固体物理 晶格振动与晶体的热力学函数

  • 格式:docx
  • 大小:102.21 KB
  • 文档页数:13

下载文档原格式

  / 13
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章晶格振动与晶体的热力学函数

一、填空体

1. 若在三维空间中,晶体由N个原胞组成,每个原胞有一个原子,则共有_ 3 N_个独立的

振动,_ N__个波矢, 3N_支格波。

2. 体积为V的ZnS晶体,如果晶胞的体积为Ω,则晶格振动的模式书为24N/Ω。

3. 三维绝缘体晶体的低温比热Cv与温度T的关系为Cv~T3。

4. 某三维晶体由N个原胞组成,每个原胞内有3个原子。考虑晶体的晶格振动,其色散关系共有 9N 支,其中 3N 支声学波,包括 2N 支横声学波, 1N 支纵声学波;另有 6N 支光学波。

5. 二维绝缘体晶体的低温比热Cv与温度T的关系为Cv~T2。

6. 一维绝缘体晶体的低温比热Cv与温度T的关系为Cv~T。

7. 三维绝缘体晶体的低温平均内能与温度T的关系为U~T4。

8.二维绝缘体晶体的低温平均内能与温度T的关系为U~T3。

9. 一维绝缘体晶体的低温平均内能温度T的关系为U~T2。

10.绝缘体中与温度有关的内能来源于晶格振动能。

11.导体中与温度有关的内能来源于晶格振动能和价电子热运动动能。

12. 某二维晶体由N个原胞组成,每个原胞内有2个原子。考虑晶体的晶格振动,其色散关系共有 4N 支,其中 2N 支声学波,包括 N 支横声学波, N 支纵声学波;另有 2N 支光学波。

13. 某一维晶体由N个原胞组成,每个原胞内有3个原子。考虑晶体的晶格振动,其色散关系共有 3N 支,其中 N 支声学波,包括 N 支横声学波, 0 支纵声学

波;另有 2N 支光学波。

14.晶格振动的元激发为 声子 ,其能量为 ωη ,准动量为 q ρ

η 。 15德拜模型的基本假设为:格波作为弹性波、 介质是各向同性介质。 16.对三维体积为V 的晶体,波矢空间中的波矢密度为:

3

)2(V

π ;对二维面积为S 的晶体,波矢空间中的波矢密度为:

2

)

2(S π ;对一维长度为L 的晶体,波矢空间

中的波矢密度为:π

2L

。 二、基本概念 1. 声子

晶格振动的能量量子。 2.波恩-卡门条件

即周期性边界条件,设想在实际晶体外,仍然有无限多个相同的晶体相连接,各晶体中相对应的原子的运动情况都一样。 3.波矢密度

波矢空间单位体积内的波矢数目,三维时为3

c

)

2(V π,Vc 为晶体体积。 4. 模式密度

单位频率间隔内模式数目。 5.晶格振动。

答:由于晶体内原子间存在着相互作用,原子的振动就不是孤立的,而要以波的形式在晶体中传播,形成所谓格波,因此晶体可视为一个互相耦合的振动系统,这个系统的运动就叫晶格振动。

6.简谐近似

答:当原子在平衡位置附近作微小振动时,原子间的相互作用可以视为与位移成正比的虎克力,由此得出原子在其平衡位置附近做简谐振动。这个近似即称为简谐近似。

7.格波

答:晶格中的原子振动是以角频率为ω的平面波形式存在的,这种波就叫格波。

三、简答题

1.试分析爱因斯坦模型和德拜模型的特点及局限性.

特点:

1)爱因斯坦模型假设晶体中所有原子都以相同的频率作振动;

2)德拜模型的基本思想是把格波作为弹性波来处理。

局限性:

1)在爱因斯坦的假设下,解释了在甚低温时温度的变化趋势,但是不能解释为什么晶体热熔随温度T3的速度变化,这是因为,爱因斯坦模型只考虑了光学支格波,忽略了声学支格波,而在甚低温决定晶体热容的主要是长声学波。爱因斯坦模型过于简化。

2)德拜模型不仅能够很好解释在甚低温时晶体热容随温度的变化趋势,同时得出了在甚低温下,热容与T3成正比的规律。但是德拜模型忽略了晶体的各向异性,即光学波和高频声学波对热容的贡献。

2. 长光学支格波与长声学支格波本质上有何差别

答:长光学支格波的特征是每个原胞内的不同原子做相对振动, 振动频率较高, 它包含了晶格振动频率最高的振动模式. 长声学支格波的特征是原胞内的不同原

子没有相对位移, 原胞做整体运动, 振动频率较低, 它包含了晶格振动频率最低的振动模式, 波速是一常数. 任何晶体都存在声学支格波, 但简单晶格(非复式格子)晶体不存在光学支格波.

3. 晶体中声子数目是否守恒

答:频率为的格波的(平均) 声子数为

,

即每一个格波的声子数都与温度有关, 因此, 晶体中声子数目不守恒, 它是温度的变量.

4. 温度一定,一个光学波的声子数目多呢, 还是声学波的声子数目多

答:频率为的格波的(平均) 声子数为

.

因为光学波的频率比声学波的频率高, ( )大于( ), 所以在温度一定情况下, 一个光学波的声子数目少于一个声学波的声子数目.

5. 对同一个振动模式, 温度高时的声子数目多呢, 还是温度低时的声子数目多答:设温度TH>TL, 由于( )小于( ), 所以温度高时的声子数目多于温度低时的声子数目.

6. 高温时, 频率为的格波的声子数目与温度有何关系

答:温度很高时, , 频率为的格波的(平均) 声子数为

.

可见高温时, 格波的声子数目与温度近似成正比.

7. 长声学格波能否导致离子晶体的宏观极化

答:长光学格波所以能导致离子晶体的宏观极化, 其根源是长光学格波使得原胞内不同的原子(正负离子)产生了相对位移. 长声学格波的特点是, 原胞内所有的原子没有相对位移. 因此, 长声学格波不能导致离子晶体的宏观极化. 8. 试定性给出一维单原子链中振动格波的相速度和群速度。 答:由一维单原子链的色散关系2

sin

2

qa

m

β

ω= 可求得一维单原子链中振动格波的相速度为2

/2sin

qa

qa m

a

q

p β

ω

υ== 群速度为

9. 周期性边界条件的物理含义是什么引入这个条件后导致什么结果如果晶体是无限大,q 的取值将会怎样

答:由于实际晶体的大小总是有限的,总存在边界,而显然边界上原子所处的环境与体内原子的不同,从而造成边界处原子的振动状态应该和内部原子有所差别。考虑到边界对内部原子振动状态的影响,波恩和卡门引入了周期性边界条件。其具体含义是设想在一长为Na 的有限晶体边界之外,仍然有无穷多个相同的晶体,并且各块晶体内相对应的原子的运动情况一样,即第j 个原子和第Nt+j 个原子的运动情况一样,其中t =1,2,3…。

引入这个条件后,导致描写晶格振动状态的波矢q 只能取一些分立的不同值。如果晶体是无限大,波矢q 的取值将趋于连续。

10. 下图表示一维双原子复式晶格振动的两支格波的色散关系。请简要分析并判断:在长波极限下,图中哪一条曲线反映了初基元胞内两个原子的质心振动图中哪一条曲线反映了初基元胞内两个原子的相对振动 答: