超临界二氧化碳萃取
- 格式:doc
- 大小:26.50 KB
- 文档页数:3
超临界co2萃取技术应用超临界CO2萃取技术是一种高效、环保的物质提取方法,已广泛应用于食品、药品、化妆品等领域。
本文将介绍超临界CO2萃取技术的原理、应用和优势。
一、超临界CO2萃取技术的原理超临界CO2萃取技术是利用超临界状态下的CO2作为溶剂,通过调节温度和压力,使CO2同时具备液态和气态的性质。
在超临界状态下,CO2的密度和溶解能力大大增强,能够高效地溶解目标物质。
二、超临界CO2萃取技术的应用1. 食品领域超临界CO2萃取技术可以用于提取植物中的天然色素、香料和营养成分。
例如,可以从咖啡豆中提取咖啡因,从茶叶中提取茶多酚,从辣椒中提取辣椒素等。
相比传统的有机溶剂提取方法,超临界CO2萃取技术更为安全,无残留物,且不会破坏目标物质的活性成分。
2. 药品领域超临界CO2萃取技术在药物制备中具有广泛应用。
它可以用于从植物中提取药用成分,如从中药材中提取有效化合物。
此外,超临界CO2萃取技术还可以用于制备纳米药物载体、纯化药物和去除残留有机溶剂等。
3. 化妆品领域超临界CO2萃取技术可以用于提取植物中的天然香精、抗氧化剂和保湿剂等。
与传统的提取方法相比,超临界CO2萃取技术更为温和,可以避免高温处理对活性成分的破坏,同时还能减少有机溶剂的使用。
三、超临界CO2萃取技术的优势1. 高效性:超临界CO2萃取技术具有高萃取效率和短时间的特点。
由于CO2的高扩散性和低粘度,可以迅速渗透到物质内部,实现快速均匀溶剂萃取。
2. 环保性:超临界CO2萃取技术不使用有机溶剂,避免了有机溶剂对环境的污染和残留物的安全隐患。
而且超临界CO2是一种无毒、无味、无色的气体,在溶剂回收后可以重复利用,实现零排放。
3. 选择性:通过调节超临界CO2萃取的温度和压力,可以实现对目标物质的选择性提取。
不同的物质在超临界CO2中的溶解度有差异,可以根据需要调整条件,实现对不同成分的分离和纯化。
4. 适用性广泛:超临界CO2萃取技术适用于多种物质的提取和分离,不仅可以处理固体和液体样品,还可以处理热敏性物质。
讨论花生油超临界二氧化碳萃取率的影响因素及影响规律1. 引言1.1 概述花生油是一种常见的食用油,而超临界二氧化碳萃取技术是一种有效的提取花生油的方法。
在超临界条件下,二氧化碳具有较高的溶解度和扩散性,可以快速而高效地将花生油中的有益成分提取出来。
因此,研究花生油超临界二氧化碳萃取率及其影响因素具有重要意义。
1.2 文章结构本文将从以下几个方面讨论花生油超临界二氧化碳萃取率及其影响因素:- 原料品质与处理方式:包括花生油原料的选择、储存条件等。
- 萃取操作参数:包括温度、压力、萃取时间等。
- 超临界二氧化碳性质与条件等因素:包括二氧化碳密度、流速、组分对萃取率的影响等。
1.3 目的通过深入研究上述影响因素,并分析它们之间的相互关系和作用机制,旨在揭示和探讨花生油超临界二氧化碳萃取率的影响规律。
这将有助于优化萃取工艺条件,提高花生油的提取效率和品质,为花生油行业的发展提供科学依据。
以上是文章“1. 引言”部分的详细内容描述。
2. 影响花生油超临界二氧化碳萃取率的因素:2.1 原料品质与处理方式:花生油的原料品质和处理方式对超临界二氧化碳(CO2)萃取率有着直接的影响。
