当前位置:文档之家› 无线通信电路设计

无线通信电路设计

无线通信电路设计
无线通信电路设计

无线通信电路设计

随着电子技术的发展,基于射频技术的无线收发芯片的集成度、性能都大幅度提高,芯片的种类和数量比较多,性能也各有特色。目前,世界各大芯片制造商研制开发出了各种新型射频芯片,使短距离无线通信装置的设计开发趋于容易、便捷、周期短、成本低。

此类芯片收发合一,工作频率一般为国际通用的ISM频段,无需申请许可证,采用低发射功率、高接收灵敏度的设计,使用时对周围干扰很小,调制方式大多为ASK,FSK,传输速率为几K到几百K bit/s,传输距离受环境影响,一般在几十米到数百米。

选择无线收发芯片时,应考虑以下几个因素:

(1)芯片所需的外围元件数量

芯片外围元件的数量的直接决定设计的成本,因此应该选择外围元件少的收发芯片。有些芯片似乎比较便宜,可是外围元件使用很多昂贵的元件;有些芯片收发分别需要两根天线,会大大加大成本。

(2)功耗

大多数无线收发芯片是应用在便携式产品上的,因此功耗也非常重要,应该根据需要选择综合功耗较小的产品。

(3)发射功率

在同等条件下,为了保证有效和可靠的通信,应该选用发射功率较高的产品。但是也应该注意,有些产品标称的发射功率虽然较高,但是由于其外围元件多,调试复杂,往往实际的发射功率远远达不到标称值。

(4)芯片的封装和管脚数

较少的管脚以及较小的封装,有利于减少PCB而积降低成本,适合便携式产品的设计,也有利于开发和生产。此外,接收灵敏度、从待机模式到工作模式的唤醒时间等因素也要考虑。

nRF905芯片体积小,功耗低,内置数据协议和CRC检错,无须在软件设计中另加CRC校验,简化了软件设计,提高了数据传输的可靠性,因此本次设计直接采用以nRF905为核心芯片的PTR8000无线数传模块。

1)nRF905介绍

nRF905是挪威Nordic VLSI公司推出的单片射频收发器,工作电压为1.9~3.6V,32引脚QFN 封装(5×5mm),工作于433/868/915MHz 三个ISM 频道,频道之间的转换时间小于650us。nRF905由频率合成器、接收解调器、功率放大器、晶体振荡器和调制器组成,不需外加声表滤波器,ShockBurstTM工作模式,自动处理字头和CRC(循环冗余码校验),使用SPI接口与微控制器通信,配置非常方便。此外,其功耗非常低,以-10dBm的输出功率发射时电流只有11mA,工作于接收模式时的电流为12.5mA,内建待机模式与关机模式,易于实现节能。

(1)芯片结构

nRF905片内集成了电源管理、晶体振荡器、低噪声放大器、频率合成器功率放大器等模块,曼彻斯特编码/解码由片内硬件完成,无需用户对数据进行曼彻斯特编码,因此使用方便,nRF905详细结构如图3-12所示。

(2)工作模式

nRF905有两种工作模式和两种节能模式。两种工作模式分别是ShockBurstTM接收模式和ShockBurstTM发送模式,两种节能模式分别是关机模

式和待机模式。与射频数据包有关的高速信号处理都在nRF905片内进行,数据速率由微控制器配置的SPI接口决定,数据在微控制器中低速处理,但在nRF905中高速发送,因此中间有很长时间的空闲,这很有利于节能。由于nRF905工作于ShockBurstTM模式,因此使用低速的微控制器也能得到很高的射频数据发射速率。在ShockBurstTM接收模式下,当一个包含正确地址和数据的数据包被接收到后,地址匹配(AM)和数据准备好(DR)两引脚通知微控制器。在ShockBurstTM 发送模式,nRF905自动产生字头和CRC校验码,当发送过程完成后,数据准备好引脚通知微处理器数据发射完毕。

由以上分析可知,nRF905的ShockBurstTM收发模式有利于节约存储器和微控制器资源,同时也减小了编写程序的时间。

关机模式时,nRF905的工作电流最小,一般为2.5uA,进入关机模式后,nRF905保持配置字中的内容,但不会接收或发送任何数据。待机模式有利于减小工作电流,其从待机模式到发送模式或接收模式的启动时间也比较短,在待机模式下,nRF905内部的部分晶体振荡器处于工作状态,nRF905在待机模式下的工作电流跟外部晶体振荡器的频率有关。图3-12 nRF905芯片内部结构

2) SPI接口配置

SPI接口由状态寄存器、射频配置寄存器、发送地址寄存器、发送数据寄存器和接收数据寄存器5个寄存器组成。状态寄存器包含数据准备好引脚状态信息和地址匹配引脚状态信息;射频配置寄存器包含收发器配置信息,如频率和输出功能等;发送地址寄存器包含接收机的地址和数据的字节数;发送数据寄存器包含待发送的数据包的信息,如字节数等;接收数据寄存器包含要接收的数据的字节数等信息。

3) 以nRF905芯片为核心的PTR8000无线数传模块

基于无线收发芯片,加上少量的外围元件,构成了无线数传模块。信号的稳定性、传输距离、传输速率可以得到改善,还可以非常方便与单片机串口连接。无线数传模块的体积越来越小,功能越来越强,因此缩短了开发周期,降低了成本。

PTR8000无线模块以nRF905无线收发芯片为核心,内置433/868/915MHz天线,体积小巧,传输速率为20~76.8kbit/s,传输距离一般在几十米到数百米,标准DIP间距接口,成本低、功耗低、协议简单、便于嵌入式系统使用,因此很适合用于本系统中。以下是PTR8000的特点介绍:

