当前位置:文档之家› 单片机串行口通信程序设计

单片机串行口通信程序设计

单片机串行口通信程序设计

单片机串行口通信程序设计

例:用8051单片机串行口外接CD4094扩展8位并行输出口,如图所示,8位并行口的各位都接一个发光二极管,要求发光管呈流水灯状态。串行口方式0的数据传送可采用中断方式,也可采用查询方式,无论哪种方式,都要借助于TI或RI标志。串行发送时,能靠TI置位(发完一帧数据后)引起中断申请,在中断服务程序中发送下一帧数据,或者通过查询TI的状态,只要TI为0就继续查询,TI为1就结束查询,发送下一帧数据。在串行接收时,则由RI引起中断或对RI查询来确定何时接收下一帧数据。无论采用什么方式,在开始通信之前,都要先对控制寄存器SCON进行初始化。在方式0中将,将00H送SCON 就能了。

-----------------单片机串行口通信程序设计列子--------------------------

ORG 2000H

START: MOV SCON,#00H ;置串行口工作方式0

MOV A,#80H ;最高位灯先亮

CLR P1.0 ;关闭并行输出(避象传输过程中,各LED的"暗红"现象)

OUT0: MOV SBUF,A ;开始串行输出

OUT1: JNB TI,OUT1 ;输出完否

CLR TI ;完了,清TI标志,以备下次发送

SETB P1.0 ;打开并行口输出

ACALL DELAY ;延时一段时间

RR A ;循环右移

CLR P1.0 ;关闭并行输出

JMP OUT0 ;循环

说明:DELAY延时子程序能用前面我们讲P1口流水灯时用的延时子程序,这里就不给出

基于单片机的数据串口通信研究

龙源期刊网 https://www.doczj.com/doc/a88639293.html, 基于单片机的数据串口通信研究 作者:蒋信 来源:《电子技术与软件工程》2016年第06期 摘要科技的发展日新月异,机电一体化的发展对自动化系统的可靠性提出了更高的要 求,在这样的背景下,单片机在工业控制领域的应用越来越广泛也越来越重要。基于以上,本文从通信过程、显示设计、键盘接口等方面研究了基于单片机的数据串口通信。 【关键词】单片机数据串口通信研究 在计算机控制领域中,计算机与外设数据之间的通信主要依靠单片机来实现,单片机的串口功能能够实现数据的传输以及分析,这就属于串口通信,可以预见的是,单片机的数据串口通信将会得到更广泛的应用,单片机之间的通信也有赖于其数据串口通信功能。基于以上,本文简要研究了基于单片机的数据串口通信。 1 串口通信的实现方式 设备在实现通信的过程中,必须树立一个信息接发双方都认可的通信方式,只有这样才能够保证信息在传送的过程中不发生冲突,才能够实现设备之间的通信,对于串口通信来说,主要有以下两种方式。 1.1 异步通信方式 异步通信方式实现的过程中,数据传输方式为独立字节的形式,不同的字节前端有着不同的起始信号,不同字节的后端则会有不同的终止信号,起始信号只能是一个,而终止信号可以是一个也可以是多个。数据传输过程中,字节进行移动,一个字节的迁移过程表示一个字节的传输过程,传输之前使用起始信号进行传输,传输结束之后使用终止信号将传输线调回标准状态,一个字节传输完毕后进行下一个字节的传输,字节传输有着连续性,这就是异步传输方式。由于没一个字节都要附加起始信号信息和终止信号信息,因此异步传输方式的效率较低,但异步通信方式容许一定程度的频率漂移,有着一定的误差缓冲作用。 1.2 同步通信方式 同步通信方式指的是将所有字符和字节连接在一起进行传输的一种通信方式,多个字符相互连接组成数据块,在数据块前增加同步字符,以同步字符作为传输起始信号,在传输后增加校验字符,以校验字符作为传输终止信号,以此来校验传输过程中的错误和误差,数据块中的各个字符之间没有间隔,相较于异步通信方式来说,其传输效率较高,但其对于信息接收端和信息发送端的同步性要求较高,因此硬件的复杂程度也就更高。 2 基于单片机的数据串口通信

51单片机串口通信,232通信,485通信,程序

51单片机串口通信,232通信,485通信,程序代码1:232通信 #include #define uchar unsigned char #define uint unsigned int uchar flag,a,i; uchar code table[]="i get"; void init() { TMOD=0X20; TH1=0XFD; TH0=0XFD; TR1=1; REN=1; SM0=0; SM1=1; EA=1; ES=1; } void main() { init();

while(1) { if(flag==1) { ES=0; for(i=0;i<6;i++) { SBUF=table[i]; while(!TI); TI=0; } SBUF=a; while(!TI); TI=0; ES=1; flag=0; } } } void ser() interrupt 4 {

RI=0; a=SBUF; flag=1; } 代码2:485通信 #include #include"1602.h" #define uchar unsigned char #define uint unsigned int unsigned char flag,a,i; uchar code table[]="i get "; void init() { TMOD=0X20; TH1=0Xfd; TL1=0Xfd; TR1=1; REN=1; SM0=0; SM1=1; EA=1; ES=1;

} void main() { init_1602(); init(); while(1) { if(flag==1) { display(0,a); } } } void ser() interrupt 4 { RI=0; a=SBUF; flag=1; } Love is not a maybe thing. You know when you love someone.

上位机与51单片机串口通信

上位机与51单片机串口通信 目录: 1、单片机串口通信的应用 2、PC控制单片机IO口输出 3、单片机控制实训指导及综合应用实例 4、单片机给计算机发送数据: [实验任务] 单片机串口通信的应用,通过串口,我们的个人电脑和单片机系统进行通信。 个人电脑作为上位机,向下位机单片机系统发送十六进制或者ASCLL码,单片机系统接收后,用LED显示接收到的数据和向上位机发回原样数据。 [硬件电路图] [实验原理] RS-232是美国电子工业协会正式公布的串行总线标准,也是目前最常用的串 行接口标准,用来实现计算机与计算机之间、计算机与外设之间的数据通讯。 RS-232串行接口总线适用于:设备之间的通讯距离不大于15m,传输速率最大为20kBps。RS-232协议以-5V-15V表示逻辑1;以+5V-15V 表示逻辑0。我们是用MAX232芯片将RS232电平转换为TTL电平的。一个完整的RS-232接口有22 根线,采用标准的25芯插头座。我们在这里使用的是简化的9芯插头座。 注意我们在这里使用的晶振是11.0592M的,而不是12M。因为波特率的设置 需要11.0592M的。 “串口调试助手V2.1.exe”软件的使用很简单,只要将串口选择‘CMO1’波 特率设置为‘9600’数据位为8 位。打开串口(如果关闭)。然后在发送区里 输入要发送的数据,单击手动发送就将数据发送出去了。注意,如果选中‘十六 进制发送’那么发送的数据是十六进制的,必须输入两位数据。如果没有选中, 则发送的是ASCLL码,那么单片机控制的数码管将显示ASCLL码值。

//参考源程序 #include "reg52.h" //包函8051 内部资源的定义 unsigned char dat; //用于存储单片机接收发送缓冲寄存器SBUF里面的内容sbit gewei=P2^4; //个位选通定义

基于单片机的串口通信模块设计

1 绪论 1.1 研究背景 通信是指不同的独立系统利用线路互相交换数据,它的主要目的是将数据从一端传送到另一端,实现数据的交换。在现代工业控制中,通常采用计算机作为上位机与下层的实时控制与监测设备进行通讯。现场数据必须通过一个数据收集器传给上位机,同样上位机向现场设备发命令也必须通过数据收集器。串行通信因其结构简单、执行速度快、抗干扰能力强等优点,已被广泛应用于数据采集和过程控制等领域。 计算机与外界的信息交换称为通信。基本的通信方式有并行通信和串行通信两种。串行通信是指一条信息额各位数据被逐位按顺序传送的通信方式。串行通信的特点是:数据位传送,按位顺序进行,最少只需要一根传输线即可完成,成本低但传送速度快,串行通信的距离可以从几米到几千米。 随着计算机技术尤其是单片微型机技术的发展,人们已越来越多地采用单片机来对一些工业控制系统中如温度、流量和压力等参数进行监测和控制。PC机具有强大的监控和管理能力,而单片机则具有快速及灵和的控制特点,通过PC 机的RS-232串行接口与外部设备进行通信,是许多测控系统中常用的一种通信解决方案。而随着USB接口技术的成熟和使用的普及,由于USB 接口有着 RS-232(DB-9)串口无法比拟的优点,RS-232(DB-9)串口正在逐步地为USB 接口所替代。而在现在的大多数笔记本电脑中,出于节省物理空间和用处不大等原因,RS-232(DB-9)串口已不再设置,这就约束了基于RS-232(DB-9)串口与PC 机联络的单片机设备的使用围。当前USB接口逐步取代RS-232(DB-9)串口已是大势所趋,单片机同计算机的USB通信在实际工作中的应用围也将越来越广。本文所介

单片机串口通信的发送与接收(可编辑修改word版)

51 单片机的串口,是个全双工的串口,发送数据的同时,还可以接收数据。 当串行发送完毕后,将在标志位TI 置1,同样,当收到了数据后,也会在RI 置1。无 论RI 或TI 出现了1,只要串口中断处于开放状态,单片机都会进入串口中断处理程序。在中断程序中,要区分出来究竟是发送引起的中断,还是接收引起的中断,然后分别进行处理。 看到过一些书籍和文章,在串口收、发数据的处理方法上,很多人都有不妥之处。 接收数据时,基本上都是使用“中断方式”,这是正确合理的。 即:每当收到一个新数据,就在中断函数中,把RI 清零,并用一个变量,通知主函数, 收到了新数据。 发送数据时,很多的程序都是使用的“查询方式”,就是执行while(TI ==0); 这样的语句来 等待发送完毕。 这时,处理不好的话,就可能带来问题。 看了一些网友编写的程序,发现有如下几条容易出错: 1.有人在发送数据之前,先关闭了串口中断!等待发送完毕后,再打开串口中断。 这样,在发送数据的等待期间内,如果收到了数据,将不能进入中断函数,也就不会保存的这个新收到的数据。 这种处理方法,就会遗漏收到的数据。 2.有人在发送数据之前,并没有关闭串口中断,当TI = 1 时,是可以进入中断程序的。 但是,却在中断函数中,将TI 清零! 这样,在主函数中的while(TI ==0);,将永远等不到发送结束的标志。 3.还有人在中断程序中,并没有区分中断的来源,反而让发送引起的中断,执行了接收 中断的程序。 对此,做而论道发表自己常用的方法: 接收数据时,使用“中断方式”,清除RI 后,用一个变量通知主函数,收到新数据。 发送数据时,也用“中断方式”,清除TI 后,用另一个变量通知主函数,数据发送完毕。 这样一来,收、发两者基本一致,编写程序也很规范、易懂。 更重要的是,主函数中,不用在那儿死等发送完毕,可以有更多的时间查看其它的标志。 实例: 求一个PC 与单片机串口通信的程序,要求如下: 1、如果在电脑上发送以$开始的字符串,则将整个字符串原样返回(字符串长度不是固定的)。

51单片机与PC机通信资料

《专业综合实习报告》 专业:电子信息工程 年级:2013级 指导教师: 学生:

目录 一:实验项目名称 二:前言 三:项目内容及要求 四:串口通信原理 五:设计思路 5.1虚拟串口的设置 5.2下位机电路和程序设计 5.3串口通信仿真 六:电路原理框图 七:相关硬件及配套软件 7.1 AT89C51器件简介 7.2 COMPIN简介 7.3 MAX232器件简介 7.4友善串口调试助手 7.5 虚拟串口软件Virtual Serial Port Driver 6.9八:程序设计 九:proteus仿真调试 十:总结 十一:参考文献 一:实验项目名称:

基于51单片机的单片机与PC机通信 二:前言 在国内外,以PC机作为上位机,单片机作为下位机的控制系统中,PC机通常以软件界面进行人机交互,以串行通信方式与单片机进行积极交互,而单片机系统根据被控对象配置相应的前向,后向信息通道,工作时作为主控机测对象,作为被控机接受PC机监督,指挥,定期或受命向上位机提供对象及本身的工作状态信息。 目前,随着集成电路集成度的增加,电子计算机向微型化和超微型化方向发展,微型计算机已成为导弹,智能机器人,人类宇宙和太空和太空奥妙复杂系统不可缺少的智能部件。在一些工业控制中,经常需要以多台单片机作为下位机执行对被控对象的直接控制,以一台PC机为上位机完成复杂的数据处理,组成一种以集中管理、分散控制为特点的集散控制系统。 为了提高系统管理的先进性和安全性,计算机工业自动控制和监测系统越来越多地采用集总分算系统。较为常见的形式是由一台做管理用的上位主计算机(主机)和一台直接参与控制检测的下位机(单片机)构成的主从式系统,主机和从机之间以通讯的方式来协调工作。主机的作用一是要向从机发送各种命令及参数:二是要及时收集、整理和分析从机发回的数据,供进一步的决策和报表。从机被动地接受、执行主机发来的命令,并且根据主机的要求向主机回传相应烦人实时数据,报告其运行状态。 用串行总线技术可以使系统的硬件设计大大简化、系统的体积减小、可靠性提高。同时,系统的更改和扩充极为容易。MCS-51系列单片机,由于内部带有一个可用于异步通讯的全双工的穿行通讯接口,阴齿可以很方便的构成一个主从式系统。 串口是计算机上一种非常通用的设备通讯协议,大多数计算机包容两个基于RS232的串口。串口同时也是仪器仪表设备通过用的通讯协议,很多GPIB兼容的设备也带有RS-232口。同时串口通讯协议也可以用于获取远程采集设备数据。所以,深入的理解学习和研究串口通信相关知识是非常必要的。此次毕业设计选题为“PC机与MCS-51单片机的串口通讯”,使用51单片机来实现一个主从式

单片机串口通信协议程序

#include #include #define R55 101 #define RAA 202 #define RLEN 203 #define RDATA 104 #define RCH 105 //#define unsigned char gRecState=R55; unsigned char gRecLen; unsigned char gRecCount; unsigned char RecBuf[30]; unsigned char gValue; void isr_UART(void) interrupt 4 using 1 { unsigned char ch; unsigned char i; unsigned char temp; if (RI==1) { ch=SBUF; switch(gRecState) { case R55: // wait 0x55 if (ch==0x55) gRecState=RAA; break;

case RAA: if (ch==0xaa) gRecState=RLEN; else if (ch==0x55) gRecState=RAA; else gRecState=R55; break; case RLEN: gRecLen=ch; gRecCount=0; gRecState=RDATA; break; case RDATA: RecBuf[gRecCount]=ch; gRecCount++; if (gRecCount>=gRecLen) { gRecState=RCH; } break; case RCH: temp=0; for(i=0;i

基于51单片机的双机串行通信

河南机电高等专科学校2015-2016学年第1学期通信实训报告 系别:电子通信工程系 班级:xxxxxx 学号:13xxxxxxxxx 姓名:xxxxxxx 2015年12月

基于51单片机的双机串行通信 摘要:串行通信是单片机的一个重要应用,本次课程设计就是要利用单片机来完成一个系统,实现爽片单片机床航通信,通信的结果使用数码管进行显示,数码管采用查表方式显示,两个单片机之间采用RS-232进行双击通信。在通信过程中,使用通信协议进行通信。 关键字:通信双机 一、总体设计 1设计目的 1.通过设计相关模块充分熟悉51单片机的最小系统的组成和原理; 2.通过软件仿真熟悉keil和proteus的配合使用; 3.通过软件编程熟悉51的C51编程规范; 4.通过实际的硬件电路搭设提高实际动手能力。 2.设计要求: 两片单片机之间进行串行通信,A机将0x06发送给B机,在B机的数码管上静态显示1,B机将0~f动态循环发送到A机,并在其数码管上显示。 3.设计方案: 软件部分,通过通信协议进行发送接收,A机先送0x06(B机数码管显示1)给B机(B机静态显示),当从机接收到后,向B机发送代表0-f的数码管编码数组。B收到0x06后就把数码表TAB[16]中的数据送给从机。 二、硬件设计

1.51单片机串行通信功能 计算机与外界的信息交换称为通信,常用的通信方式有两种:并行通信和串行通信。51单片机用4个接口与外界进行数据输入与数据输出就是并行通信,并行通信的特点是传输信号的速度快,但所用的信号线较多,成本高,传输的距离较近。串行通信的特点是只用两条信号线(一条信号线,再加一条地线作为信号回路)即可完成通信,成本低,传输的距离较远。 51单片机的串行接口是一个全双工的接口,它可以作为UART(通用异步接受和发送器)用,也可以作为同步移位寄存器用。51单片机串行接口的结构如下: 图1.AT89C51(52) (1)数据缓冲器(SBUF) 接受或发送的数据都要先送到SBUF缓存。有两个,一个缓存,另一个接受,

单片机串口通信C程序及应用实例

一、程序代码 #include//该头文件可到https://www.doczj.com/doc/a88639293.html,网站下载#define uint unsigned int #define uchar unsigned char uchar indata[4]; uchar outdata[4]; uchar flag; static uchar temp1,temp2,temp3,temp; static uchar R_counter,T_counter; void system_initial(void); void initial_comm(void); void delay(uchar x); void uart_send(void); void read_Instatus(void); serial_contral(void); void main() { system_initial(); initial_comm(); while(1) { if(flag==1) { ES = 0; serial_contral(); ES = 1; flag = 0; } else read_Instatus(); } } void uart_send(void) { for(T_counter=0;T_counter<4;T_counter++) { SBUF = outdata[T_counter]; while(TI == 0);

TI = 0; } T_counter = 0; } uart_receive(void) interrupt 4 { if(RI) { RI = 0; indata[R_counter] = SBUF; R_counter++; if(R_counter>=4) { R_counter = 0; flag = 1; } } } void system_initial(void) { P1M1 = 0x00; P1M0 = 0xff; P1 = 0xff; //初始化为全部关闭 temp3 = 0x3f;//初始化temp3的值与六路输出的初始值保持一致 temp = 0xf0; R_counter = 0; T_counter = 0; } void initial_comm(void) { SCON = 0x50; //设定串行口工作方式:mode 1 ; 8-bit UART,enable ucvr TMOD = 0x21; //TIMER 1;mode 2 ;8-Bit Reload PCON = 0x80; //波特率不加倍SMOD = 1 TH1 = 0xfa; //baud: 9600;fosc = 11.0596 IE = 0x90; // enable serial interrupt TR1 = 1; // timer 1 RI = 0; TI = 0; ES = 1; EA = 1; }

51单片机串口通信异常的调试一例

51单片机串口通信异常的调试一例 单片机与DSP在硬件结构和程序编写方面存在很多共同之处,所以最近几周试着用了一下51单片机开发板,希望进一步熟悉中断的概念、串口通信、I2C协议、存储扩展等常用的知识。 在进行串口通信的实验时,预期功能不能实现。实验的设计方案是:通过上位机给单片机发送一个16bit的字符串,单片机对字符串进行接收并立刻回显给上位机,接收并回显完毕后依次将这些字符(只能是0-9,a-f这几个字符,可以重复)在数码管上进行显示。 程序编写完成后,通过上位机发送字符串9876543210abcdef,单片机串口接收并回显9876543210abcde,然后数码管依次显示f9876543210abcde,数码管显示完成后,单片机串口回显的字符串中的e后面又多了一个f。 对实验现象进行分析不难发现,串口的接收和回显功能正常,但是存在2个问题:1.串口接收并回显和数码管显示的时序有点混乱;2.数码管的显示出现异常,本应该依次显示9876543210abcdef,实际上显示的却是f9876543210abcde。 对源代码进行分析发现,时序混乱的原因是中断响应及中断返回的执行时序出现问题,修改代码后问题1被解决。 问题2的解决思路:源代码中,通过串口接收到的字符串被存储在一个一维数组array[16]中,该数组有16个元素,每个元素都是unsigned char型。在源代码中,先注释掉数码管显示的那一段代码,然后添加串口打印代码,串口打印实现的功能是依次显示array[0]到array[15]这16个元素的值。编译通过后,将程序烧写到单片机。使用串口调试助手,以十六进制的形式观察array[0]到array[15]的取值,结果如下:

基于51单片机的双机串行通信课程设计 1000110061

基于AT89C51单片机的双机串行通信设计 姓名:杨应伟 学号:100110061 专业:机械设计制造及其制动化 班级:机电二班

前言 单片机广泛应用于仪器仪表、家用电器、医用设备、航空航天、专用设备的智能化管理及过程控制等领域随着计算机技术的发展及工业自动化水平的提高, 在许多场合采用单机控制已不能满足现场要求,因而必须采用多机控制的形式,而多机控制主要通过多个单片机之间的串行通信实现。串行通信作为单片机之间常用的通信方法之一, 由于其通信编程灵活、硬件简洁并遵循统一的标准, 因此其在工业控制领域得到了广泛的应用。 在测控系统和工程应用中,常遇到多项任务需同时执行的情况,因而主从式多机分布式系统成为现代工业广泛应用的模式。单片机功能强、体积小、价格低廉、开发应用方便,尤其具有全双工串行通讯的特点,在工业控制、数据采集、智能仪器仪表、家用电器方面都有广泛的应用。同时,IBM-PC机正好补充单片机人机对话和外围设备薄弱的缺陷。各单片机独立完成数据采集处理和控制任务,同时通过通信接口将数据传给PC机,PC机将这些数据进行处理、显示或打印,把各种控制命令传给单片机,以实现集中管理和最优控制。串行通信是单片机的一个重要应用,本次课程设计就是要利用单片机来完成一个系统,实现爽片单片机床航通信,通信的结果使用数码管进行显示,数码管采用查表方式显示,两个单片机之间采用RS-232进行双击通信。 在通信过程中,使用通信协议进行通信。在测控系统和工程应用中,常遇到多项任务需同时执行的情况,因而主从式多机分布式系统成为现代工业广泛应用的模式。单片机功能强、体积小、价格低廉、开发应用方便,尤其具有全双工串行通讯的特点,在工业控制、数据采集、智能仪器仪表、家用电器方面都有广泛的应用。同时,IBM-PC机正好补充单片机人机对话和外围设备薄弱的缺陷。各单片机独立完成数据采集处理和控制任务,同时通过通信接口将数据传给PC机,PC机将这些数据进行处理、显示或打印,把各种控制命令传给单片机,以实现集中管理和最优控制。 串行通信是单片机的一个重要应用,本次课程设计就是要利用单片机来完成一个系统,实现爽片单片机床航通信,通信的结果使用数码管进行显示,数码管采用查表方式显示,两个单片机之间采用RS-232进行双击通信。在通信过程中,使用通信协议进行通信。

单片机与PC机串口通信实现正文

毕业设计(论文)课题:单片机与PC机串口通信实现 学生: 孙波系部: 通信工程 班级: 通信1301 学号: 2013120325 指导教师: 童华 装订交卷日期: 2016年x月x日 装订顺序: (1)封面(2)毕业设计(论文)成绩评定记录(3)标题、中文摘要及关键词(4)正文(5)附录(6)参考文献

毕业设计(论文)成绩评定记录表 注:1.此表适用于不参加毕业答辩学生的毕业设计(论文)成绩评定; 2.平时成绩占40%、卷面评阅成绩占60%,在上面的评分表中,可分别按40分、60分来量化评分,二项相加所得总分即为总评成绩,总评成绩请转换为优秀、良好、中等、及格、不及格五等级计分。 教务处制

重庆电子工程职业学院 毕业设计(论文)开题报告 系别通信工程专业通信技术班级通信1301 学生姓名孙波学号2013120325 指导教师童华 一、毕业设计的内容和意义: 目前,随着计算机和微电子技术的高速发展,单片机在国民经济的各个领域的智能化控制中得到了非常广泛的应用。单片机已成为信息处理、物联网络、通信设备、工业控制、家用电器等各个领域不可缺少的智能部件。在一些工业控制中,经常需要以单片机作为下位机执行对被控对象的直接控制,以PC机为上位机完成复杂的数据处理,组成主从式控制系统。 为了提高系统管理的先进性,计算机工业自动控制和监测系统越来越多的采用主从式系统。较为常见的形式是由一台做管理用的上位机计算机(主机)和一台直接参与控制检测的下位机单片机(从机)构成的主从式系统,主机和从机之间以通讯的方式来协调工作。主机的作用一是向从机发送各种命令及参数;二是要及时收集、整理和分析从机发回的数据,供进一步的决策。从机被动的接收、执行主机发

MCS-51单片机串行口工作方式与波特率计算举例

MCS-51单片机串行口工作方式与波特率计算举例 1)方式0 方式0是外接串行移位寄存器方式。工作时,数据从RXD串行地输入/输出,TXD 输出移位脉冲,使外部的移位寄存器移位。波特率固定为fosc/12(即,TXD每机器周期输出一个同位脉冲时,RXD接收或发送一位数据)。每当发送或接收完一个字节,硬件置TI=1或RI=1,申请中断,但必须用软件清除中断标志。 实际应用在串行I/O口与并行I/O口之间的转换。 2)方式1 方式1是点对点的通信方式。8位异步串行通信口,TXD为发送端,RXD为 接收端。一帧为10位,1位起始位、8位数据位(先低后高)、1位停止位。波特率由T1或T2的溢出率确定。 在发送或接收到一帧数据后,硬件置TI=1或RI=1,向CPU申请中断;但必须用软件清除中断标志,否则,下一帧数据无法发送或接收。 (1)发送:CPU执行一条写SBUF指令,启动了串行口发送,同时将1写入 输出移位寄存器的第9位。发送起始位后,在每个移位脉冲的作用下,输出移位寄存器右移一位,左边移入0,在数据最高位移到输出位时,原写入的第9位1的左边全是0,检测电路检测到这一条件后,使控制电路作最后一次移位,/SEND 和DATA无效,发送停止位,一帧结束,置TI=1。 (2)接收:REN=1后,允许接收。接收器以所选波特率的16倍速率采样RXD 端电平,当检测到一个负跳变时,启动接收器,同时把1FFH写入输入移位寄存器(9位)。由于接、发双方时钟频率有少许误差,为此接收控制器把一位传送时间16等分采样RXD,以其中7、8、9三次采样中至少2次相同的值为接收值。接收位从移位寄存器右边进入,1左移出,当最左边是起始位0时,说明已接收8位数据,再作最后一次移位,接收停止位。此后: A、若RI=0、SM2=0,则8位数据装入SBUF,停止位入RB8,置RI=1。

基于单片机C#串口通信

基于C#与单片机串口通信的投票器 李浩东20093101004 周守悦20093101012 一.作品的设计概述 我们知道每年每个班都需要班委换届,有很多同学积极参加竞选,然而每一次竞选投票都是大家拿出一张纸,然后再纸上写上自己心目中班委的名字,然后交给监票读票记票,这个过程不仅大大浪费了大家的宝贵时间,还有可能出现漏票等情况,体现不了公平公正公开。 本设计是通过按钮给班委竞选人投票,每个候选人都对应一个按钮,投票人如果想投票给某个人可以按下其对应按钮,每按下一次改竞选人的票数就会自动增加1,每个人只能按下一次,电脑显示屏将通过柱形图动态的呈现每个候选人获得票数竞争的情况以及通过框图显示总票数,不仅使得投票结果更加公开公正,而且也大大节省了大家的时间。本设计的创新点是通过柱形图动态显示整个投票过程,而不是直接显示到最后投票结果,更加体现公正公开。 二.作品的设计与分析 1.主要功能与分析 主要使用单片机和PC机之间的串口通信,在单片机硬件上设置七个按键,其中四个键是用来给A,B,C,D四个人投票的,这四个按键每按下一次就自动增1,记录这四个按键按下的总次数num1,num2,num3,num4,并把四个数按顺序不断循环通过串口发给PC机,PC 机通过串口把这些数据存储下来,并读出来,通过C#编程,把这四个人所获得的总票数在picturebox控件上面的柱形图动态呈现出来,通过time控件,不断更新这个人所获得的票数,让投票人通过柱形图更加形象直观的看出每个被投票人的竞争情况,同时在柱形图下方有着这四个人获得总票数的真实数目。还有一个按键是票数清零,如果这次投票已经完成或者无效可以按下这个按键,此时A,B,C,D四个人的总票数将变成零。还有一个按键作用是停止投票,如果需要停止这次投票可以按下此键,这时候那四个投票的按键将不可用。最后一个按键的作用是继续投票,如需继续投票,可按此键。其系统设计图如下: 2.串口通信规则 单片机与PC机为了可以进行通信,必须要遵守一定的通信规则,这个共同的规则就是通信端口的初始化。通信端口的初始化有以下几项必须设置: (1)数据的传输速率 传输双方通过传输线的电压改变来交换数据,但传输线的电压改变的速度必须和接收端的接收速度保持一致,RS-232通常用于异步传输,即双方并没有一个可参考的同步时钟作为基准。由于没有一个参考时钟,双方所发送的高低电位到底代表几个位就不得而知了,

单片机串口通信

单片机串口通信 关键词:单片机,串口通信 单片机应用中,串口通信是不可缺少的部分。如何编写有效的串口通信程序对程序的结构、可靠性都有很大的影响。串口控制程序一般分为查询和中断两者方式。查询方式适用于简单的应用,简单可靠,但是缺点是需要占用处理器资源,在发送或者接收数据的时候不能做其它的事情,处理器利用率低。中断方式下,在发送或者接受数据的时候处理器还可以做其它的工作,效率较高。 对于稍微复杂的系统来说,中断方式管理串口程序将会更加有效。中断处理方式也可分为几种,其中采用循环缓冲区的方式比较高效。循环缓冲区为定义的一定长度的RAM区间,对于接受数据来说,中断中收到的数据将存入RAM中,然后等待主程序来读取。其中会涉及到数据见的协调问题,写数据的时候不能把还没有读取的数据覆盖掉,读数据的时候应该读取的是缓冲区中最老的数据。当缓冲区已满的时候,写入的新数据应该覆盖掉最老的数据。这些问题的处理可以使用两个指针来实现。

初始化时两个指针均指向RAM区间的底部,如图1所示。当中断中接收到一个数据的时候,将这个数据写入写指针WPTR指向的存储单元,然后调整写指针指向下一个空余的RAM区间,程序上处理就是把写指针加一,如图2所示。同理,写入N个数据后写指针同步更新,如图3所示。 当读数据的时候,首先判断缓冲区中是否有数据,方法是判断读指针和写指针是否相等,如果相等表明没有数据,如图5所示。如果读指针和写指针不等,那么读取缓冲区中的数据,然后调整读指针,当写指针和读指针相等的时候,表明缓冲区中的有效数据已经读取完,此时读指针和写指针相等。

当有数据再次写入的时候,继续紧接着上次写入的地址后写入新的数据,如果数据长度超过缓冲区的长度,写指针重新返回缓冲区的底部重新开始(这是循环缓冲的由来),如图6所示。此时如果有数据读出,读指针做同样的更新。如果没有数据读出,一直有数据写入,可能会出现缓冲区写满的情况,如图7所示。此时如果仍然没有数据读取,继续有数据写入的时候,为了保留新的数据,必须丢弃老的数据,即写指针可能超过读指针,此时,读指针必须和谐指针同步更新,这样才能保证读取的是没有被覆盖的最老的数据,如图8所示。 需要注意的是,读指针在中断过程中也可能被更改,因此,读数据的子程序需要对读指针的更改进行保护,方法是在读数据的时候关闭串行口中断。下面是循环缓冲区接收数据的程序实例。 FT, 尽然连文本都不能上传,代码只好贴出来吧。 /* * FileName: uart.h * Description: header file for SerialPort * Author: SangWei, HUST-CEEE-2004 * Contact: swkyer@https://www.doczj.com/doc/a88639293.html,, swkyer@https://www.doczj.com/doc/a88639293.html,

MCS-51单片机串行接口

第七章MCS-51单片机串行接口 第一节串行通信的基本概念 (一)学习要求 1.掌握串行通信的基本概念。 2. 掌握异步通信和同步通信的区别。 (二)内容提要 一:基本概念及分类 串行通信是将数据的各位一位一位地依次传送。适合于计算机之间、计算机与外部设备之间的远距离通信。 串行通信从传输方式分为: 单工方式、半双工方式、全双工方式。 从接收方式来说,串行通信有两种方式: 异步通信方式、同步通信方式。 二:串行口的功能 MCS-51单片机中的异步通信串行接口能方便地与其他计算机或传送信息的外围设备(如串行打印机、CPU终端等)实现双机、多机通信。 串行口有4种工作方式,见表7-1。方式0并不用于通信,而是通过外接移位寄存器芯片实现扩展并行I/O接口的功能。该方式又称为移位寄存器方式。方式1、方式2、方式3都是异步通信方式。方式1是8位异步通信接口。一帧信息由10位组成,其格式见图7-2a。方式1用于双机串行通信。方式2、方式3都是9位异步通信接口、一帧信息中包括9位数据,1位起始位,1位停止位,其格式见图7-2b。方式2、方式3的区别在于波特率不同,方式2、方式3主要用于多机通信,也可用于双机通信。 表7-1 (三)习题与思考题 1、什么是并行通信?什么是串行通信?各有何优缺点? 答:并行通信指数据的各位同时传输的通信方式,串行通信是指各位数据逐位顺序传输的通信方式。 2、什么是异步通信?什么是同步通信?各有何优缺点? 3、什么是波特率?某异步串行通信接口每分钟传送1800个字符,每个字符由11位组成,请计算出传送波特率。 第二节MCS-51串行接口的组成 (一)学习要求

51单片机与串口通信代码

51单片机与串口通信代码 2011年04月22日 17:18 本站整理作者:佚名用户评论(0) 关键字:串口通信(35) 串口调试 1. 发送:向总线上发命令 2. 接收:从总线接收命令,并分析是地址还是数据。 3. 定时发送:从内存中取数并向主机发送. 经过调试,以上功能基本实现,目前可以通过上位机对单片机进行实时控制。 程序如下: //这是一个单片机C51串口接收(中断)和发送例程,可以用来测试51单片机的中断接收 //和查询发送,另外我觉得发送没有必要用中断,因为程序的开销是一样的 #i nclude #i nclude #i nclude #define INBUF_LEN 4 //数据长度 unsigned char inbuf1[INBUF_LEN]; unsigned char checksum,count3 , flag,temp,ch; bit read_flag=0; sbit cp=P1^1; sbit DIR=P1^2; int i; unsigned int xdata *RAMDATA; /*定义RAM地址指针*/ unsigned char a[6] ={0x11,0x22,0x33,0x44,0x55,0x66} ; void init_serialcomm(void) { SCON=0x50; //在11.0592MHz下,设置串行口波特率为9600,方式1,并允许接收

PCON=0x00; ES=1; TMOD=0x21; //定时器工作于方式2,自动装载方式 TH0=(65536-1000)%256; TL0=(65536-1000)/256; TL1=0xfd; TH1=0xfd; ET0=1; TR0=1; TR1=1; // TI=0; EA=1; // TI=1; RAMDATA=0x1F45; } void serial () interrupt 4 using 3 { if(RI) { RI=0; ch=SBUF; TI=1; //置SBUF空 switch(ch) { case 0x01 :printf("A"); TI=0;break; case 0x02 :printf("B"); TI=0;break; case 0x03 :printf("C"); TI=0;break;

PC机与单片机232通信协议

PC 机与单片机通信(RS232 协议) 目录: 1、单片机串口通信的应用 2、PC控制单片机IO口输出 3、单片机控制实训指导及综合应用实例 4、单片机给计算机发送数据: [实验任务] 单片机串口通信的应用,通过串口,我们的个人电脑和单片机系统进行通信。 个人电脑作为上位机,向下位机单片机系统发送十六进制或者ASCLL码,单片机系统接收后,用LED显示接收到的数据和向上位机发回原样数据。 [硬件电路图] [实验原理] RS-232是美国电子工业协会正式公布的串行总线标准,也是目前最常用的串 行接口标准,用来实现计算机与计算机之间、计算机与外设之间的数据通讯。 RS-232串行接口总线适用于:设备之间的通讯距离不大于15m,传输速率最大为20kBps。RS-232协议以-5V-15V表示逻辑1;以+5V-15V 表示逻辑0。我们是用MAX232芯片将RS232电平转换为TTL电平的。一个完整的RS-232接口有22 根线,采用标准的25芯插头座。我们在这里使用的是简化的9芯插头座。 注意我们在这里使用的晶振是11.0592M的,而不是12M。因为波特率的设置 需要11.0592M的。 “串口调试助手V2.1.exe”软件的使用很简单,只要将串口选择‘CMO1’波 特率设置为‘9600’数据位为8 位。打开串口(如果关闭)。然后在发送区里 输入要发送的数据,单击手动发送就将数据发送出去了。注意,如果选中‘十六

进制发送’那么发送的数据是十六进制的,必须输入两位数据。如果没有选中,则发送的是ASCLL码,那么单片机控制的数码管将显示ASCLL码值。

[C语言源程序] #include "reg52.h" //包函8051 内部资源的定义 unsigned char dat; //用于存储单片机接收发送缓冲寄存器SBUF里面的内容 sbit gewei=P2^4; //个位选通定义 sbit shiwei=P2^5; //十位选通定义 sbit baiwei=P2^6; //百位选通定义 unsigned char code table[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,}; //1~10 void Delay(unsigned int tc) //延时程序 { while( tc != 0 ) {unsigned int i; for(i=0; i<100; i++); tc--;} } void LED() //LED显示接收到的数据(十进制) { gewei=0; P0=table[dat%10]; Delay(10); gewei=1; shiwei=0; P0=table[dat/10]; Delay(10); shiwei=1; baiwei=0; P0=table[dat/100]; Delay(10); baiwei=1; } ///////功能:串口初始化,波特率9600,方式1///////// void Init_Com(void) { TMOD = 0x20; PCON = 0x00; SCON = 0x50; TH1 = 0xFd; TL1 = 0xFd; TR1 = 1; } /////主程序功能:实现接收数据并把接收到的数据原样发送回去/////// void main() { Init_Com();//串口初始化 while(1) { if ( RI ) //扫描判断是否接收到数据, { dat = SBUF; //接收数据SBUF赋与dat RI=0; //RI 清零。

51单片机串口通信讲解

51系列单片机串口通信实例教程 单片机的串口通信看起来是很复杂的,主要是因为他用到了更多的寄存器,与前面的知识相比他更具综合能力,写起来考虑的问题自然也变多了.而前面学习过的定时器与中断将是单片机通信的基础. 单片机的中断系统中第4个中断就是串口中断,要进行串口通信首先就要打开CPU总中断EA,还要打开串口通信中断ES,这是串口通信的前堤,而串口通信也跟计时器一样有很多的模式,因此我们还要设置SCON寄存器来指定采用哪一种方式进行通信,而在通信的过程中,我们还要设定通信的波特率,不然的话,单片机是没办法进行采样的,这样也不会得到正确的结果了.我在实验过程中用到的是1号定时器来设定的波特率,用到了计时器方式2,也就是8位自动重装,这样可以简化编程,她的实现思想就是将常数放入TH,而TL中则是初始化参数,当溢出时,单片机会自动将TH中的常数装入TL中. 再来说说波特率,我们为什么要设定波特率,因为单片机会以16倍波特率的速度进行采样,而在实验中我们用的是10位异步收发方式,因此要将SM0置0,SM1置1.而其中的10位

有8位数据位,第一位和最后一位是发送数据的起始与结束.采用高的皮特率就不会出错啦.而波特率是有一个公式的: 方式0的波特率 = fosc/12 方式2的波特率 =(2SMOD/64)· fosc 方式1的波特率 =(2SMOD/32)·(T1溢出率) 方式3的波特率 =(2SMOD/32)·(T1溢出率) T1 溢出率= fosc /{12×[256 -(TH1)]} 根据公式我们很容易就算出当晶振为110592HZ时,要达到9600的波特率,我们只需要将TL1置FDH即可,如下图: 除此之外,你还要将SCON中的REN位置1,不然的话,单片机是不会接收数据的. 还有不要忘了选择定时器的工作方式,设置TMOD为0x20既是工作方式2,8位自动重装定时器. 这样一来,初始批工作算是差不多了.而串口通信分为中断方式,和查询方式,如果你想用查询方式你也不用设置IE寄存器了. 在串口通信中,还有一个很重要的寄存器SBUF,其实也不是一个,是两个,只是它们共用同一个地址,再热气表达式的不同,单片机会自动选择使用哪一个SBUF. 下面是我写的一个例子程序,产生的效果是:向单片机发送任一个0~255之间的数,将会被显示到数码管上.并且单片机还会自动把刚才传过去的数又发送回来 ,实验过程中用到了几个工具如下:

相关主题
文本预览
相关文档 最新文档