转矩控制
- 格式:doc
- 大小:450.00 KB
- 文档页数:12
直接转矩控制的原理嘿,朋友们!今天咱来唠唠直接转矩控制的原理。
你说这直接转矩控制啊,就好像是一位特别有个性的司机在开车。
他呀,不怎么在意那些复杂的路线规划啥的,就凭着自己的感觉和判断,直接去控制车子的速度和方向。
想象一下,电机就好比是那辆车,而直接转矩控制就是这位司机。
它不去管那些中间的弯弯绕绕,而是直接盯着电机的转矩,说:“嘿,转矩你得这么变!”然后就快速地做出反应,让电机按照它想要的方式运行。
它可不像有些方法那样,犹犹豫豫,思前想后。
它就是这么干脆利落,说干就干!比如说,它觉得转矩小了,立马就加大力度;觉得转矩大了,就赶紧调整。
就好像你开车的时候,觉得速度慢了就猛踩油门,速度快了就踩刹车一样。
这直接转矩控制啊,还有个厉害的地方,就是它反应特别快。
就跟武林高手似的,敌人一招过来,瞬间就能回击。
电机运行中出现啥变化,它能第一时间察觉到,然后迅速采取行动。
而且啊,它适应性还特别强。
不管是在平坦的大道上,还是在崎岖的小路上,它都能把车开得稳稳当当。
无论是啥样的工作环境,它都能很好地发挥作用,让电机乖乖听话。
你说这直接转矩控制是不是很神奇?它就这么直截了当地去控制,没有那么多啰嗦的步骤和计算,却能把电机管理得服服帖帖。
这可真是个了不起的技术啊!咱再想想,要是没有这直接转矩控制,那电机运行起来得多费劲啊!可能就像没头苍蝇一样,不知道该往哪儿走,转矩也不知道该怎么变。
但有了它,一切都变得井井有条,电机能高效地工作,为我们的生活带来便利。
所以啊,直接转矩控制可真是电机控制领域的一把好手,是让电机乖乖听话的妙招!咱可得好好感谢那些发明和研究它的人,让我们能享受到这么厉害的技术带来的好处呀!。
一、概述DTV动态转矩矢量控制系统是一种用于控制电动汽车的先进技术,它可以有效地提高车辆的性能和安全性。
在本文中,我们将对DTV动态转矩矢量控制系统的技术原理、优势和应用进行详细介绍。
二、技术原理1. 转矩矢量控制技术转矩矢量控制技术是将车辆的动力系统与车轮进行有效地集成和控制,从而实现更高的转弯性能和牵引力。
通过动态转矩分配,这种技术可以在车辆转弯时瞬间调整车轮转速,从而使车辆具有更好的稳定性和操控性。
2. 电动汽车转矩矢量控制系统DTV动态转矩矢量控制系统利用车辆的电动机和电子控制单元(ECU)来实现转矩的单独控制和分配。
通过对车轮的转矩进行精确调节,可以实现车辆的主动稳定控制和动态操控,从而提高车辆在弯道和复杂路况下的行驶性能。
三、优势1. 提高车辆的操控性能DTV动态转矩矢量控制系统可以根据车辆的实际行驶状态动态调整每个车轮的转矩,从而有效地提高车辆的操控性能。
无论是在高速行驶、急转弯还是紧急制动的情况下,都可以使车辆保持稳定,提高驾驶员的操控感受。
2. 提升车辆的行驶安全性通过对车轮转矩的精确控制,DTV动态转矩矢量控制系统可以在车辆行驶过程中有效地避免侧滑、失控和翻滚等安全问题,提升了车辆的行驶安全性。
尤其在复杂路况和恶劣天气下,该系统可以更好地应对突发状况,保障乘员的安全。
3. 提高电动汽车的能源利用率DTV动态转矩矢量控制系统通过对车辆转矩的合理调配,可以最大限度地利用电动汽车的动力资源,提高能源利用率。
在车辆行驶过程中,系统能够实时监测车辆的实际状态,并实现转矩的合理分配,从而降低能源损耗,延长电池续航里程。
四、应用DTV动态转矩矢量控制系统适用于各种类型的电动汽车,尤其是高性能和运动型车辆。
在一些知名汽车品牌的高端车型中已经开始大规模应用该技术,如特斯拉Model S、保时捷Taycan等。
在未来,随着电动汽车市场的不断发展和技术的进步,DTV动态转矩矢量控制系统有望在更多的车型中得到推广和应用。
