弹性理论相关张量基础
- 格式:pdf
- 大小:814.44 KB
- 文档页数:17
一、概论1.标量:最简单的物理量,是常量,是一个实数,例如:距离、时间、温度等2.矢量:有方向的,需要用空间坐标系中的三个分量来表示的物理量,如位移、速度、力等;3.张量:最复杂的物理量,需要用空间坐标系中的三个矢量,也即九个分量才能完整地表示出来。
例如:应力状态、应变状态等。
张量是矢量的推广,与矢量相类似,可以定义由若干个当坐标系改变时满足转换关系的分量所组成的集合为张量。
这表明张量的分量之间存在一定的函数关系,这些函数值与坐标选取无关。
即张量的不变量性质。
张量所带的下角标的数目称为张量的阶数。
标量为零阶张量,矢量为一阶张量,用矩阵表示的(张量)为二阶张量,三阶张量用图形无法表示出来。
二、张量1:张量(tensor)的理论来源。
亚瑟·凯莱( Arthur Cayley)着力研究的不变量理论( invariant theory)导致了矩阵理论的建立, 引进了现代意义上的行列式的代数表达, 这成为射影几何的重要工具。
凯莱的不变量理论产生于19世纪前半叶的英国着重对代数及代数在几何方面的应用研究这样的背景下。
矩阵理论对线性变换的研究引进了向量的代数定义, 而这是张量概念的先导。
另一方面, 格奥尔格·弗雷德里希·波恩哈德·黎曼( Georg Friedrich Bernhard Riemann)提出的n维流形的概念, 这在客观上提出了深入研究代数形式的课题。
黎曼的几何思想在拓展几何学的同时,提高了代数在表达几何对象方面的抽象程度。
黎曼之后, 在克里斯托弗、里奇和列维-契维塔等人的努力下, 形成了张量分析这样的数学方法, 黎曼几何学也因此而建立起来了。
2:张量的定义、性质与应用价值从代数角度讲,它是向量的推广。
我们知道,向量可以看成一维的“表格”(即分量按照顺序排成一排),矩阵是二维的“表格”(分量按照纵横位置排列),那么n阶张量就是所谓的n维的“表格”。
张量的严格定义是利用线性映射来描述的。
课程编号:05z8514弹性力学 Theory of Elasticity学分学时:3/48先修课程: 高等数学;线性代数;理论力学;材料力学一、课程教学目标《弹性力学》是航空、航天结构强度和力学专业的重要专业基础课程,是固体力学的一个分支。
主要研究弹性体受外力作用或温度改变等原因而产生的应力、位移和变形。
弹性力学的任务是分析各种结构或其构件在弹性阶段的应力和位移,校核它们是否具有所需的强度、刚度和稳定性,并寻求或改进它们的计算方法。
本课程的主要研究对象为非杆状结构,如板、壳以及其它实体结构。
通过本课程的学习可为进一步学习力学类和相关工程类的后续课程打下坚实的力学基础。
二、教学内容及基本要求1. 绪论(2学时)弹性力学的发展史;研究内容;基本假设;矢量、张量基本知识。
2. 应力理论(4学时)内力和应力;斜面应力公式;应力分量转换公式;主应力、应力不变量;最大剪应力;应力偏量;平衡微分方程。
3. 应变理论(4学时)位移和变形;几何方程;转动张量;主应变和应变不变量;变形协调方程;位移场的单值条件;由应变求位移。
4. 本构关系(2学时)热力学定律与应变能;本构关系;具有弹性对称面的弹性材料的本构关系;各向同性弹性材料的弹性常数;各向同性弹性材料的应变能密度5. 弹性理论的建立与一般原理(4学时)弹性力学基本方程和边界条件;位移解法和拉梅方程;应力解法与变形协调方程;叠加原理;解的唯一性原理;圣维南原理。
6.柱形杆问题(4学时)圣维南问题;柱形扭转问题的基本解法;反逆法与半逆法,扭转问题解例;薄膜比拟;*柱形杆的一般弯曲。
7.平面问题(12学时)平面问题及其分类;平面问题的基本解法;应力函数的性质;直角坐标解例(矩形梁的纯弯曲、简支梁受均布载荷和任意分布载荷);极坐标中的平面问题基本方程;轴对称问题(均匀圆筒或圆环、纯弯的曲梁、压力隧洞);非轴对称问题(小圆孔应力集中、楔体问题);关于解和解法的讨论。
