的能级。
它对应电子在各条可能轨道上运动时的能量E n (包括动能和势能) E n =E 1/n 2 n=1,2,3,······ E 1代表电子在第一条可能轨道上运动时的能量E 1=注意:计算能量时取离核无限远处的电势能为零,电子带负电,在正电荷的场中为负值,电子的动能为电势能绝对值的一半,总能量为负值。
例:n=2,E 2=, n=3,E 3=, n=4,E 4=,……氢原子的能级图如图所示。
4.玻尔理论对氢光谱的解释(1)基态和激发态基态:在正常状态下,原子处于最低能级,这时电子在离核最近的轨道上运动,这种定态,叫基态。
激发态:原子处于较高能级时,电子在离核较远的轨道上运动,这种定态,叫激发态。
(2)原子发光:原子从基态向激发态跃迁的过程是吸收能量的过程。
原子从较高的激发态向较低的激发态或基态跃迁的过程,是辐射能量的过程,这个能量以光子的形式辐射出去,吸收或辐射的能量恰等于发生跃迁的两能级之差。
说明:氢原子中只有一个核外电子,这个电子在某个时刻只能在某个可能轨道上,或者说在某个时间内,由某轨道跃迁到另一轨道——可能情况只有一种。
可是,通常容器盛有的氢气,总是千千万万个原子在一起,这些原子核外电子跃迁时,就会有各种情况出现了。
但是这些跃迁不外乎是能级图中表示出来的那些情况。
5.夫兰克—赫兹实验(1)实验的历史背景及意义1911年,卢瑟福根据α粒子散射实验,提出了原子核式结构模型。
1913年,玻尔将普朗克量子假说运用到原子核式结构模型,建立了与经典理论相违背的两个重要概念:原子定态能级和能级跃迁概念。
电子在能级之间跃迁时伴随电磁波的吸收和发射,电磁波频率的大小取决于原子所处两定态能级间的能量差。
随着英国物理学家埃万斯对光谱的研究,玻尔理论被确立。
但是任何重要的物理规律都必须得到至少两种独立的实验方法的验证。
随后,在1914年,德国科学家夫兰克和他的助手赫兹采用电子与稀薄气体中原子碰撞的方法(与光谱研究相独立),简单而巧妙地直接证实了原子能级的存在,从而为玻尔原子理论提供了有力的证据。
1925年,由于他二人的卓越贡献,他们获得了当年的诺贝尔物理学奖(1926年于德国洛丁根补发)。
夫兰克-赫兹实验至今仍是探索原子内部结构的主要手段之一。
所以,在近代物理实验中,仍把它作为传统的经典实验。
(2)夫兰克—赫兹实验的理论基础根据玻尔的原子理论,原子只能处于一系列不连续的稳定状态之中,其中每一种状态相应于一定的能量值E n (n=1,2,3‥),这些能量值称为能级。
最低能级所对应的状态称为基态,其它高能级所对应的态称为激发态。
当原子从一个稳定状态过渡到另一个稳定状态时就会吸收或辐射一定频率的电磁波,频率大小决定于原子所处两定态能级间的能量差。
n m E E h -=ν(h 为普朗克恒量)本实验中是利用一定能量的电子与原子碰撞交换能量而实现,并满足能量选择定则: n m E E eV -= (V 为激发电位)夫兰克-赫兹实验玻璃容器充以需测量的气体,本实验用的是汞。
电子由阴级K 发出,K 与栅极G 之间有加速电场,G 与接收极A 之间有减速电场。
当电子在KG 空间经过加速、碰撞后,进入KG 空间时,能量足以冲过减速电场,就成为电流计的电流。
(3)实验原理:改进的夫兰克-赫兹管的基本结构如下图所示。
电子由阴极K 发出,阴极K 和第一栅极G 1之间的加速电压V G1K 及与第二栅极G 2之间的加速电压V G2K 使电子加速。
在板极A 和第二栅极G 2之间可设置减速电压V G2A 。
设汞原子的基态能量为E 0,第一激发态的能量为E 1,初速为零的电子在电位差为V 的加速电场作用下,获得能量为eV ,具有这种能量的电子与汞原子发生碰撞,当电子能量eV <E 1-E 0时,电子能量几乎不损失。
如果eV ≥E 1-E 0=ΔE ,则汞原子从电子中取得能量ΔE ,而由基态跃迁到第一激发态,ΔE =eV C 。
相应的电位差VC 即为汞原子的第一激发电位。
在实验中,逐渐增加V G2K ,由电流计读出板极电流I A ,得到如下图所示的变化曲线.夫兰克—赫兹实验证明了原子被激发到不同的状态时,吸收的能量是不连续的,进而说明原子能量是量子化的。
6.玻尔理论的局限性玻尔理论虽然把量子理论引入原子领域,提出定态和跃迁概念,成功解释了氢原子光谱,但对多电子原子光谱无法解释,因为玻尔理论仍然以经典理论为基础。
如粒子的观念和轨道。
量子化条件的引进没有适当的理论解释。
7.电子在某处单位体积内出现的概率——电子云(课件演示)(三)课堂练习1.对玻尔理论的下列说法中,正确的是( ACD )A.继承了卢瑟福的原子模型,但对原子能量和电子轨道引入了量子化假设B.对经典电磁理论中关于“做加速运动的电荷要辐射电磁波”的观点表示赞同C.用能量转化与守恒建立了原子发光频率与原子能量变化之间的定量关系D.玻尔的两个公式是在他的理论基础上利用经典电磁理论和牛顿力学计算出来的2.下面关于玻尔理论的解释中,不正确的说法是( C )A.原子只能处于一系列不连续的状态中,每个状态都对应一定的能量B.原子中,虽然核外电子不断做加速运动,但只要能量状态不改变,就不会向外辐射能量C.原子从一种定态跃迁到另一种定态时,一定要辐射一定频率的光子D.原子的每一个能量状态都对应一个电子轨道,并且这些轨道是不连续的3.根据玻尔理论,氢原子中,量子数N越大,则下列说法中正确的是( ACD )A.电子轨道半径越大 B.核外电子的速率越大C.氢原子能级的能量越大 D.核外电子的电势能越大4.根据玻尔的原子理论,原子中电子绕核运动的半径( D )A.可以取任意值 B.可以在某一范围内取任意值C.可以取一系列不连续的任意值D.是一系列不连续的特定值5.按照玻尔理论,一个氢原子中的电子从一半径为r a的圆轨道自发地直接跃迁到一半径为r b的圆轨道上,已知r a>r b,则在此过程中( C )A.原子要发出一系列频率的光子B.原子要吸收一系列频率的光子C.原子要发出某一频率的光子D.原子要吸收某一频率的光子玻尔的原子模型是把卢瑟福的学说和量子理论结合,以原子的稳定性和原子的明线光谱作为实验基础而提出的.认识玻尔理论的关键是从“不连续”的观点理解电子的可能轨道和能量状态.玻尔理论对氢光谱的解释是成功的,但对其他光谱的解释就出现了较大的困难,显然玻尔理论有一定的局限性。
(五)作业:课本P68问题与练习。
教学体会思维方法是解决问题的灵魂,是物理教学的根本;亲自实践参与知识的发现过程是培养学生能力的关键,离开了思维方法和实践活动,物理教学就成了无源之水、无本之木。
学生素质的培养就成了镜中花,水中月。