永磁同步电机转矩
永磁同步电机的转矩是指电机输出的转矩大小。
永磁同步电机是一种特殊的同步电机,其转矩主要由永磁体和感应绕组产生。
永磁同步电机的转矩可以通过改变电机的电流、磁通或控制方式来调节。
以下是一些常见的转矩调节方法:
1. 电流控制:通过调节电机的电流大小,可以改变电机的转矩。
增大电机的电流可以提高转矩,而降低电机的电流可以降低转矩。
这一方法可以通过调节电机控制器的输出电流来实现。
2. 磁通调节:通过改变永磁体中的磁通大小,可以调节电机的转矩。
增大磁通可以增加转矩,而减小磁通可以减小转矩。
这一方法可以通过改变电机控制器中的磁通调节参数来实现。
3. 控制策略:通过改变电机的控制策略,可以调节电机的转矩。
例如,采用矢量控制或直接转矩控制等技术可以实现更精确的转矩调节。
总之,永磁同步电机的转矩可以通过多种方式来调节,具体方法取决于电机的设计和控制系统的能力。
直接转矩控制的特点
直接转矩掌握(direct torque control)方法是1985年由的德国鲁尔高校的Depen-brock教授首次提出的,它是继矢量掌握技术之后进展起来的一种新型沟通变频调速技术。
尽管矢量掌握在原理上优于标量掌握,但是在实际上,由于转子磁链难以观测,系统性能受到电机参数的影响较大,以及简单的矢量变换,都使它的实际掌握效果难于达到理论分析的结果。
直接转矩掌握正是弥补了矢量掌握的不足,它避开了简单的坐标变换,削减了对电机参数的依靠性,以其新奇的掌握思想、简洁明白的系统结果、优良的动静态性能备受人们的青睐,得到快速的进展。
直接转矩掌握的特点:
(1)在定子坐标系下分析沟通机的数学模型,直接掌握磁链和转矩,不需与直流机做比较、等效、转化等,省去了简单的计算。
(2)直接转矩掌握以定子磁场定向,只需定子参数,而不需随转速变化的,难以测定的转子参数,大大削减了参数变化对系统性能的影响。
(3)采纳电压矢量和六边形磁链轨迹,直接掌握转矩
(4)转矩和磁链都采纳两点调整器(带滞环的band-band 掌握),把误差限制在容许的范围内,掌握直接又简化。
(5)掌握信号的物理概念明确,转矩响应快速,而且无超调,具有较高的动静态性能。
伺服电机的位置控制转矩控制速度控制是什么样的一个模式伺服电机的位置控制,转矩控制,速度控制是什么样的一个模式,有什么不同?例如位置控制模式,他工作的时候是不是PLC发脉冲的时候开始转动,然后plc一直发脉冲,伺服就一直走,PLC脉冲停止的时候伺服电机就停止转动?还是怎么样工作呢?1、上图就是由用户设定的指令脉冲数的图;2、用户根据工件实际需要移动的距离,和自己选定的脉冲当量,首先计算出伺服应该转动多少个指令脉冲数,就到达指定位置;3、然后用户根据“PLC发脉冲额定频率例如200KHZ”,知道指令脉冲额定频率,并根据指令脉冲数计算出指令运算时间,得到上图设定曲线;4、这个曲线在伺服还没有运行前,由用户设定的曲线;5、这条曲线设定后,伺服就知道指令脉冲额定频率,知道伺服电机的上限运行速度伺服上线运行速度=指令脉冲额定频率×伺服上限速度6、有了这条曲线,伺服就知道用户要它要转过多少个指令脉冲数,到转过这么多指令脉冲数时,伺服就指令伺服停车;7、当你设定好这个曲线后,启动伺服运转,伺服就开始启动、加速、匀速……转动起来了;8、这时候没有“PLC发脉冲”,谁也没有发脉冲,指令脉冲只是个“数”!9、那为什么大家说“PLC 发脉冲”,那是因为位置环就是PLC的计数器,那个指令脉冲数就是给计数器设定的一个基数;10、PLC并不发脉冲,没有实际存在的脉冲,只有一个脉冲数,当然没有指令脉冲受干扰的问题!1、这个曲线是可以用示波器观察到的曲线;2、它是伺服运转时编码器检测发出的反馈脉冲数,以及反馈脉冲数的频率曲线;3、这条曲线也可以看成伺服运转的速度曲线,因为编码器反馈脉冲的频率=编码器周反馈脉冲数×伺服电机速度(r/s)4、这条曲线,反映了伺服运转的全过程,启动→加速→匀速→减速→停车,伺服的运动是一大步完成的。