河 北 水 利 电 力 学 院 学 报JournalofHebeiUniversityof WaterResourcesandElectricEngineering2021 年3 月第31卷第1期Mar2021Vol31 No1文章编号:2096 — 5680(2021)01 — 0075 — 06用张量分析方法推导含偶应力弹性力学有限元理论孙晓勇1 2 ,宋兴海2,侯娜娜12,付建航2,刘立悦1,2(1.河北省数据中心相变热管理技术创新中心,河北省沧州市重庆路1号061001;2.河北水利电力学院土木工程学院,河北省沧州市重庆路1号061001)摘要:经典弹性力学理论用位移梯度表示无限小变形,不考虑旋转变形,把微元体的旋转视为刚体旋转。
含偶应力弹性力学理论将旋转变形以旋转张量表示,微元体旋转和微元体平动位移同量级,而旋转张量和应变张量同量级,旋转张量与旋转矢量一一对应,用旋转矢量的梯度表示旋转变形。
含偶应力弹性力学理论本构关系包括应力-应变关系和偶应力-曲率张量关 系,用等参变换方法离散单元位移到节点上,从虚功原理出发,增加罚函数项以降低有限元方程对高阶单元的需求,推导了拟 解决三维及二维问题的含偶应力弹性线力学有限元理论,可得三维及二维问题中位移、应力、应变等分布情况,对结构进行力 学评价。
关键词:偶应力;旋转变形;旋转张量;张量分析中图分类号:O343文献标识码:A DOI : 10. 16046/j. cnki. issn2096-5680. 2021. 01. 0151经典线弹性理论与考虑偶应力线弹 性理论在经典弹塑性力学理论中,物体内任意一点的 应力状态只和应变或应变的历史有关,其基本变量为位移,对位移求梯度得到应变张量,用位移梯度描述无限小的变形,然后再由一点的应变张量分析得 到应力张量[1]。
含偶应力的线弹性力学理论认为, 物体内任意一点的微元体,除有各个方向的位移外,还有本身的旋转变形,而这种旋转变形并非单纯的 以旋转角表达,而是用和应变张量一个量级的旋转张量来表示[]。
胡克定律在弹性限度内物体的形变跟引起形变的外力成正比胡克定律是力学基本定律之一。
适用于一切固体材料的弹性定律,它指出:在弹性限度内,物体的形变跟引起形变的外力成正比。
这个定律是英国科学家胡克发现的,所以叫做胡克定律。
表达式胡克定律的表达式为F=-kx或△F=-kΔx,其中k是常数,是物体的劲度(倔强)系数。
在国际单位制中,F的单位是牛,x的单位是米,它是形变量(弹性形变),k的单位是牛/米。
倔强系数在数值上等于弹簧伸长(或缩短)单位长度时的弹力。
弹性定律是胡克最重要的发现之一,也是力学最重要基本定律之一。
在现代,仍然是物理学的重要基本理论。
胡克的弹性定律指出:弹簧在发生弹性形变时,弹簧的弹力Ff和弹簧的伸长量(或压缩量)x成正比,即F=-kx。
k 是物质的弹性系数,它由材料的性质所决定,负号表示弹簧所产生的弹力与其伸长(或压缩)的方向相反。
为了证实这一定律,胡克还做了大量实验,制作了各种材料构成的各种形状的弹性体。
历史证明Hookelaw材料力学和弹性力学的基本规律之一。
由R.胡克于1678年提出而得名。
胡克定律的内容为:在材料的线弹性范围内,固体的单向拉伸变形与所受的外力成正比;也可表述为:在应力低于比例极限的情况下,固体中的应力ζ与应变ε成正比,即ζ=Εε,式中E为常数,称为弹性模量或杨氏模量。
把胡克定律推广应用于三向应力和应变状态,则可得到广义胡克定律。
胡克定律为弹性力学的发展奠定了基础。
各向同性材料的广义胡克定律有两种常用的数学形式:ζ11=λ(ε11+ε22+ε33)+2Gε11,ζ23=2Gε23,ζ22=λ(ε11+ε22+ε33)+2Gε22,ζ31=2Gε31,(1)ζ33=λ(ε11+ε22+ε33)+2Gε33,ζ12=2G ε12,及式中ζij为应力分量;εij为应变分量(i,j=1,2,3);λ和G为拉梅常量,G又称剪切模量;E为弹性模量(或杨氏模量);v为泊松比。
λ、G、E和v之间存在下列联系:式(1)适用于已知应变求应力的问题,式(2)适用于已知应力求应变的问题。
应用张量分析推导柱坐标系和球坐标系中弹性力学几何方程和
平衡微分方程
周正峰
【期刊名称】《大学物理》
【年(卷),期】2022(41)11
【摘要】利用正交曲线坐标系与笛卡儿坐标系单位矢量的关系,以及笛卡儿坐标系单位矢量为常矢量的特性,从单位矢量变换的角度,推导柱坐标系和球坐标系中的梯度算子,以及单位矢量对坐标的偏导数.并根据张量的场论基础,通过微分运算,推导出位移矢量的梯度和应力张量的散度.再根据几何方程和平衡微分方程的张量表达形式,推导出柱坐标系和球坐标系中的应变几何方程和应力平衡微分方程.
【总页数】5页(P4-8)
【作者】周正峰
【作者单位】西南交通大学土木工程学院;西南交通大学道路工程四川省重点实验室
【正文语种】中文
【中图分类】O302
【相关文献】
1.三维球、柱坐标系下导热微分方程的离散求解
2.极坐标系和球坐标系几何和平衡方程统一推导方法
3.三维球、柱坐标系下导热微分方程的离散求解
4.用Lagrange
方程求自由质点在球坐标系中运动微分方程5.极坐标系中弹性力学平面问题的Hamilton正则方程及状态空间有限元法
因版权原因,仅展示原文概要,查看原文内容请购买。
序言张量分析对于现在的力学专业学生以及力学相关问题的解决,是应该掌握的重要数学工具。
事实上,如果没有张量的知识,就无法学习连续介质力学基本理论和阅读相关专业的文献资料。
无庸讳言,张量概念非常抽象,相对来说比较难于学习和把握。
但是,只要克服张量学习过程中的畏难情绪,抓住张量概念的关键点,梳理张量分析的基本数学规则,结合一定的力学实例的张量描述,从而建立张量分析的概念和基本分析方法,就能够为运用张量分析解决实际问题奠定坚实基础。
张量概念最早是由高斯(Gauss)、黎曼(Riemann)、克里斯托夫(Christoffel)等人在十九世纪发展微分几何过程中引入的,是从线性空间推广到非线性空间的纯粹数学的演绎,由于自然科学发展水平的限制,这种具有根本性变革的数学工具长期被自然科学领域所忽略。
直到1915年,爱因斯坦获得格罗斯曼的协助,借助张量分析这一数学工具创立了伟大的广义相对论,才凸显了张量分析在描述具有协变性质物理规律的关键作用。
这个事实再次有力地向我们传达了数学和自然科学之间彼此的依存关系,即数学的规则被赋予了自然规律的意义后才成为有生命力的学问,而借助数学工具建立起的自然规律才能呈现自然科学的奥秘。
此后,张量分析迅速渗透到理论物理、现代微分几何、连续介质力学等学科领域中。
就力学专业的学生而言,学习和掌握张量分析,可以更加深刻地领会连续介质力学的概念和一般力学规律,充分锻炼我们的理性思维能力,提高分析问题和解决问题的能力和水平。
用代数方法和解析方法描述空间问题时,必须引进坐标系或建立坐标基矢量。
坐标系的引入为建立各种物理或几何规律带来了可能和极大的方便,同时也往往使问题复杂化。
可以设想,客观规律应该独立于坐标系,但客观规律的表达形式却严重依赖于所用的具体坐标系,使得客观规律本身的内在性质与建立在坐标系上的数学表达形式完全融为一体。
这样,一方面可能会因其数学的形式外壳而不易揭示问题的内在本质,另一方面,甚至对很多客观规律根本无法进行数学表述。
各向同性材料有几个弹性常数,独立的弹性常数有几个
弹性常数是表征材料弹性的量。
联系各向异性介质中应力和应变关系的广义弹性张量
有21个独立的常数。
在两个正交方向测量时,性质相同的横向各向同性介质中减为5个独
立常数。
各向同性介质(在任何方向测量时性质都相同)只有2个独立的弹性常数。
胡克定律是力学基本定律之一。
适用于一切固体材料的弹性定律,它指出:在弹性限
度内,物体的形变跟引起形变的外力成正比。
这个定律是英国科学家胡克发现的,所以叫
做胡克定律。
其中k就是常数,就是物体的劲度(高傲)系数。
在国际单位制中,f的单位就是牛,x的单位就是米,它就是菱形变量(弹性应力),k的单位就是牛/米。
高傲系数在数值上
等同于弹簧弯曲(或延长)单位长度时的弹力。
弹性定律是胡克最重要的发现之一,也是力学最重要基本定律之一。
在现代,仍然是
物理学的重要基本理论。
胡克的弹性定律指出:弹簧在发生弹性形变时,弹簧的弹力和弹
簧的伸长量(或压缩量)成正比。
k是物质的弹性系数,它由材料的性质所决定,负号表
示弹簧所产生的弹力与其伸长(或压缩)的方向相反。