当前位置:文档之家› 平面几何基础知识(基本定理、基本性质)

平面几何基础知识(基本定理、基本性质)

平面几何基础知识(基本定理、基本性质)
平面几何基础知识(基本定理、基本性质)

平面几何基础知识(基本定理、基本性质)

1. 勾股定理(毕达哥拉斯定理)(广义勾股定理)(1)锐角对边的平方,等于其他两边之平方和,减去这两边中的一边

和另一边在这边上的射影乘积的两倍. (2)钝角对边的平方等于其他两边的平方和,加上这两边中的一边与另一边在这边上的射影乘积的两倍.

2. 射影定理(欧几里得定理)

3. 中线定理(巴布斯定理)设△ABC 的边BC 的中点为P ,则有)(22222BP AP AC AB +=+; 中线长:2

22222a c b m a -+=. 4. 垂线定理:2222BD BC AD AC CD AB -=-?⊥. 高线长:C b B c A a

bc c p b p a p p a h a sin sin sin ))()((2===---=. 5. 角平分线定理:三角形一个角的平分线分对边所成的两条线段与这个角的两边对应成比例.

如△ABC 中,AD 平分∠BAC ,则AC

AB DC BD =;(外角平分线定理). 角平分线长:2cos 2)(2A c b bc a p bcp c b t a +=-+=

(其中p 为周长一半). 6. 正弦定理:R C

c B b A a 2sin sin sin ===,(其中R 为三角形外接圆半径). 7. 余弦定理:C ab b a c cos 2222-+=.

8. 张角定理:AB

DAC AC BAD AD BAC ∠+∠=∠sin sin sin .

9. 斯特瓦尔特(Stewart )定理:设已知△ABC 及其底边上B 、C 两点间的一点D ,则有AB 2·DC +AC 2·BD -AD 2·BC =

BC ·DC ·BD .

10. 圆周角定理:同弧所对的圆周角相等,等于圆心角的一半.(圆外角如何转化?)

11. 弦切角定理:弦切角等于夹弧所对的圆周角.

12. 圆幂定理:(相交弦定理:垂径定理:切割线定理(割线定理):切线长定理:)

13. 布拉美古塔(Brahmagupta )定理: 在圆内接四边形ABCD 中,AC ⊥BD ,自对角线的交点P 向一边作垂线,其延

长线必平分对边.

14. 点到圆的幂:设P 为⊙O 所在平面上任意一点,PO =d ,⊙O 的半径为r ,则d 2-r 2就是点P 对于⊙O 的幂.过P

任作一直线与⊙O 交于点A 、B ,则P A·PB = |d 2-r 2|.“到两圆等幂的点的轨迹是与此二圆的连心线垂直的一条直线,如果此二圆相交,则该轨迹是此二圆的公共弦所在直线”这个结论.这条直线称为两圆的“根轴”.三个圆两两的根轴如果不互相平行,则它们交于一点,这一点称为三圆的“根心”.三个圆的根心对于三个圆等幂.当三个圆两两相交时,三条公共弦(就是两两的根轴)所在直线交于一点.

15. 托勒密(Ptolemy )定理:圆内接四边形对角线之积等于两组对边乘积之和,即AC ·BD =AB ·CD +AD ·BC ,(逆命题成

立) .(广义托勒密定理)AB ·CD +AD ·BC ≥AC ·BD .

16. 蝴蝶定理:AB 是⊙O 的弦,M 是其中点,弦CD 、EF 经过点M ,CF 、DE 交AB 于P 、Q ,求证:MP =QM .

17. 费马点:定理1等边三角形外接圆上一点,到该三角形较近两顶点距离之和等于到另一顶点的距离;不在等边三角

形外接圆上的点,到该三角形两顶点距离之和大于到另一点的距离.定理2 三角形每一内角都小于120°时,在三角形内必存在一点,它对三条边所张的角都是120°,该点到三顶点距离和达到最小,称为“费马点”,当三角形有一内角不小于120°时,此角的顶点即为费马点.