原料品质包括花生油的纯度、酸价、游离脂肪酸含量以及杂质含量等。
高纯度的花生油通常会表现出较好的萃取效果,而低纯度的花生油可能会导致较低的萃取率。
处理方式指在制备过程中对原料进行一系列预处理步骤。
例如,预处理中去除杂质和其他不需要的成分可以改善超临界CO2流体与花生油之间的相互作用,从而提高萃取效率。
因此,优化原料品质和处理方式是提高花生油超临界CO2萃取率至关重要的因素之一。
2.2 萃取操作参数:萃取操作参数是指在超临界CO2萃取过程中控制或改变的变量。
这些参数包括温度、压力、流体速度和料液比等。
这些操作参数可以影响到CO2与花生油之间的相互作用,从而改变萃取率。
通常情况下,较高的温度和压力会增加花生油的溶解度,从而提高超临界CO2萃取率。
超临界二氧化碳萃取工艺流程在21世纪,绿色可持续发展的要求,以及生态环境的巨大压力,使得化学工业发展的道路越来越发生变化。
从节能减排的角度出发,现在众多有效的能源节约和环保技术已经被开发出来,其中最重要的就是超临界二氧化碳萃取工艺。
超临界二氧化碳萃取工艺是利用超临界状态下的二氧化碳精炼液体及其混合物,使得精炼物质按其相对分子量来分离提取。
在超临界状态下,特定温度和压力环境下,二氧化碳汽液将变为一种非常均匀的膏体,具有很强的进入力,能够将有机杂质、杂物、悬浮物以及有毒有害物质等进行精炼分离,达到有效去除杂质的目的。
超临界二氧化碳萃取工艺流程主要有三部分:第一步是萃取混合溶液的准备,根据提取的成份的不同,设计合理的混合比例,将需要萃取的混合液注入萃取装置中进行混合。
第二步是萃取操作,将混合溶液泵入萃取器,当转速达到一定值时,加入超临界二氧化碳,在一定的温度压力下进行搅拌,使其达到超临界状态,达到萃取效果。
第三步是中间产物的回收和精馏,将混合溶液中的某些成分回收分离,或者高纯度产品的萃取,精馏处理,获得所需要的成品,完成最终萃取工艺流程。
超临界二氧化碳萃取工艺有着多种优点,它比传统萃取方法具有更低的操作温度,能节约能源,改善环境,减少污染;另外,它的操作过程简单,具有较高的萃取率,能达到我们更加优良的萃取成品,并提高萃取工艺的稳定性和可控性,从而达到高效的萃取效果。
因此,超临界二氧化碳萃取工艺的应用在市场上受到了极大的欢迎,其未来发展前景也非常可观。
但是,这项工艺也有其不足之处。
例如,由于其对设备和材料的要求较高,特别是环境和安全方面的要求更高,合理的工艺运用更加重要。
总而言之,超临界二氧化碳萃取工艺是化学工业中生产过程中不可缺少的一项重要技术,具有良好的绿色环保效果,更具有技术含量和持续发展性。
是当今尤其以及未来的一大热门技术。
超临界二氧化碳萃取工艺流程今天,超临界二氧化碳萃取技术是一种广泛应用于分离和提纯生物活性成分的新兴技术,可被用于采集、纯化、提炼和抽取各种药物成分和化合物。
在国内,超临界二氧化碳技术被应用于制药、食品、饮料、畜牧业等行业,是重要的生物活性物质提取技术。
超临界二氧化碳萃取工艺是一种技术,采用超临界二氧化碳作为萃取介质,通过利用超临界二氧化碳的沸点、溶度、密度及抽提效应,以抽取、分离和精炼物质的方式来提取有效成分,从而达到更高的活性和纯度的目的。
超临界二氧化碳萃取工艺在实践中有如下几个步骤:第一步是超临界二氧化碳的准备,这是整个萃取过程中最关键的一步,若超临界二氧化碳的质量不过关,将直接影响萃取的质量。