5、这条曲线与横轴时间所围成的面积就是伺服运动全过程编码器的反馈脉冲数;6、编码器的反馈脉冲数/电子齿轮比=指令脉冲数时,PLC计数器发出停车信号,驱动器停车!7、这就是伺服运动控制的核心原理!!!8、这个过程就是位置环的工作原理,或者说是PLC计数器的工作过程,指令脉冲为计数器基数,编码器反馈脉冲进入计数器计数端,当输出指令脉冲数“编码器的反馈脉冲数/电子齿轮比-指令脉冲数时=0”时,伺服停车!9、仔细观察这条曲线,编码器反馈脉冲频率的最大值,对应的就是伺服运转的最大速度;10、这个最大速度必须小于伺服电机的上限速度,也就是说这个曲线的高度要比指令脉冲曲线的高度“矮”;11、这一点很重要,如果伺服运转速度,在某一个时刻“超速”,就会出现反馈脉冲丢失或者指令脉冲增多的故障!12、仔细观察这条曲线,伺服停车前要减速,伺服停车必须在速度缓慢的情况下完成;13、这一点非常重要,如果伺服停车时,伺服速度大,那么伺服惯性大,就不能准停,就会向前继续惯性转一下,出现编码器反馈脉冲数大于指令脉冲数的情况;14、仔细观察这条曲线,伺服运转的最大速度是可以由用户设置的;15、用户在速度环上设定编码器反馈脉冲频率,伺服的运转速度就是设定编码器反馈脉冲频率=编码器周反馈脉冲数×伺服电机设定速度(r/s)16、因为指令脉冲频率=编码器反馈脉冲频率/电子齿轮比所以,用户也可以设定“指令脉冲频率”,来设定伺服电机速度;17、仔细观察这条曲线,伺服电机的加速、减速,就是靠驱动器变频、变压的速度环完成的,所需要的动力转矩是由电流环完成的,这就是ShowMotion 说的,“位置环可以包含速度环,也可以直接包含力矩环”!如何选择伺服电机控制方式?如何选择伺服电机控制方式?一般伺服电机都有三种控制方式:速度控制方式,转矩控制方式,位置控制方式。
交流电机直接转矩控制策略综述 本文介绍了目前几种比较常见的直接转矩控制策略并进行分析比较,对于中小容量而言,控制方案重点在于进行转矩、磁链无差拍控制和提高载波频率。对大容量来说,其区别在于低速时采用了间接转矩控制,从而达到低速时降低转矩脉动的目的
摘 要:本文介绍了目前几种比较常见的直接转矩控制策略并进行分析比较,对于中小容量而言,控制方案重点在于进行转矩、磁链无差拍控制和提高载波频率。对大容量来说,其区别在于低速时采用了间接转矩控制,从而达到低速时降低转矩脉动的目的。
关 键 词:磁场定向控制 直接转矩控制DTC Abstract:This article presents a review of several kinds of commonly used direct torque control strategies and the analysis and comparision are made. The emphases of control scheme is put on the dead-beat control of torque and stator flux as well as the increasing of carrier frequency for low power drives, whereas, indirect torque control is adopted to achieve torque ripple minimization in low speed, for high power drives.