18. 拿破仑三角形:在任意△ABC 的外侧,分别作等边△ABD 、△BCE 、△CAF ,则AE 、AB 、CD 三线共点,并且AE

=BF =CD ,这个命题称为拿破仑定理. 以△ABC 的三条边分别向外作等边△ABD 、△BCE 、△CAF ,它们的外接圆⊙C 1 、⊙A 1 、⊙B 1的圆心构成的△——外拿破仑的三角形,⊙C 1 、⊙A 1 、⊙B 1三圆共点,外拿破仑三角形是一个等边三角形;△ABC 的三条边分别向△ABC 的内侧作等边△ABD 、△BCE 、△CAF ,它们的外接圆⊙C 2 、⊙A 2 、⊙B 2的圆心构成的△——内拿破仑三角形,⊙C 2 、⊙A 2 、⊙B 2三圆共点,内拿破仑三角形也是一个等边三角形.这两个拿破仑三角形还具有相同的中心.

19. 九点圆(Nine point round 或欧拉圆或费尔巴赫圆):三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以

及垂心与各顶点连线的中点,这九个点在同一个圆上,九点圆具有许多有趣的性质,例如:

(1)三角形的九点圆的半径是三角形的外接圆半径之半;

(2)九点圆的圆心在欧拉线上,且恰为垂心与外心连线的中点;

(3)三角形的九点圆与三角形的内切圆,三个旁切圆均相切〔费尔巴哈定理〕.

20. 欧拉(Euler )线:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上.

21. 欧拉(Euler )公式:设三角形的外接圆半径为R ,内切圆半径为r ,外心与内心的距离为d ,则d 2=R 2-2Rr .

22. 锐角三角形的外接圆半径与内切圆半径的和等于外心到各边距离的和.

23. 重心:三角形的三条中线交于一点,并且各中线被这个点分成2:1的两部分;)3

,3(C B A C B A y y y x x x G ++++ 重心性质:(1)设G 为△ABC 的重心,连结AG 并延长交BC 于D ,则D 为BC 的中点,则1:2:=GD AG ;

(2)设G 为△ABC 的重心,则ABC AC G BC G ABG S S S S ????===3

1; (3)设G 为△ABC 的重心,过G 作DE ∥BC 交AB 于D ,交AC 于E ,过G 作PF ∥AC 交AB 于P ,交BC 于F ,过G 作HK ∥AB 交AC 于K ,交BC 于H ,则

2;32=++===AB KH CA FP BC DE AB KH CA FP BC DE ; (4)设G 为△ABC 的重心,则

①222222

333GC AB GB CA GA BC

+=+=+; ②)(3

1222222CA BC AB GC GB GA ++=++; ③22222223PG GC GB GA PC PB PA +++=++(P 为△ABC 内任意一点);

④到三角形三顶点距离的平方和最小的点是重心,即222GC GB GA ++最小; ⑤三角形内到三边距离之积最大的点是重心;反之亦然(即满足上述条件之一,则G 为△ABC 的重心). 24. 垂心:三角形的三条高线的交点;)cos cos cos cos cos cos ,cos cos cos cos cos cos (C

c B b A a y C c y B b y A a C c B b A a x C c x B b x A a H C B A C B A ++++++++ 垂心性质:(1)三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍;

(2)垂心H 关于△ABC 的三边的对称点,均在△ABC 的外接圆上;

(3)△ABC 的垂心为H ,则△ABC ,△ABH ,△BCH ,△ACH 的外接圆是等圆;

(4)设O ,H 分别为△ABC 的外心和垂心,则HCA BCO ABH CBO HAC BAO ∠=∠∠=∠∠=∠,,.