第二步是介质输送,这一步是超临界二氧化碳萃取设备所必需的,它的作用是将超临界二氧化碳泵入萃取容器内。
第三步是萃取容器的填充,萃取容器必须填充足够多的物质,以获得较高的抽取比例。
第四步是超临界二氧化碳抽取,萃取容器内的物质在超临界二氧化碳抽取时会被抽取出来,从而获得更高纯度的物质。
第五步是超临界二氧化碳抽取液的回收,在这一步中,超临界二氧化碳抽取液经过排放处理后,应回收回原来的介质储存容器中。
最后一步是产品的分离,在这一步中,超临界二氧化碳抽取的产品应该经过分离处理,以便得到高纯度的产品。
超临界二氧化碳萃取技术是一种非常有效和绿色的生物活性物质提取技术,目前在药物、食品、饮料、畜牧业等行业都得到了广泛应用,可以有效提取有效成分,使其具有更高的活性和纯度,是越来越受到关注的一项技术。
未来,超临界二氧化碳萃取技术将发挥更大的作用,为人类带来更大的收益。
超临界二氧化碳萃取技术的发展也需要相应的技术和知识支持,需要购买和使用专业设备,并根据不同的材料和目的制定不同的工艺流程,因此有必要深入学习超临界二氧化碳萃取技术,以期获得更好的成果。
总之,超临界二氧化碳萃取工艺是一种科学的抽取技术,它已经在药物、食品、饮料、畜牧业等行业得到了广泛应用,可以以较高的纯度抽取有效成分,未来它将发挥更大的作用,为人类提供更多的有效成分,为我们的生活带来更多的收获。
超临界萃取
超临界萃取是一种利用超临界流体(通常是超临界二氧化碳)作为
溶剂进行提取的技术。
超临界流体具有介于气体和液体之间的特性,具有较高的溶解力和低的粘度。
超临界萃取被广泛用于从天然产物
中提取化学物质,如药物、天然香料和植物提取物。
超临界萃取的过程是将待提取物料与超临界流体接触,在高压和高
温条件下进行混合和溶解。
随后,通过降压或降温来使溶液回到常
压下,提取物则会从溶液中析出。
这种技术具有以下几个优点:
1. 高选择性:超临界萃取可以根据物质的溶解度和分配系数来实现
有选择性的提取。
2. 高效性:超临界萃取过程通常较快,可以在短时间内完成大量提取。
3. 无残留溶剂:超临界流体通常可以通过减压来回收和重复使用,
因此没有残留的溶剂产生。
4. 温和条件:超临界萃取通常在相对温和的条件下进行,对物质的
活性和稳定性影响较小。
由于这些优点,超临界萃取已被广泛应用于食品、医药、化工和环保等领域。
它在提取高附加值产品、减少有机溶剂使用、替代传统萃取技术等方面具有重要的应用前景。
超临界二氧化碳萃取工艺技术生产植物油技术实施方案一、实施背景随着人们对健康和环保的关注度不断提高,超临界二氧化碳萃取工艺技术作为一种新型的绿色分离技术,在植物油生产中具有广泛的应用前景。
传统的植物油提取方法存在溶剂残留、效率低下等问题,而超临界二氧化碳萃取工艺技术以其独特的优势,如无残留、高效率、环保等,引起了业界的广泛关注。
二、工作原理超临界二氧化碳萃取工艺技术是一种物理分离技术,其工作原理基于超临界流体的特性。
在超临界状态下,二氧化碳流体既具有液体的高密度,又具有气体的低粘度。
此时,流体对溶质的溶解能力随压力的增加而显著提高,而溶质则以分子状态均匀地分散在流体中。
通过控制压力和温度,可以实现选择性萃取。
在植物油的生产中,超临界二氧化碳萃取工艺技术主要利用超临界二氧化碳对油脂的选择性溶解能力,以及二氧化碳在超临界状态下的高扩散性,实现油脂的高效提取和分离。
三、实施计划步骤1.原料准备:收集适量的植物种子或果实,进行破碎和干燥处理,以便后续提取。
2.萃取:将破碎后的植物原料与超临界二氧化碳流体混合,在高压条件下进行萃取。
控制压力和温度,以获得最佳的萃取效果。
3.分离:通过调整压力和温度,使萃取后的混合物中的油脂与二氧化碳及其他杂质分离。
4.收集:收集分离后的油脂,进行进一步的精炼和加工。
5.二氧化碳回收:将分离过程中产生的二氧化碳进行回收,以便重复使用。
四、适用范围超临界二氧化碳萃取工艺技术在植物油生产中具有广泛的应用,包括但不限于以下几种:1.食用植物油生产:如大豆油、花生油、菜籽油等,通过该技术可以提高提取效率,减少溶剂残留,提高产品质量。
2.特种植物油生产:如亚麻籽油、沙棘油等,这些油的营养成分丰富,市场价值高,采用超临界二氧化碳萃取工艺技术可以提高提取效率,保证产品质量。
3.工业用植物油生产:如润滑油、液压油等,通过该技术可以获得高纯度的产品,满足工业应用的需求。
五、创新要点1.使用超临界二氧化碳作为萃取剂,无残留、环保、安全。
超临界二氧化碳萃取技术
超临界二氧化碳萃取技术产生于二十世纪五十年代,目前已经广泛应用于食品、能源、医药、化妆品及香料工业。
随着中药、天然药物新药研究的发展和中药现代化的不断深入,超临界二氧化碳萃取技术在中药、天然药物活性成分和有效部位的分离和纯化中的应用研究越来越多。
由于此项技术在我国起步较晚,在中药新药中应用该项技术的品种较少。
为了促进与新药研制单位的沟通和交流,共同探讨超临界二氧化碳萃取技术在中药新药中应用的相关问题,我们对超临界二氧化碳萃取技术在中药新药研究中的应用谈一些个人的看法,抛砖引玉,仅供参考。
一、超临界二氧化碳萃取技术在中药中的应用概况
超临界二氧化碳萃取是以超临界状态(温度31.3℃,压力7.15MPa)下的二氧化碳为溶剂,利用其高渗透性和高溶解能力来提取分离混合物的过程。
超临界状态下的二氧化碳,其密度大幅度增大,导致对溶质溶解度的增加,在分离操作中,可通过降低压力或升高温度使溶剂的密度下降,引起其溶解物质能力的下降,可
使萃取物与溶剂分离。
与一般液体萃取相比,超临界二氧化碳萃取的速率和范围更为扩大,萃取过程是通过温度和压力的调节来控制与溶质的亲和性而实现分离的。
超临界二氧化碳萃取技术具有环境良好、操作安全、不存在有害物残留、产品品质高且能保持固有气味等特点。
从20世纪50年代起已开始进入实验阶段,70
年代以来超临界二氧化碳萃取技术在食品工业中的应用日趋广泛,80年代超临界二氧化碳萃取技术更广泛地用于香料的提取。
进人90年代后,超临界二氧化碳萃取技术开始运用于从药用植物中提取药用有效成分等。
我国对超临界流体技术的研究始于20世纪70年代末80年代初,与国外相比虽起步稍晚,但发展很快,在超临界流体萃取、精馏、沉析、色谱和反应等方面都有研究,涉及了化工、轻工、石油、环保、医药及食品等行业,不仅有基础研究,而且有工艺、工程开发。
早在20世纪70年代后期,德国人就采用超临界二氧化碳萃取技术从黄春菊中萃取出有效活性成分,产率高于传统溶剂法。
日本学者用超临界二氧化碳对蛇床子、紫草、甘草等进行提取。