(1)PTR8000无线数传模块的基本电气特性见表3-2。

表3-2 PTR8000无线数传模块的基本电气特性

参数数值单位

工作电压1.9~3.6 V

最大发射功率10 dBm

最大数据传输率100 Kbps

输出功率为-10dBm时工作电流11 mA

接受模式时工作电流12.5 mA

温度范围-40~+85℃

典型灵敏度-100 dBm

掉电模式时工作电流2.5 uA

(2)PTR8000无线数传模块引脚图如图3-13,模块硬件接口如图3-14,在表3-3

中作了详细说明。

表3-3 引脚说明

管脚功能方向

Pin1 VCC 正电源1.9 ~3.6V输入I

Pin2 TXEN TXEN=1发射模式,TXEN=0接收模式I

Pin3 TRX_CE 使能发射/接收模式I

Pin4 PWR Power down模式I

Pin5 uCLK 时钟分频输出O

Pin6 CD 载波检测输出O

Pin7 AM 地址匹配输出O

Pin8 DR 数据就绪输出O

Pin9 MISO SPI输出I

Pin10 MOSI SPI输入I

Pin11 SCK SPI时钟I

Pin12 CSN SPI使能,低电平有效

Pin13 GND 电源地

Pin14 GND 电源地

(3)由图中可看出模式控制部分由TRX _CE,TXEN,PWR组成,控制PTR8000的四种工作模式。各种模式的控制模式见表3-4:

表3-4 控制模式

PWR TRX_CE TXEN 工作模式

0 X X 掉电和SPI编程模式

1 0 X 待机和SPI编程模式

1 1 0 接收

1 1 1 发射

在待机模式下功耗约为40uA,此时发射/接收电路均关闭,只有SPI接口工作,在掉电模式下功耗约为2.5uA,此时所有电路关闭,进入最省电状态,在待机和掉电模式下PTR8000均不能接收、发射数据,可以进行配置。

SPI接口由SCK、MISO、MOSI以及CSN组成,在配置模式下,单片机通过SPI接口配置PTR8000的工作参数;在发射/接收模式下,单片机通过SPI接口发送和接收数据。

输出状态主要有载波检测输出CD,地址匹配输出AM,数据就绪输出DR[0]。

(4)PTR8000工作时序

PTR8000工作时从一种模式转换到另一种模式必须遵循规定的模式和转换

模式时需要的最大时间,模块发送模式和接收模式之间相互转换时不必重新编程配置寄存器。见表3-5。

表3-5 PTR8000时序表

时序最大值

掉电模式→待机模式3ms

待机模式→发送模式650us

待机模式→接收模式650us

接收模式→发送模式550us

发送模式→接收模式550us

(5) PTR8000的SPI配置

用于SPI接口的有用命令见表3-6。

表3-6 SPI串行接口指令设置

指令名称指令格式操作

W_CONFIG(WC) 0000AAAA 写配置寄存器,AAAA指出写操作的开始字节R_CONFIG(RC) 0001AAAA 读配置寄存器,AAAA指出读操作的开始字节W_TX_PAYLOAD(WTP) 100000 写TX有效数据:1-32字节

R_TX_PAYLOAD(RTP) 100001 读TX有效数据:1-32字节

W_TX_ADDRESS(RTA) 100010 写TX地址:1-4字节

R_TX_ADDRESS(RTA) 100011 读TX地址:1-4字节

R_TX_PAYLOAD(RTP) 100100 读RX有效数据:1-32字节

CHANNEL_CONFIG(CC)

1000pphc

cccccccc

快速配置寄存器中CH_NO,HFREQ_PLL和

PA_PWR的专用命令。

PTR8000逻辑电平为3V,AT89C51输出高电平在在4.5V以上,因此与

AT89C51连接时应进行电平转换或分压处理,可采用电平转换芯片进行电平转换,也可采用电阻分压处理,本设计选择100Ω电阻分压,无线模块与单片机的连接电路如图3-15。

无线通信射频电路技术与设计(文光俊 电子工业出版社)习题答案ch2

2.2 AWG 26 d=16mil a=d/2=8mil=8*(2.54*10^(-5))=0.2032mm 和引线相关联的电感:L=R DC ==nH 引线的串联电阻:R R 2 DC a s σ ====μΩ并联泄露电阻: 6 1133.9*10 R 2tan e e s G fC f π === ? MΩ 2.4 (1)并联LC: 1 11 () 1/()1/() Z j j L j C C L ωωωω ==- -- (2)串联联LC: 2 1 () Z j L C ω ω =- (3)并联LR-C: 3 1 1/() Z R j L j C ωω = ++ (4)串联LRC: 4 1 () Z R j L C ω ω =+- 四个频率响应的MATLAB程序如下: clear all; f=30e6:1000:300e6; L=10e-9; C=10e-12; R=5; Z1=1./(j*(2*pi*f*C-1./(2*pi*f*L))); Z2=j*(2*pi*f*L-1./(2*pi*f*C)); Z3=1./(j*2*pi*f*C-1./(2*pi*f*L+R)); Z4=R+j*(2*pi*f*L-1./(2*pi*f*C)); subplot(2,2,1) plot(f/1e6,abs(Z1));grid; title('Parallel LC circuit'), xlabel('frequency, MHz'), ylabel('|Z1|,ohm'); subplot(2,2,2) plot(f/1e6,abs(Z2));grid; title('Series LC circuit'),

2019年无线通信模块行业分析报告

目录 1. 概述 (5) 2. 物联网发展处战略机遇期 (5) 2.1 政策加速物联网体系完善 (5) 2.2 NB-IOT商用化开启物联网新篇章 (6) 2.3 龙头入局加速行业发展 (6) 2.4 各方催化下物联网连接数将在2018年开启爆发式增长 (7) 3. 无线通信模块乘物联网春风进入发展快车道 (8) 3.1 无线通信模块是物联网连接的重要桥梁 (8) 3.2 无线通信模块产业链完整,行业成熟 (9) 3.3 运营商补贴加速无线模块进入市场 (11) 4. 4G/NB-IoT模块增速最快,规模爆发当看下游 (12) 4.1 2G退网助力4G/NB-IoT模块放量 (12) 4.2 移动支付:2/3G领域主力 (14) 4.3 公用事业:开启NB-IoT应用的先锋部队 (15) 4.4 车联网:4G模块市场主力军 (16) 5. 无线模块龙头群雄争霸,市场集中度高 (17) 5.1 国外龙头“云加管”齐发力,竞争优势明显 (18) 5.1.1 Sierra Wireless (18) 5.1.2 Telit (19) 5.1.3 U-Blox (20) 5.2 国内公司增长迅猛,群雄争霸 (20) 5.2.1 芯讯通 (20) 5.2.2 移远通信 (21) 5.2.3 广和通 (22) 5.2.4 有方科技 (22) 5.2.5 高新兴物联 (23) 6. 投资建议 (23) 6.1 高新兴 (24) 6.2 日海通讯 (24) 6.3 广和通 (24) 6.4 金卡智能 (24)