Keywords:Field-oriented control Direct Torque Control
1 引言 交流电机相对于直流电机在结构简单、维护容易、对环境要求低以及节能和提高生产力等方面具有足够的优势,使得交流调速已经广泛运用于工农业生产、交通运输、国防以及日常生活之中。随着电力电子技术、微电子技术、控制理论的高速发展,交流调速技术也得到了长足的发展。目前在高性能的交流调速领域主要有矢量控制和直接转矩控制两种。1968年Darmstader工科大学的Hasse博士初步提出了磁场定向控制(Field Orientation)理论,之后在1971年由西门子公司的F.Blaschke对此理论进行了总结和实现,并以专利的形式发表,逐步完善并形成了现在的各种矢量控制方法。
对于直接转矩控制来说,一般文献认为它由德国鲁尔大学的M.Depenbrock教授和日本的I.Takahashi于1985年首先分别提出的。对于磁链圆形的直接转矩控制来说,其基本思想是在准确观测定子磁链的空间位置和大小并保持其幅值基本恒定以及准确计算负载转矩的条件下,通过控制电机的瞬时输入电压来控制电机定子磁链的瞬时旋转速度,来改变它对转子的瞬时转差率,达到直接控制电机输出的目的。在控制思想上与矢量控制不同的是直接转矩控制通过直接控制转矩和磁链来间接控制电流,不需要复杂的坐标变换,因此具有结构简单、转矩响应快以及对参数鲁棒性好等优点。图1为典型的圆形磁链直接转矩控制系统结构图。
图1 圆形磁链直接转矩控制系统控制框图 事实上,1977年A·B·Plunkett曾经在IEEE的工业应用期刊上提出了类似于目前直接转矩控制的结构和思想的直接磁链和转矩调节方法,在这种方法中,转矩给定与反馈之差通过PI调节得到滑差频率,此滑差频率加上电机转子机械速度得到逆变器应该输出的电压定子频率;定子磁链给定与反馈之差通过积分运算得到一个电压与频率之比的量,并使之与定子频率相乘得到逆变器应该输出的电压,最后通过SPWM方法对电机进行控制。
图2是直接磁链和转矩调节的控制框图,比较图1和图2可以看出两者都是对转矩和磁链进行直接控制,本质上都是对瞬时滑差进行了控制,所不同的是前者通过Bang-Bang控制的方法获得电压矢量,后者通过PI调节的方式获得电机输入控制电压。 图2 直接磁链和转矩调节系统控制框图 直接转矩控制提出来将近有20年了,目前在此基础上已经发展出来了多种控制策略及其数字化实现方案、磁链观测以及速度辨识的方法,本文将对它们进行分类,并作分析和比较。
2 电机模型和直接转矩控制策略 直接转矩控制是基于静止坐标系下来进行控制的,如图1所示,在传统的直接转矩控制中,通过检测定子两相电流、直流母线电压和电机转速(在无速度传感器DTC中不需要测速)进行定子磁链观测和转矩计算,使二者分别与定子磁链给定和转矩给定相减,其差值又分别通过各自的滞环相比较,输出转矩和磁链的增、减信号,把这两个信号输入优化矢量开关表,再加上定子磁链所在的扇区就得到了满足磁链为圆形、转矩输出跟随转矩给定的电压矢量。磁链和转矩的滞环可以设置多级,并且其宽度可变,滞环宽度越小,开关频率越高,控制越精确。
直接转矩控制具有结构简单、转矩响应快以及对参数鲁棒性好等优点,但它却是建立在单一矢量、转矩和磁链滞环的Bang-Bang控制基础之上的控制方法,不可避免地造成了低速开关频率低、开关频率不固定以及转矩脉动大,限制了直接转矩控制在低速区的应用。针对于此,国内外有很多学者提出了各种提高开关频率、固定开关频率以及减小转矩脉动的方法,本节将逐一列出分析比较。
3 无差拍(Deadbeat)空间矢量调制方法 3.1 T.G.Habetler的空间矢量调制方法 把无差拍方法应用于直接转矩控制首先是由美国人T.G.Habetler提出来的。这种方法的主要思想是在本次采样周期得到转矩的给定值与反馈值之差,这个差值可以用下式表示出来:
其中包含有空间电压矢量在d轴和q轴上的两个分量。另外可以得到使定子磁链
幅值达到给定值的所加空间电压矢量的数学式子:
利用式(1)和式(2)可以联立求解出下一周期使转矩误差和磁链误差为零的空间电压矢量的两个分量Vd和Vq,显然,此空间电压矢量的幅值和相位是任意的,可以通过相邻的两个基本的电压矢量合成而得。利用计算出来的空间电压矢量可以达到转矩和磁链无差拍的目的。