发现蛇床子中呋喃骈香豆精(furocoumarins)超临界提取的最佳条件是温度为40℃,压力为40MPa,流速为6L/min,夹带剂为乙醇、水或甲醇。
不用夹带剂的超临界二氧化碳可将紫草中的紫红色素提出来,并能从东北甘草或西北甘草中提出甘草素(1iquiritigenin),但提不出带有三个酚羟基的异甘草素(isoliquiritigenin),不用夹带剂能将甘草查耳酮
A(1icochalconeA)提出,而使用乙醇夹带剂则可将甘草查耳酮B(1icochalcone)提出。
我国研究人员用超临界二氧化碳从丹参中提取丹参酮,其提取率也比传统的溶剂法大大提高。
用超临界二氧化碳从沙棘籽中提取沙棘油,能得到质量高、无残毒的沙棘油,成功地克服了现有提取方法所存在的缺点。
紫杉醇是治疗卵巢癌的有效药物,其惟一来源是红豆杉属树木,在高压下并加入夹带剂后,从红豆杉的根皮中用超临界二氧化碳萃取紫杉醇,效果优于传统乙醇萃取法,且选择性高。
近年来的研究还有:从人参叶中萃取人参皂苷,从蛋黄中萃取卵磷脂,从当归中萃取当归精油;从砂仁、薄荷、紫苏、大蒜、补骨脂等药材中萃取有效成分;从益母草、川芎、香附等几十种药材中萃取有效成分。
上述研究对推动超临界二氧化碳萃取技术在中药新药中的应用起到了重要的作用,很多成果已进人中试阶段。
目前申报的中药新药中有当归、川芎、新疆紫草种子等,主要提取挥发油类物质。
可见,经过多年的研究,超临界二氧化碳萃取技术在中药新药中的应用已初见端倪。
二、超临界二氧化碳萃取技术用于中药新药时需关注的问题
1.适用范围
超临界二氧化碳对不同物质的溶解能力差别较大,与物质的极性、沸点和相对分子质量有密切的关系,通过采用纯超临界二氧化碳萃取和夹带剂改性的超临界二氧化碳萃取可用于部分中药品种,可以萃取出全部的强亲脂性成分(如挥发油、脂肪油、蜡、脂溶性色素、甾醇类、某些苷元)和大部分的亲脂性成分(如苷元、生物碱、树脂、醛、酮、醇、醌、有机酸、某些苷类),对于中等极性成分(如皂苷、黄酮苷)或极性更大的成分等只能萃取出很少的部分。
作为一种新方法,超临界萃取有其特定的适用范围。
在选择中药的提取方法时,需考虑有效成分及共存杂质的性质,考虑方法的成本、能耗、环保等因素。
一般情况下,超临界二氧化碳提取方法比较适合于具有明确生物活性的挥发油、内酯、脂肪油等脂溶性成分,提取极性较大成分时需要添加夹带剂。
对于有效成分不明确的复方制剂一般不宜采用该方法。
2. 主要影响因素
首先应针对欲提取分离的成分进行分析,确定是否确实适合采用超临界二氧化碳萃取。
此后,需考虑萃取过程的影响因素,如二氧化碳的温度、压力、流量、夹带剂、萃取时间;样品的物理形态、粒度、黏度等,包括被萃取物质成分的性质和超临界二氧化碳所处的状态等。
这些影响因素交织在一起使萃取过程变得较为复杂,在中药新药研究中需要重点考察。
研究表明二氧化碳压力在8-200MPa 范围内,溶质在二氧化碳中的溶解度与二氧化碳的密度相关,而密度又与温度、压力有关。
萃取的压力是超临界二氧化碳萃取过程中最重要的参数。
萃取温度一定时,压力增加,液体的密度增大,在临界压力附近,压力的微小变化会引起密度的急剧改变,而密度的增加将引起溶解度的提高。
对于不同的物质,其萃取压力有很大的不同。