表格目录 表1:《通知》在NB-IoT网络建设具体要求 (5) 表2:2017年后物联网产业大事件 (6) 表3:无线通信模块企业芯片成本占比 (10) 表4:移动电信补贴通信模块数量测算 (12) 表5:车联网4G模块市场规模测算(万只) (17) 表6:移远通信募集资金投资项目及金额 (21) 插图目录 图1:全球物联网联网设备数量(亿) (7) 图2:中国物联网连接数量(亿) (7) 图3:3Q2017全球运营商蜂窝物联网连接数份额 (7) 图4:物联网下游场景市场规模 (7) 图5:2017年中国物联网各应用领域市场规模(亿元) (8) 图6:2017年中国物联网各应用领域份额占比 (8) 图7:物联网产业链示意图 (9) 图8:无线通信模块分类 (9) 图9:各类无线通信模块产品 (9) 图10:物联网上下游产业链 (10) 图11:物联网下游场景示意图 (10) 图12:4G产品价格趋势(单位:元) (11) 图13:2G产品价格趋势(单位:元) (11) 图19:全球物联网通过蜂窝接入的技术分布 (13) 图20:2020全球物联网连接分布 (13) 图16:中国物联网通过蜂窝接入的技术分布预测 (13) 图17:中国无线通信模块市场规模预测(亿) (13) 图18:无线pos机应用案例 (14) 图19:我国联网POS基数量持续增长 (14) 图20:远程抄表应用案例 (16) 图21:车联网应用场景 (17) 图22:车联网数量预测 (17) 图23:1H2017无线通信模块全球市场份额分布(内环出货量,外环营收) (18) 图24:无线通信模块厂商毛利率 (18) 图25:Sierra Wireless2013-2017年营收及增速 (18) 图26:Sierra Wireless无线通信模块应用场景 (18) 图27:Telit营收稳定增长,毛利率稳步提升 (19) 图28:Telit整体解决方案 (19) 图29:U-Blox2013-2017年营收增速 (20) 图30:U-Blox产品应用领域 (20)

我所认识的无线通信技术

《我所认识的无线通信技术》 姓名:XX 学号:XXXXXXXXX 班级:XXXXXXXXX 联系方式:XXXXXXXXXX

我所认识的无线通信技术 研究无线通信技术的发展历程和应用,可以提高人们对无线通信技术的认识,让人们在今后的工作、学习和生活中更加注重通过无线通信技术的应用来改进自己的生活方式,使人们的生活效率更高、质量更好、内容更充实。分析和研究无线通信技术的发展历程,并对无线通信技术在当今社会的发展和应用状况进行分析探讨,人们能够认识到无线通信技术对提高人们生活质量的意义。相对比传统的有线通信系统,无线通信系统具有诸多方面的优点,成本低廉、建筑工程周期短、适应性好、扩展 性好等。正是由于诸多的优点,无线通信被广泛的应用于车辆监控、遥控、遥测、小型无线网络、 移动通信等方面。相信我们都可以认识到手机的便捷,它让我们能在任何时间任何地点进行通信。 一、对无线通信系统的认识 从广播电视、收音机到移动电话,从射频识别到遥控器、雷达等,无线通信这一应用已深入到 人们生活和工作的各个方面。随着全球社会经济的不断发展,各种无线电技术在社会的各行业中得 到了日益广泛的应用。无线通信领域各种技术的互补性日趋鲜明。然而,无线通信在满足无线的同时,势必要满足移动性的需要。移动台在不停的移动,而基站小区并没有移动,这样,一个基站的 服务能力就会有变化,当一个基站不足以服务这个移动台的时候,移动台就应该连接到别的基站小 区以维持服务,这个时候,就会用到一个非常重要的功能——切换,它在无线通信中无处不在。切 换有其重要的意义,那实际中是怎么样切换的呢?在什么情况、什么条件下进行切换呢?所谓切换,是指移动台在通话期间从一个小区进入另一个小区时,将呼叫在其进程中,从一个无线信道转换到 另一个无线信道的过程。切换,在我们进行无线通信的时候会经常遇到,一个小区的覆盖范围是有 限的,当我们在移动的过程中,需要从一个小区覆盖的位置移动到另外一个小区时,如果仍然使用 原来的小区的服务,势必会使得服务质量下降,因此,这时我们就会切换,从一个小区的信道切换 到另外一个小区的信道上,以此来保证较好的服务质量和正常的通信。切换是必要的,而切换,从 进行切换的方式上来分,主要分为硬切换和软切换两种。 由于无线通信网络存在的带宽需求和移动网络带宽不足的矛盾,用户地域分布和对应用需求不 平衡的矛盾以及不同技术优势和不足共存的矛盾,因此,决定了发展无线通信网络需要综合运用各 种技术手段,从全局和长远的眼光出发,采取一体化的思路规划和建设网络。发挥不同技术的个性,综合布局,解决不同区域、不同用户群对带宽及业务的不同需求,达成无线通信网络的整体优势和 综合能力。对此,我国政府管理部门也应该积极为运营商配备充足的频谱资源,为其综合规划提供 有力的支撑和保障。一、全球趋势:公众移动保持增长宽带无线热点不断。当今,全球无线通信产业的两个突出特点体现在:一是公众移动通信保持增长态势,一些国家和地区增势强劲,但存在发 展不均衡的现象;二是宽带无线通信技术热点不断,研究和应用十分活跃。资料显示,在全球电信 市场普遍低调的背景下,移动通信依然保持了较好的增长态势。尽管全球移动市场在增长,但这种 增长也呈现出很大的不均衡性。从用户数来看,在北美、欧洲等发达国家和地区,由于移动用户普 及率已经很高,因此新增用户数日益减少;而在亚洲、非洲等地区,特别是像中国这样的发展中国