25. 内心:三角形的三条角分线的交点—内接圆圆心,即内心到三角形各边距离相等;

),(c

b a cy by ay

c b a cx bx ax I C B A C B A ++++++++ 内心性质:(1)设I 为△ABC 的内心,则I 到△ABC 三边的距离相等,反之亦然;

(2)设I 为△ABC 的内心,则C AIB B AIC A BIC

∠+?=∠∠+?=∠∠+?=∠2

190,2190,2190; (3)三角形一内角平分线与其外接圆的交点到另两顶点的距离与到内心的距离相等;反之,若A ∠平分线交△ABC 外接圆于点K ,I 为线段AK 上的点且满足KI=KB ,则I 为△ABC 的内心;

(4)设I 为△ABC 的内心,,,,c AB b AC a BC === A ∠平分线交BC 于D ,交△ABC 外接圆于点K ,则

a

c b KD IK KI AK ID AI +===; (5)设I 为△ABC 的内心,,,,c AB b AC a BC ===I 在AB AC BC ,,上的射影分别为F E D ,,,内切圆半径为r ,令)(2

1c b a p ++=,则①pr S ABC =?;②c p CD CE b p BF BD a p AF AE -==-==-==;;;③CI BI AI p abcr ???=.

26. 外心:三角形的三条中垂线的交点——外接圆圆心,即外心到三角形各顶点距离相等; )2sin 2sin 2sin 2sin 2sin 2sin ,2sin 2sin 2sin 2sin 2sin 2sin (

C B A Cy By Ay C B A Cx Bx Ax O C B A C B A ++++++++ 外心性质:(1)外心到三角形各顶点距离相等;

(2)设O 为△ABC 的外心,则A BOC ∠=∠2或A BOC ∠-?=∠2360;

(3)?

=S abc R 4;(4)锐角三角形的外心到三边的距离之和等于其内切圆与外接圆半径之和. 27. 旁心:一内角平分线与两外角平分线交点——旁切圆圆心;设△ABC 的三边,,,c AB b AC a BC ===令

)(2

1c b a p ++=,分别与AB AC BC ,,外侧相切的旁切圆圆心记为C B A I I I ,,,其半径分别记为C B A r r r ,,. 旁心性质:(1),2

1,2190A C BI C BI A C BI C B A ∠=∠=∠∠-?=∠(对于顶角B ,C 也有类似的式子); (2))(2

1C A I I I C B A ∠+∠=∠; (3)设A AI 的连线交△ABC 的外接圆于D ,则DC DB DI A ==(对于C B CI BI ,有同样的结论);

(4)△ABC 是△I A I B I C 的垂足三角形,且△I A I B I C 的外接圆半径'R 等于△ABC 的直径为2R .

28. 三角形面积公式:C B A R R abc C ab ah S a ABC sin sin sin 24sin 21212====?)

cot cot (cot 4222C B A c b a ++++= ))()((c p b p a p p pr ---==,

其中a h 表示BC 边上的高,R 为外接圆半径,r 为内切圆半径,)(21

c b a p ++=. 29. 三角形中内切圆,旁切圆和外接圆半径的相互关系:

;2sin 2cos 2cos 4,2cos 2sin 2cos 4,2cos 2cos 2sin 4;2sin 2sin 2sin

4C B A R r C B A R r C B A R r C B A R r c b a ==== .1111;2

tan 2tan ,2tan 2tan ,2tan 2tan r r r r B A r r C A r r C B r r c b a c b a =++=== 30. 梅涅劳斯(Menelaus )定理:设△ABC 的三边BC 、CA 、AB 或其延长线和一条不经过它们任一顶点的直线的交点分

别为P 、Q 、R 则有 1=??RB

AR QA CQ PC BP .(逆定理也成立)

31.梅涅劳斯定理的应用定理1:设△ABC的∠A的外角平分线交边CA于Q,∠C的平分线交边AB于R,∠B的平分线交边CA于Q,则P、Q、R三点共线.

32.梅涅劳斯定理的应用定理2:过任意△ABC的三个顶点A、B、C作它的外接圆的切线,分别和BC、CA、AB的延长线交于点P、Q、R,则P、Q、R三点共线.

33.塞瓦(Ceva)定理:设X、Y、Z分别为△ABC的边BC、CA、AB上的一点,则AX、BY、CZ所在直线交于一点的充

要条件是AZ

ZB·

BX

XC·

CY

YA=1.

34.塞瓦定理的应用定理:设平行于△ABC的边BC的直线与两边AB、AC的交点分别是D、E,又设BE和CD交于S,则AS一定过边BC的中点M.

35.塞瓦定理的逆定理:(略)

36.塞瓦定理的逆定理的应用定理1:三角形的三条中线交于一点,三角形的三条高线交于一点,三角形的三条角分线交于一点.

37.塞瓦定理的逆定理的应用定理2:设△ABC的内切圆和边BC、CA、AB分别相切于点R、S、T,则AR、BS、CT交于一点.

38.西摩松(Simson)定理:从△ABC的外接圆上任意一点P向三边BC、CA、AB或其延长线作垂线,设其垂足分别是D、E、R,则D、E、R共线,(这条直线叫西摩松线Simson line).

39.西摩松定理的逆定理:(略)

40.关于西摩松线的定理1:△ABC的外接圆的两个端点P、Q关于该三角形的西摩松线互相垂直,其交点在九点圆上.41.关于西摩松线的定理2(安宁定理):在一个圆周上有4点,以其中任三点作三角形,再作其余一点的关于该三角形的西摩松线,这些西摩松线交于一点.

42.史坦纳定理:设△ABC的垂心为H,其外接圆的任意点P,这时关于△ABC的点P的西摩松线通过线段PH的中心.43.史坦纳定理的应用定理:△ABC的外接圆上的一点P的关于边BC、CA、AB的对称点和△ABC的垂心H同在一条(与西摩松线平行的)直线上.这条直线被叫做点P关于△ABC的镜象线.

44.牛顿定理1:四边形两条对边的延长线的交点所连线段的中点和两条对角线的中点,三点共线.这条直线叫做这个四边形的牛顿线.

45.牛顿定理2:圆外切四边形的两条对角线的中点,及该圆的圆心,三点共线.

46.笛沙格定理1:平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线.

47.笛沙格定理2:相异平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线.

48.波朗杰、腾下定理:设△ABC的外接圆上的三点为P、Q、R,则P、Q、R关于△ABC交于一点的充要条件是:弧AP+弧BQ+弧CR=0(mod2 ) .

49.波朗杰、腾下定理推论1:设P、Q、R为△ABC的外接圆上的三点,若P、Q、R关于△ABC的西摩松线交于一点,则A、B、C三点关于△PQR的的西摩松线交于与前相同的一点.

50.波朗杰、腾下定理推论2:在推论1中,三条西摩松线的交点是A、B、C、P、Q、R六点任取三点所作的三角形的垂心和其余三点所作的三角形的垂心的连线段的中点.

51.波朗杰、腾下定理推论3:考查△ABC的外接圆上的一点P的关于△ABC的西摩松线,如设QR为垂直于这条西摩松线该外接圆的弦,则三点P、Q、R的关于△ABC的西摩松线交于一点.

52.波朗杰、腾下定理推论4:从△ABC的顶点向边BC、CA、AB引垂线,设垂足分别是D、E、F,且设边BC、CA、AB的中点分别是L、M、N,则D、E、F、L、M、N六点在同一个圆上,这时L、M、N点关于关于△ABC的西摩松线交于一点.

53. 卡诺定理:通过△ABC 的外接圆的一点P ,引与△ABC 的三边BC 、CA 、AB 分别成同向的等角的直线PD 、PE 、PF ,

与三边的交点分别是D 、E 、F ,则D 、E 、F 三点共线.

54. 奥倍尔定理:通过△ABC 的三个顶点引互相平行的三条直线,设它们与△ABC 的外接圆的交点分别是L 、M 、N ,在

△ABC 的外接圆上取一点P ,则PL 、PM 、PN 与△ABC 的三边BC 、CA 、AB 或其延长线的交点分别是D 、E 、F ,则D 、E 、F 三点共线.

55. 清宫定理:设P 、Q 为△ABC 的外接圆的异于A 、B 、C 的两点,P 点的关于三边BC 、CA 、AB 的对称点分别是U 、

V 、W ,这时,QU 、QV 、QW 和边BC 、CA 、AB 或其延长线的交点分别是D 、E 、F ,则D 、E 、F 三点共线.

56. 他拿定理:设P 、Q 为关于△ABC 的外接圆的一对反点,点P 的关于三边BC 、CA 、AB 的对称点分别是U 、V 、W ,

这时,如果QU 、QV 、QW 和边BC 、CA 、AB 或其延长线的交点分别是D 、E 、F ,则D 、E 、F 三点共线.(反点:P 、Q 分别为圆O 的半径OC 和其延长线的两点,如果OC 2=OQ ×OP 则称P 、Q 两点关于圆O 互为反点)

57. 朗古来定理:在同一圆周上有A 1、B 1、C 1、D 1四点,以其中任三点作三角形,在圆周取一点P ,作P 点的关于这4

个三角形的西摩松线,再从P 向这4条西摩松线引垂线,则四个垂足在同一条直线上.

58. 从三角形各边的中点,向这条边所对的顶点处的外接圆的切线引垂线,这些垂线交于该三角形的九点圆的圆心.

59. 一个圆周上有n 个点,从其中任意n -1个点的重心,向该圆周的在其余一点处的切线所引的垂线都交于一点.

60. 康托尔定理1:一个圆周上有n 个点,从其中任意n -2个点的重心向余下两点的连线所引的垂线共点.

61. 康托尔定理2:一个圆周上有A 、B 、C 、D 四点及M 、N 两点,则M 和N 点关于四个三角形△BCD 、△CDA 、△DAB 、

△ABC 中的每一个的两条西摩松线的交点在同一直线上.这条直线叫做M 、N 两点关于四边形ABCD 的康托尔线.

62. 康托尔定理3:一个圆周上有A 、B 、C 、D 四点及M 、N 、L 三点,则M 、N 两点的关于四边形ABCD 的康托尔线、

L 、N 两点的关于四边形ABCD 的康托尔线、M 、L 两点的关于四边形ABCD 的康托尔线交于一点.这个点叫做M 、N 、L 三点关于四边形ABCD 的康托尔点.

63. 康托尔定理4:一个圆周上有A 、B 、C 、D 、E 五点及M 、N 、L 三点,则M 、N 、L 三点关于四边形BCDE 、CDEA 、

DEAB 、EABC 中的每一个康托尔点在一条直线上.这条直线叫做M 、N 、L 三点关于五边形A 、B 、C 、D 、E 的康托尔线.

64. 费尔巴赫定理:三角形的九点圆与内切圆和旁切圆相切.

65. 莫利定理:将三角形的三个内角三等分,靠近某边的两条三分角线相得到一个交点,则这样的三个交点可以构成一

个正三角形.这个三角形常被称作莫利正三角形.

66. 布利安松定理:连结外切于圆的六边形ABCDEF 相对的顶点A 和D 、B 和E 、C 和F ,则这三线共点.

67. 帕斯卡(Paskal )定理:圆内接六边形ABCDEF 相对的边AB 和DE 、BC 和EF 、CD 和FA 的(或延长线的)交点

共线.

68. 阿波罗尼斯(Apollonius )定理:到两定点A 、B 的距离之比为定比m :n (值不为1)的点P ,位于将线段AB 分成

m :n 的内分点C 和外分点D 为直径两端点的定圆周上.这个圆称为阿波罗尼斯圆.

69. 库立奇*大上定理:(圆内接四边形的九点圆)圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心

都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆.

70. 密格尔(Miquel )点: 若AE 、AF 、ED 、FB 四条直线相交于A 、B 、C 、D 、E 、F 六点,构成四个三角形,它们是

△ABF 、△AED 、△BCE 、△DCF ,则这四个三角形的外接圆共点,这个点称为密格尔点.

71. 葛尔刚(Gergonne )点:△ABC 的内切圆分别切边AB 、BC 、CA 于点D 、E 、F ,则AE 、BF 、CD 三线共点,这个

点称为葛尔刚点.