利用Habetler的无差拍方法,从理论上可以完全使磁链和转矩误差为零,从而消除转矩脉动,可以弥补传统DTC的Bang-Bang控制的不足,使电机可以运行于极低速下。另外,通过无差拍控制得到的空间电压矢量可以使开关频率相对于单一矢量大幅提高并且使之固定,这对于减少电压谐波和电机噪声是很有帮助的。
但是由式(1)和式(2)可以联立求解出的空间电压矢量作用时间可能会大于采样周期,这说明不能同时满足磁链和转矩无差拍控制。因此作者提出了三个步骤,首先是否转矩满足无差拍,如果不满足再看是否磁链满足无差拍,如果还不满足就按照原有直接转矩控制矢量表来选取下一周期的单一电压矢量。因此按照Habetler的无差拍方法最大的计算量有四个步骤,这将耗费很大的计算资源,不易实现,另外在整个计算过程中对电机参数的依赖性比较大,这将降低控制的鲁棒性。
3.2 转矩或磁链的预测控制方法 在T·G·Habetler的无差拍的直接转矩控制方法中,由于计算量很大而不易实现,因此出现了一系列的简化的无差拍直接转矩控制,比较典型的是转矩跟踪预测方法。在这种方法中,分析了低速转矩脉动的情况,得出转矩脉动锯齿不对称的结论,之后又进一步由基本电机方程得出转矩变化式子: 其中:, 。 通过分析(3)式可知,非零电压矢量和零电压矢量对转矩变化的作用是不同的,前者可以使转矩上升或下降,而后者总是使转矩下降。另外,在不同的速度范围内二者对转矩作用产生的变化率也在变化。在转矩预测控制方法中,电压矢量在空间的位置是固定不变的,合成在两个单一电压矢量的中间,但是电压矢量不是作用整个采样周期,而是有一定的占空比,在一个采样周期中可以分为非零电压矢量和零电压矢量。如果使下一采样周期非零电压矢量和零电压矢量共同作用产生的转矩变化等于本周期计算出来的转矩误差,如下式所示:
将消除转矩误差,达到转矩无差拍控制的目的。即使出现计算出来的电压矢量作用时间超出采样周期,也可以用满电压矢量来代替,因此是非常易于实现的,从实验结果来看,转矩脉动的锯齿基本上对称,说明转矩的脉动已经大为减少。上法认为磁链被准确控制或变化缓慢,而没有考虑磁链的无差拍控制,在文献中对磁链也进行了预测控制,在这中方法中,通过磁链的空间矢量和电压矢量关系可近视得到:
其中ΔΨS是在电压矢量作用下的磁链幅值改变量,θVΨ是二者的空间角度。设第k采样周期的磁链误差为ΔΨSO,那么根据公式(5),可以得到使第k+1周期磁链误差为零的矢量作用时间为:。以转矩控制优先为原则,根据转矩预测控制计算出来的矢量作用时间和磁链预测控制计算出来的作用时间可以得到综合的矢量作用时间。考虑磁链的无差拍控制之后相对于单纯的转矩无差拍控制效果好,既消除了转矩脉动,又不会产生磁链畸变,并且计算量不会太大。除了上述的转矩无差拍控制方法,在文献中也采用了类似的方法,最后的电压矢量计算作用时间也基本相同,此处不详述。同Habetler的无差拍方法一样,预测方法也要用到比较多的电机参数,如果能在线实时辨识定子电阻和转子时间常数,将大大提高控制精度。
3.3 基于检测反电势的离散时间直接转矩控制(DTDTC) 使用离散时间的方法进行异步电机的控制在文献中已经有了比较详细的介绍,在文献中,首次把这种方法使用于直接转矩控制,其基本方法如下:对由电机的基本电路模型得到的电压方程和磁链方程进行离散化如下:
a,b的定义对转矩方程也进行离散化,并把方程(7)代入其中,同时也把方程(7)代入到磁链的幅值平方表达式中去,利用离散的转矩方程和离散的磁链幅值平方式可以求解出下一周期的的空间电压矢量的增量 ΔVSx和ΔVSy,代入以下方程可以得到转矩和磁链无差拍控制的电压矢量,并对其进行了限幅:
离散时间直接转矩控制可以通过差分方程,把k+1周期的所应达到的转矩和磁链递推出来,因此可以同时达到转矩和磁链的无差拍控制,从实现方式上是很适合于数字化控制的,另外这种方法主要基于定子侧进行控制,所需的电机参数只有定子电阻和电感,对电机参数变化的鲁棒性比较好,从实验结果来看,系统的动态响应性能是比较好的。但是在这种方法中,需要检测电机的相电压,这增加的系统硬件的复杂性,另外,计算量也比较大。
3.4 基于几何图形的无差拍控制 在文献中,对定子磁链方程、转子磁链方程以及由定、转子磁链表达的转矩方程进行离散化,之后把前两个方程带入到转矩方程中去。通过离散的转矩方程分析可以知道施加电压矢量可以使转矩误差为零,转矩变化到平面上的一条直线上,这条直线与转子磁链矢量方向平行。采取同样的方法可以分析知道施加电压矢量可以使磁链误差为零,磁链变化到平面上的一个园上,这个园与与磁链园同