nRF24L01无线通信模块使用手册

nRF24L01无线通信模块使用手册 一、模块简介 该射频模块集成了NORDIC公司生产的无线射频芯片nRF24L01: 1.支持2.4GHz的全球开放ISM频段,最大发射功率为0dBm 2.2Mbps,传输速率高 3.功耗低,等待模式时电流消耗仅22uA 4.多频点(125个),满足多点通信及跳频通信需求 5.在空旷场地,有效通信距离:25m(外置天线)、10m(PCB天线) 6.工作原理简介: 发射数据时,首先将nRF24L01配置为发射模式,接着把地址TX_ADDR和数据TX_PLD按照时序由SPI 口写入nRF24L01缓存区,TX_PLD必须在CSN为低时连续写入,而TX_ADDR在发射时写入一次即可,然后CE置为高电平并保持至少10μs,延迟130μs后发射数据;若自动应答开启,那么nRF24L01在发射数据后立即进入接收模式,接收应答信号。如果收到应答,则认为此次通信成功,TX_DS置高,同时TX_PLD 从发送堆栈中清除;若未收到应答,则自动重新发射该数据(自动重发已开启),若重发次数(ARC_CNT)达到上限,MAX_RT置高,TX_PLD不会被清除;MAX_RT或TX_DS置高时,使IRQ变低,以便通知MCU。最后发射成功时,若CE为低,则nRF24L01进入待机模式1;若发送堆栈中有数据且CE为高,则进入下一次发射;若发送堆栈中无数据且CE为高,则进入待机模式2。 接收数据时,首先将nRF24L01配置为接收模式,接着延迟130μs进入接收状态等待数据的到来。当接收方检测到有效的地址和CRC时,就将数据包存储在接收堆栈中,同时中断标志位RX_DR置高,IRQ 变低,以便通知MCU去取数据。若此时自动应答开启,接收方则同时进入发射状态回传应答信号。最后接收成功时,若CE变低,则nRF24L01进入空闲模式1。 二、模块电气特性 参数数值单位 供电电压5V 最大发射功率0dBm 最大数据传输率2Mbps 电流消耗(发射模式,0dBm)11.3mA 电流消耗(接收模式,2Mbps)12.3mA 电流消耗(掉电模式)900nA 温度范围-40~+85℃ 三、模块引脚说明 管脚符号功能方向 1GND电源地 2IRQ中断输出O 3MISO SPI输出O 4MOSI SPI输入I 5SCK SPI时钟I 6NC空 7NC空 8CSN芯片片选信号I 9CE工作模式选择I 10+5V电源

无线通信系统的基本工作原理

前言: 无线通信(Wireless communication)就是利用电磁波信号可以在自由空间中传播的特性进行信息交换的一种通信方式,近些年信息通信领域中,发展最快、应用最广的就就是无线通信技术。在移动中实现的无线通信又通称为移动通信,人们把二者合称为无线移动通信。 无线通信主要包括微波通信与卫星通信。微波就是一种无线电波,它传送的距离一般只有几十千米。但微波的频带很宽,通信容量很大。微波通信每隔几十千米要建一个微波中继站。卫星通信就是利用通信卫星作为中继站在地面上两个或多个地球站之间或移动体之间建立微波通信联系。 一、无线通信系统的类型 按照无线通信系统中关键部分的不同特性, 有以下一些类型: 1、按照工作频段或传输手段分类, 有中波通信、短波通信、超短波通信、微波通信与卫星通信等。所谓工作频率, 主要指发射与接收的射频(RF)频率。射频实际上就就是“高频”的广义语, 它就是指适合无线电发射与传播的频率。无线通信的一个发展方向就就是开辟更高的频段。 2、按照通信方式来分类, 主要有(全)双工、半双工与单工方式。 3、按照调制方式的不同来划分, 有调幅、调频、调相以及混合调制等。 4、按照传送的消息的类型分类, 有模拟通信与数字通信, 也可

以分为话音通信、图像通信、数据通信与多媒体通信等。 各种不同类型的通信系统, 其系统组成与设备的复杂程度都有很大不同。但就是组成设备的基本电路及其原理都就是相同的, 遵从同样的规律。本书将以模拟通信为重点来研究这些基本电路, 认识其规律。这些电路与规律完全可以推广应用到其它类型的通信系统。 二、无线通信系统的基本工作原理 无线通信系统组成框图 各部分作用: 1信息源:提供需要传送的信息 2变换器:待传送的信息(图像、声音等)与电信号之间的互相转换 3发射机:把电信号转换成高频振荡信号并由天线发射出去 4传输媒质:信息的传送通道(自由空间) 5接收机:把高频振荡信号转换成原始电信号 6受信人:信息的最终接受者

HM-TR无线通信模块

HM-TR Series UHF Wireless Transparent Data Transceiver General The HM-TR series UHF wireless transparent data transceiver, developed by Hope Microelectronics Co. Ltd, is designed for applications that need wireless data transmission. It features high data rate, longer transmission distance, programmable frequencies, configurable UART formats and low sleep current make it ideal choice. The communication protocol is self controlled and completely transparent to users. The module can be embedded to your existing design so that low cost high performance wireless data communication can be utilized easily. Features 1. FSK (Frequency Shift Keying) modulation, high interference immunity 2. 2-way half-duplex communication 3. 315/433/868/915MHz ISM band, globally license free. 4. Programmable frequencies, allowing be used in FDMA (Frequency Division Multiple Access) applications 5. Self controlled RF to UART protocol translation, reliable and easy to use. 6. Configurable UART format, with data rate from 300~19200bps 7. Using ENABLE pin to control duty-cycle to satisfy different application requirements 8. High performance, long transmission range. >300m in open area 9. Standard UART interface, with TTL or RS232 logic level available 10. Compact size, standard 0.1” pinch SIP connector and SMA antenna socket 11. No RF tuning needed in application Application Areas 1.Remote control, remote measurement system 2. Wireless metering 3. Access control 4. Identity discrimination 5. Data collection 6. IT home appliance 7. Smart house products 8. Data store and forward repeater Overview and Pin assignment HM-TR/232 HM-TR/TTL Note: The ‘232’ version has a on-board MAX232CSE converter, which is not fitted on the ‘TTL’ version

无线通信的发展历程

无线通信系统的发展历程与趋势 现代无线通信系统中最重要的两项基础是多址接入(Multiple Access)和双工(Multiplexing)。从1G到4G的无线通信系统演进史基本上就是在这两项技术上进行不断改进。 多址接入技术为不同的用户同时接入无线通信网提供了可能性。给出了三种最典型的多址接入技术:FDMA、TDMA和CDMA的比较。 双工技术为用户同时接收和发送数据提供了可能性。两种最典型的双工技术:FDD模式和TDD模式。 中国无线通信科技发展史和未来走向范文 当今,全球无线通信产业的两个突出特点体现在:一是公众移动通信保持增长态势,一些国家和地区增势强劲,但存在发展不均衡的现象;二是宽带无线通信技术热点不断,研究和应用十分活跃。 1 无线通信技术的发展历程 随着国民经济和社会发展的信息化,人们要通信息化开创新的工作方式、管理方式、商贸方式、金融方式、思想交流方式、文化教育方式、医疗保健方式以及消费与生活方式。无线通信也从固定方式发展为移动方式,移动通信发展至今大约经历了五个阶段:第一阶段为20年代初至50年代初,主要用于舰船及军有,采用短

波频及电子管技术,至该阶段末期才出现150MHZ VHF单工汽车公用移动电话系统MTS。 第二阶段为50年代到60年代,此时频段扩展至UHF450MHZ,器件技术已向半导体过渡,大都为移动环境中的专用系统,并解决了移动电话与公用电话网的接续问题。 第三阶段为70年代初至80年代初频段扩展至800MHZ,美国Bell研究所提出了蜂窝系统概念并于70年代末进行了AMPS试验。 第四阶段为80年代初至90年代中,为第二代数字移动通信兴起与大发展阶段,并逐步向个人通信业务方向迈进;此时出现了D-AMPS、TACS、ETACS、GSM/DCS、cdmaOne、PDC、PHS、DECT、PACS、PCS等各类系统与业务运行。 第五阶段为90年代中至今,随着数据通信与多媒体业务需求的发展,适应移动数据、移动计算及移动多媒体运作需要的第三代移动通信开始兴起,其全球标准化及相应融合工作与样机研制和现场试验工作在快速推进,包括从第二代至第三代移动通信的平滑过渡问题在内。 2 第一代无线通信系统 采用频分多址(Frequency Division Multiple Access)技术组建的模拟蜂窝网也被称为第一代(First Generation,下称1G)无线通信系统。这些系统中,话务是主要的通信方式。由于采用模拟调制,这些

无线通讯模块介绍

cc1100/RF1100SE、NRF905、NRF903、nRF24L01无线收发模块开发指南简介 cc1100/RF1100SE微功率无线数传模块 基本特点: (1) 工作电压:~,推荐接近,但是不超过(推荐) (2) 315、433、868、915MHz的ISM 和SRD频段 (3) 最高工作速率500Kbps,支持2-FSK、GFSK和MSK调制方式 (4) 可软件修改波特率参数,更好地满足客户在不同条件下的使用要求高波特率:更快的数据传输速率 低波特率:更强的抗干扰性和穿透能力,更远的传输距离 (5) 高灵敏度(下-110dBm,1%数据包误码率) (6) 内置硬件CRC 检错和点对多点通信地址控制 (7) 较低的电流消耗(RX中,,,433MHz) (8) 可编程控制的输出功率,对所有的支持频率可达+10dBm (9) 无线唤醒功能,支持低功率电磁波激活功能,无线唤醒低功耗睡眠状态的设备 (10) 支持传输前自动清理信道访问(CCA),即载波侦听系统 (11) 快速频率变动合成器带来的合适的频率跳跃系统 (12) 模块可软件设地址,软件编程非常方便 (13) 标准DIP间距接口,便于嵌入式应用 (14) 单独的64字节RX和TX数据FIFO (15) 传输距离:开阔地传输300~500米(视具体环境和通信波特率设定情况等而定) (16) 模块尺寸:29mm *12mm( 上述尺寸不含天线,标配4.5CM长柱状天线) cc1100/RF1100SE微功率无线数传模块应用领域:极低功率UHF无线收发器,315/433/868/915MHz的ISM/SRD波段系统, AMR-自动仪表读数,电子消费产品,远程遥控控制,低功率遥感勘测,住宅和建筑自动控制,无线警报和安全系统, 工业监测和控制,无线传感器网络,无线唤醒功能,低功耗手持终端产品等 详细的cc1100/RF1100SE模块开发文档可到下载 NRF905无线收发模块 基本特点: (1) 433Mhz 开放 ISM 频段免许可证使用 (2) 接收发送功能合一,收发完成中断标志 (3) 170个频道,可满足多点通讯和跳频通讯需求,实现组网通讯,TDMA-CDMA-FDMA (4) 内置硬件8/16位CRC校验,开发更简单,数据传输可靠稳定 (5) 工作电压,低功耗,待机模式仅 (6) 接收灵敏度达-100dBm (7) 收发模式切换时间 < 650us

基于射频的无线通信技术方案

基于射频的无线通信技术方案 在很多场合有线通信技术并不能满足实际需要,比如在野外恶劣环境中作业。使用无线射频通信芯片构建的通信模块,用单片机作为控制部件,配合一定的外围电路就能很好地进行两地空间区域信号对接,实现自由数据通信,解决了无线通信的技术难题。并且其具有硬件构造简单、维护方便、通信速率高、性能稳定等优点,能在电子通信业得到广泛应用。 本文的控制部件选用AT89C51型单片机。由于这种芯片只有SPI 通信接口,而目前常用的单片机都没有这种接口,因此需要对该芯片的通信时序进行模拟,所以在控制器里编程时要严格按照芯片工作时序进行。 电路原理 NRF24L01芯片构成的通信模块电路设计 NRF24L01芯片通信模块电路核心器件NRF24L01 配合网络晶振、解耦电容、偏极电阻一起工作构造稳定射频通信模块。该芯片是贴片结构,模块占用空间少,如图1所示。

图1 由NRF24L01 芯片构成的通信模块电路图。 电源电路设计 电源电路如图2所示,B1 是9 V 蓄电池或者锂电池,能够反复充电。C1, C2 , C3 , C4 都是滤波电容,起到一次与二次滤波作用。D1,D2 是稳压二极管,使输出端的电压稳定在理想的水平电压。芯片7805 是三端稳压集成电路芯片,具有正电压输出。其电路内部还有过流、过热及调整管等保护电路,最终目的把9 V 电源转变成稳定5 V 输出,为后续设备供电。

图2电源电路图 系统通信电路设计 系统通信电路如图3所示。本电路中应用单片机AT89C51作为控制芯片,对NRF24L01 主通信模块的接口时序模拟和对数据的发送与接收进行处理。

物联网的核心技术之一无线通信模块

物联网的核心技术之一无线通信模块 本文将从产业链到厂商再到未来趋势,重新梳理一次物联网的核心部件——无线模组按功能分为“通信模组”与“定位模组”。相对而言,通信模组的应用范围更广,因为并不是所有的物联网终端均需要有定位功能。在上游,基带芯片(通信芯片)是核心,占到材料成本的50%左右。上游技术壁垒高,产业高度集中,供应商话语权强。主要供应商有因此产业下游非常分散。根据应用市场规模大小分为大颗粒市场和小颗粒市场。大颗粒市场(见下图)的物联网模块量大、标准化程度高、竞争激烈,适合做大收入和树立品牌,研发人员相对可以较少,但市场开拓能力要强。,目前集中度不算高,行业第一梯队只占据了全球约30%的市场份额。随着下游应用的崛起以及市场总规模的扩大,一批专注于个别垂直应用领域的优质模块供应商会开始浮现。“涉市”企业 近一年,国内第一梯队无线通讯模块供应商纷纷以IPO或被并购两种方式登陆A股,以下为主要“涉市”企业。(注:排名不分先后) 1、芯讯通 总部:上海 简介:芯讯通(Simcom)是香港上市公司晨讯科技的子公司,其产品在智能POS、智能抄表和健康医疗行业占比较大。由于芯讯通的无线通信模块业务属于较为传统的产生制造业务,与晨讯科技目前整体向高毛利服务业转型的战略方向不符。 今年1月,晨讯科技拟将无线通信模块资产(全资子公司上海希姆通和芯讯通无线)以5250万美元卖给瑞士u-blox。估计因为在上海移为通信的搅局下,这笔收购未达成共识,晨讯科技最终宣布芯讯通会将出售给移为通信和内部董事儿子的公司,同时,将旗下另外一项资产芯通电子也打包一起出售。 根据移为通信最新公告,深交所还对这笔交易方案还在审核中。 官网:simcomm2m 2、移为通信 总部:上海

关于无线通信模块的全面分析

关于无线通信模块的全面分析 无线通信模块是各类智能终端得以接入物联网的信息入口。其是连接物联网感知层和网络层的关键环节。目前在M2M 场景下,应用更多的是蜂窝通信模块(2G/3G/4G),未来LPWAN 模块(NB/IoT、LoRa)将快速应用。 无线通信模块使得各类物联网终端设备具备联网信息传输能力,是各类智能终端得以接入物联网的信息入口。它是连接物联网感知层和网络层的关键环节,所有物联网感知层终端产生的设备数据需要通过无线通信模块汇聚至网络层,进而通过云端管理平台对设备进行远程管控,同时经过数据分析,带来管理效率的提升。 无线通信模块示例 目前整个业界形成了国外厂商主导,国内厂商追赶的竞争态势。国外龙头主要有Sierra、TelIT、U-blox 等,无论是规模还是毛利率水平远远领先于国内厂商。国内第一梯队公司有芯讯通、移远通信、中兴物联、广和通等。按出货量算已经可以和国外龙头相媲美。由于国内竞争激烈,毛利率水平普遍低于国外。我们认为无线通信模块可以类比手机厂商的发展规律,随着头部厂商品牌、规模的进一步增强,会形成“赢者通吃”,产业集中度有望进一步提升。第一梯队公司长远来看有望更受益。海外龙头Sierra、TelIT 目前已经打通底层模块+物联网平台+垂直应用的整体解决方案,产品附加值不断提高,毛利率稳步上升,股价也相应地受到资本市场的肯定。 无线通信模块行业介绍 无线通信模块使各类终端设备具备联网信息传输能力,如下图所示,是各类智能终端得以接入物联网的信息入口。其是连接物联网感知层和网络层的关键环节,所有物联网感知层终端产生的设备数据需要通过无线通信模块汇聚至网络层,进而通过云端管理平台对设备进行远程管控,同时经过数据分析有效对各类应用场景进行管理效率提升。无线通信模块与物联网终端存在一一对应关系,属于底层硬件环节,具备其不可替代性。 无线通信模块价值总结 第一重价值:硬件集成与软件设计,融合多种通信制式,满足不同应用场景下的环境要求,

MOXA 无线通讯模块

4 ?>OnCell G3110/G3150 4-15 ? OnCell G3110/G3150 1 / 2 GSM/GPRS IP ? GSM/GPRS 850/900/1800/1900MHz ? ?? TCP Server ? TCP Client ? UDP ?Real ?COM ? Reverse Real COM ? ǖOnCell Central IP ? ǖ? web ? Telnet ? ? ? OnCell G3110/G3150 RS-232 RS-232/422/485 GSM/GPRS/EDGE IP GSM/GPRS/EDGE ? Real COM ?OnCell G3110/G3150 ??OnCell G3110/G3150 CPU TCP/IP ? ? GPRS TCP/IP ?OnCell G3110/G3150 ? ? ? ? I/O ?? ? DI ? ?OnCell G3110/G3150 ? ? 12 ~ 48VDC ?? 2KV EFT/Surge ? ? 15KV ESD ? ? ? ? ? ǖGSM/GPRS/EDGE ǖ 850/900 1800/1900 MHz EDGE ǖClass 12 GPRS ǖClass 12 GPRS ? ǖClass B GPRS ? ǖCS1 ~ CS4 ǖ1 W GSM 1800/1900, 2 W EGSM 850/900 LAN ǖ1 ǖ10/100Mbps ?RJ45 ?MDI/MDIX ? ǖ 1.5 KV ? SIM SIM ǖ1SIM ǖ3 V ? ǖ G3110ǖRS-232?DB9 ? G3150ǖRS-232(DB9 ??RS-422/485?5 pin ? ǖ1 ESD ? ǖ15 KV EFT/ ? ǖ2 KV ǖ5?6?7?8 ǖ1?1.5?2? =None ? ǖNone ?Even ?Odd ?Space ?Mark ǖRTS/CTS ?XON/XOFF ? ǖ50 bps ~ 921.6 Kbps RS-232ǖTxD ?RxD ?RTS ?CTS ?DTR ?DSR ?DCD ?GND RS-422ǖTx+?Tx-?Rx+?Rx-?GND RS-485-4w ǖTx+?Tx-?Rx+?Rx-?GND RS-485-2w ǖData+?Data-?GND I/O ǖ1 ?1 A @ 24 VDC ǖ2 ? ? ?1?ǖ+13 ~ +30 V ? ?0?ǖ-30 ~ -3 V ǖICMP , TCP/IP , UDP , DHCP , Telnet, DNS, SNMP , HTTP , SMTP , HTTPS, SNTP , ARP , SSL Router/Firewall ǖNAT, port forwarding ǖ? ? ǖAccessible IP list ǖReal COM, Secure Real COM, TCP Server, Secure TCP Server, TCP Client, Secure TCP Client, UDP , RFC2217, Ethernet Modem, Virtual Modem, SMS Tunnel ǖSNMP MIB-II, SNMP Private MIB, SNMPv1/v2c/v3, DDNS, IP Report, Web/Telnet/Serial-Console/SSH ǖProvided for Windows 95/98/ME, Windows NT, Windows 2000/XP/2003/Vista/Server-2008, Windows XP/2003/Vista/Server-2008 x64 Edition Windows Real COM ǖWindows 95/98/ME, Win d ows NT, Windows 2000/XP/2003/Vista/Server 2008, Windows XP/2003/Vista/Server 2008 x64 Edition

无线模块通讯原理及硬件概要

3.1无线通信模块工作原理及硬件设计(此工作方式正测试没有完成) 无线通信模块的发射与接收主要采用nRF401作为主工作核心, nRF401是工作在433MHz ISM频段的单片无线收发芯片。nRF401最大传输速率为20kbps,可以和各种单片机和微控制器连接,控制简单方便。配合简单的通信协议,就可以使用nRF401实现无线数据传输。采用点对多点半双工通信机制,设计一个简单有效的通信协议,实现对所采集到的数据进行有效传送。最简单的多机通信方式就是使用串行通信,所以使用单片机串行口配合nRF401芯片,就可以实现简单有效的点对多点通信。其工作原理图如图3-3-1所示 图3-3-1 无线通信原理图 常用的点对多点通信方式有星状和链状两种。 如图.3-3-2系统由一台中央监控设备CMS (Central Monitoring System)和多台远程终端设备MRTU(Multiple Remote Termial Unit)构成点对多点多任务无线通信系统。在中央监控设备CMS 与远程终端RTU(Remote Termial Unit)之间用多台中转设备Tran作为中转站,以便起到暂存数据和延伸距离的作用。中转站之间,以单向通信方式进行传递数据。 如图 3-3--3系统由一台中央监控设备CMS和多台远程终端设备MRTU构成点对多点多任务无线通信系统。在中央监控设备CMS 与每一台远程终端RTU(Remote Termial Unit)都以双向通信方式进行传递数据。特别适用于数据量大,对时间要求较高的场合。 所以采用星状点对多点通信方式,以一台主机为中心,多台分机各自独立的方法,即使其中一台分机不能正常工作,也不会影响其它分机,不像链状点对多

无线通信技术及5G关键技术介绍

姓名:张健康学号:02121222 姓名:王晨阳学号:02121202 姓名:王李宁学号:02121209

[摘要] (2) 1.引言 (3) 2.无线通信技术概念 (3) 2.1 3G即将成为过去 (3) 2.2 4G 是现在 (4) 2.3 5G是未来 (5) 2.4各国研究进展 (6) 3.5G性能指标 (7) 4.5G关键技术 (8) 4.1 新型多天线技术 (8) 4.2 高频段的使用 (9) 4.3 同时同频全双工 (9) 4.4终端直通技术(D2D) (9) 4.5 密集网络 (9) 4.6新型网络架构 (10) 5.结束语 (10) 中国--机遇与竞争并存 (11) 参考文献: (11) [摘要] 第五代通信系统是面向2020年以后人类信息社会需求的无线移动通信系

统,它是一个多业务技术融合的网络,通过技术的演进和创新,满足未来广泛的数据、连接的各种业务不断发展的需要,提升用户体验。本文首先介绍5G的概念,然后阐述了5G的性能指标,重点对5G的关键技术进行论述,这些关键技术包括新型多天线技术、微波段的使用、同时同频全双工、设备间直接通信技术、自组织网络。 [关键词] 5G;无线通信;关键技术;移动通信技术 1.引言 4G网络部署正在如火如荼地进行时,关于5G的研究也拉开了序幕。2012年,由欧盟出资2700亿欧元支持的5G研究项目METIS(Mobile and Wireless Communications Enablers for the2020Information Society)[1]正式启动,项目分为八个组分别对场景需求、空口技术、多天线技术、网络架构、频谱分析、仿真及测试平台等方面进行深入研究;英国政府联合多家企业,创立5G创新中心,致力于未来用户需求、5G网络关键性能指标、核心技术的研究与评估验证;韩国由韩国科技部、ICT和未来计划部共同推动成立了韩国“5G Forum”,专门推动其国内5G进展;中国,工业和信息化部、发改委和科技部共同成立IMT-2020推进组,作为5G工作的平台,旨在推动国内自主研发的5G技术成为国际标准。可见,对于5G的研究,许多国家或组织都在积极地进行中,未来5G技术将使人们的通信生活发展到一个全新的阶段。 2.无线通信技术概念 GSM是第一代的无线通信技术 为模拟技术,采用的是频分多址方 式,频谱的利用效率非常低下。GSM 诞生之初的目的为使用数字技术取 代模拟技术,提高语音通话的质量, 提高频谱利用效率,降低组网成本。 GSM可以说是迄今为止最为成功的 无线通信技术,可以实现全球漫游。 GSM主要解决的是语音通话问题,而 随着对移动数据的要求提高,提出了 第三代移动通信技术(3G)。 2.1 3G即将成为过去

单工无线通信系统..