例如,对于碳氢化合物和酯等弱极性物质,萃取可在较低压力下进行,一般压力为7~10MPa;对于含有—OH,—COOH基这类强极性基因的物质以及苯环直接与—OH,—COOH基团相连的物质,萃取压力要求高一些,而对于强极性的配糖体以及氨基酸类物质,萃取压力一般要求50MPa以上才能萃取出来。
有人在研究乳香萃取物时,萃取温度保持在50℃,压力为6MPa时,乳香萃取物中的主要成分是乙酸辛酯和辛醇,高相对分子质量化合物和乙酸乳香醇酯所占比例很小,当压力升至20MPa时,产物的主要成分是乳香醇和乙酸乳香醇酯,乙酸辛酯仅占3%左右。
萃取温度也是影响超临界二氧化碳萃取的重要参数。
温度对溶解度的影响存在有利和不利两种趋势。
一方面,温度升高,超临界流体密度降低,其溶解能力相应下降,导致萃取数量的减少;但另一方面,温度升高使被萃取溶质的挥发性增加,这样就增加了被萃取物在超临界气相中的浓度,从而使萃取数量增大。
通过实验,人们还发现温度对溶解度的影响还与压力有密切的关系:在压力相对较低时(45~28MPa这个范围以下),温度升高溶解度降低;而在压力相对较高时(45~28Mpa以上——此压力数值的大小与物质的品种有关),温度升高二氧化碳的溶
解能力提高。
流量的选择需要和大生产的实际情况结合起来考察,在提取成分基本一致的情况下,考虑大生产时的生产成本,选择较为适合的二氧化碳流量。
超临界流体萃取的溶剂大多数是非极性或弱极性,对亲脂类物质的溶解度较大,对较大极性的物质溶解度较小。
针对这一问题,在纯的超临界流体如超临界二氧化碳中加入一定量的极性成分(即夹带剂)可显著地改变超临界二氧化碳流
体的极性,拓宽其适用范围。
如丹参中的丹参酮难溶于二氧化碳流体,在二氧化碳中添加一定量的95%乙醇可大大增加其溶解度。
样品的性质:药材的物理形态、粒度、黏度等等对超临界流体萃取的效果有明显影响。
目前申报的中药新药品种在因素考察方面存在以下问题:参数不明确,研究资料简单而粗糙,影响因素的交互作用未考虑,对萃取条件与萃取物的成分种类和含量之间的关系未考察(大多依据参考文献确定萃取条件)等等。
与采用传统提取方法申报的中药新药相比,申报资料差异较大,这可能与研究单位对超临界二氧化碳的研究水平与生产实践水平有关。
3.与生产相关的问题
目前,我国超临界萃取的设备规模相对较小、生产成本较高,一般用于附加值较高的产品。
对于体积较大的花类、叶类药材,采用小体积的罐提取不够经济。
采用超临界二氧化碳萃取技术应重视中试条件的摸索,小试优选的工艺参数在大生产时往往有改动,尤其是压力,大生产时往往不能确定在某一点上,然而工艺参数的改变直接影响到萃取物中所含成分的种类和数量,最终影响疗效。
此外,建议关注大生产时所用密封圈、高压泵的选择,并注意更换品种时设备的清洗等。
三、结语
超临界二氧化碳萃取技术具有常温、无毒、环保、使用安全简便、萃取时间短、产品质量高等特点。
已经在中药有效成分的提取中显示出其独特的优势。
但对于具体新药品种而言,需要考虑该成分是否适合采用超临界二氧化碳萃取,考虑成本、设备等问题。
超临界二氧化碳萃取技术的发展,为中药新药的生产提供了一种新的技术,为中药的现代化提供了一种新的手段。
相信在不久的将来,随着研究的深入,超临界二氧化碳萃取技术的适用范围会进一步扩展,相关设备成本会进一步降低,超临界二氧化碳萃取技术在中药新药的开发中将有着良好的前景。