单工无线呼叫系统(D题) 摘要:单工无线呼叫系统分发射和接收两大部分。发射部分采用锁相环式频率合成器技术,MC145152和MC12022芯片组成锁相环,将载波频率精确锁定在35MHz,输出载波的稳定度达到4×10-5,准确度达到3×10-5,由变容二极管V149和集成压控振荡器芯片MC1648实现对载波的调频调制;末级功放选用三极管2SC1970,使其工作在丙类放大状态,提高了放大器的效率,输出功率达到设计要求。接收部分以超大规模AM/FM立体声收音集成芯片CXA1238S为主体,灵敏度、镜像抑制、信噪比等各项性能指标均达到设计要求;音频功率放大器采用集成芯片LM386,电压放大倍数最大为200。音频输入和数据输入可自动转换;AT89S52作为整个系统的控制部分,程序设计采用C语言在KEIL51的编译器上编程实现;显示采用128×64点阵型液晶显示。经测试,整机功能齐全,各项性能指标符合系统要求,接收波形稳定,无明显失真。 关键词:锁相环、压控振荡器、灵敏度 simplex wireless-calling system Abstract: The simplex wireless-calling system consists of two parts: transmit part and receive part.The transmit part adopts the phase-locked loop pattern of frequency synthesizing technology and uses the MC145152 and MC12022 chips to compose the phase-locked loop.It locks the frequency of the carrier-wave at 35MHz.The stabilization of the carrier-wave can be 4×10-5,the accuracy can be 3×10-5.The frequency modulation and the confection of the carrier-wave are realized by the capacity-changing diode V149 and the integration voltage-control oscillator MC1648 chip.The end power amplifier uses the audion 2SC1970 to make it work in the third magnifying state,it improves the efficiency of the magnifier and the power of the output reaches the design demand.The receive part uses the super cosmically AM/FM dimensional sound stereo radio reception integration chip CXA1238S as the main part.The sensitivity、the mirror-control restrain、the SNR and every capability index all reach the design demand.The audio frequency power amplifier adopts the integration chip LM386.The maximum voltage amplifying multiple is 200..The input of the audio frequency and the data can be automatically transformed. AT89S52 is used as the controlling part of the whole system.The design of the program adopts the C language to make it be programmingly realized in the translator.The display adopts 128×64 lattice LCD to show.After tested,the whole machine’s function is very complete,every demand can be realized,the receiving wave is stable,without evident distortion. Key word:PLL、VCO 、Sensitivity 目录

2018年无线通信模块行业市场调研分析报告

2018年无线通信模块行业市场调研分析报 告 报告编号:1

目录 第一节无线通信模块行业发展概述 (7) 第二节物联网发展处战略机遇期 (8) 一、政策加速物联网体系完善 (8) 二、NB-IOT商用化开启物联网新篇章 (8) 三、龙头入局加速行业发展 (9) 四、各方催化下物联网连接数将在2018年开启爆发式增长 (10) 第三节无线通信模块乘物联网春风进入发展快车道 (14) 一、无线通信模块是物联网连接的重要桥梁 (14) 二、无线通信模块产业链完整,行业成熟 (16) 三、运营商补贴加速无线模块进入市场 (18) 第四节 4G/NB-IoT模块增速最快,规模爆发当看下游 (22) 一、2G退网助力4G/NB-IoT模块放量 (22) 二、移动支付:2/3G领域主力 (25) 三、公用事业:开启NB-IoT应用的先锋部队 (26) 四、车联网:4G模块市场主力军 (28) 第五节无线模块龙头群雄争霸,市场集中度高 (31) 一、国外龙头“云加管”齐发力,竞争优势明显 (32) 1、Sie rra Wire less (32) 2、Telit (34) 3、U-Blox (35) 二、国内公司增长迅猛,群雄争霸 (36) 1、芯讯通 (36) 2、移远通信 (37) 3、广和通 (39) 4、有方科技 (40) 5、高新兴物联 (41) 第六节重点公司分析 (44)

一、高新兴 (44) 二、日海通讯 (44) 三、广和通 (44) 四、金卡智能 (44)

图表目录 图表 1:全球物联网联网设备数量(亿) (10) 图表 2:中国物联网连接数量(亿) (10) 图表 3:3Q2017全球运营商蜂窝物联网连接数份额 (11) 图表 4:物联网下游场景市场规模 (12) 图表 5:2017年中国物联网各应用领域市场规模(亿元) (12) 图表 6:2017年中国物联网各应用领域份额占比 (13) 图表 7:物联网产业链示意图 (14) 图表 8:无线通信模块分类 (15) 图表 9:各类无线通信模块产品 (15) 图表 10:物联网上下游产业链 (16) 图表 11:物联网下游场景示意图 (18) 图表 12:4G产品价格趋势(单位:元) (18) 图表 13:2G产品价格趋势(单位:元) (19) 图表 14:全球物联网通过蜂窝接入的技术分布 (22) 图表 15:2020全球物联网连接分布 (23) 图表 16:中国物联网通过蜂窝接入的技术分布预测 (24) 图表 17:中国无线通信模块市场规模预测(亿) (24) 图表 18:无线pos机应用案例 (25) 图表 19:我国联网POS基数量持续增长 (26) 图表 20:远程抄表应用案例 (27) 图表 21:车联网应用场景 (28) 图表 22:车联网数量预测 (29) 图表 23:1H2017无线通信模块全球市场份额分布(内环出货量,外环营收) (31) 图表 24:无线通信模块厂商毛利率 (32) 图表 25:Sierra Wireless2013-2017年营收及增速 (32) 图表 26:Sierra Wireless无线通信模块应用场景 (33) 图表 27:Telit营收稳定增长,毛利率稳步提升 (34)

相关主题
文本预览
相关文档 最新文档