72. 欧拉关于垂足三角形的面积公式:O 是三角形的外心,M 是三角形中的任意一点,过M 向三边作垂线,三个垂足

形成的三角形的面积,其公式: 2

22AB C D 4||R d R S S EF -=??.

平面几何的意义

就个人经验而言,我相信人的智力懵懂的大门获得开悟往往缘于一些不经意的偶然事件.

罗素说过:“一个人越是研究几何学,就越能看出它们是多么值得赞赏.”我想罗素之所以这么说,是因为平面几何曾经救了他一命的缘故.

天知道是什么缘故,这个养尊处优的贵族子弟鬼迷心窍,想要自杀来结束自己那份下层社会人家的孩子巴望一辈子都够不到的幸福生活.在上吊或者抹脖子之前,头戴假发的小子想到做最后一件事情,那就是了解一下平面几何到底有多大迷人的魅力.而这个魅力是之前他的哥哥向他吹嘘的.估计他的哥哥将平面几何与人生的意义搅和在一起向他做了推介,不然万念俱灰的的头脑怎么会在离开之前想到去做最后的光顾?而罗素真的一下被迷住了,厌世的念头因为沉湎于平面几何而被淡化,最后竟被遗忘了.

罗素毕竟是罗素.平面几何对于我的意义只是发掘了一个成绩本来不错的中学生的潜力,为我解开了智力上的扭结;而在罗素那里,这门知识从一开始就使这个未来的伟大的怀疑论者显露了执拗的本性.他反对不加考察就接受平面几何的公理,在与哥哥的反复争论之后,只是他的哥哥使他确信不可能用其他的方法一步步由这样的公理来构建庞大的平面几何的体系的以后,他才同意接受这些公理.

公元前334年,年轻的亚历山大从马其顿麾师东进,短短的时间就建立了一个从尼罗河到印度河的庞大帝国.随着他的征服,希腊文明传播到了东方,开始了一个新的文明时代即“希腊化时代”,这时希腊文明的中心也从希腊本土转移到了东方,准确地说,是从雅典转移到了埃及的亚历山大城.正是在这个城市,诞生了“希腊化时代”最为杰出的科学成就,其中就包括欧几里德的几何学.因为他的成就,平面几何也被叫作“欧氏几何”.

“欧氏几何”以它无与伦比的完美体系一直被视为演绎知识的典范,哲学史家更愿意把它看作是古代希腊文化的结晶.它由人类理性不可辩驳的几个极其简单的“自明性公理”出发,通过严密的逻辑推理,演绎出一连串的定理,这些在结构上紧密依存的定理和作为基础的几个公理一起构筑了一个庞大的知识体系.世间事物的简洁之美无出其右.

★费马点:法国著名数学家费尔马曾提出关于三角形的一个有趣问题:在三角形所在平面上,求一点,使该点到三角形三个顶点距离之和最小.人们称这个点为“费马点”.这是一个历史名题,近几年仍有不少文献对此介绍.

★拿破仑三角形:读了这个题目,你一定觉得很奇怪.还有三角形用拿破仑这个名子来命名的呢!拿破仑与我们的几何图形三角形有什么关系?少年朋友知道拿破仑是法国著名的军事家、政治家、大革命的领导者、法兰西共和国的缔造者,但对他任过炮兵军官,对与射击、测量有关的几何等知识素有研究,却知道得就不多了吧!

史料记载,拿破仑攻占意大利之后,把意大利图书馆中有价值的文献,包括欧几里德的名著《几何原本》都送回了巴黎,他还对法国数学家提出了“如何用圆规将圆周四等分”的问题,被法国数学家曼彻罗尼所解决.据说拿破仑在统治法国之前,曾与法国大数学家拉格朗日及拉普拉斯一起讨论过数学问题.拿破仑在数学上的真知灼见竟使他们惊服,以至于他们向拿破仑提出了这样一个要求:“将军,我们最后有个请求,你来给大家上一次几何课吧!”

你大概不会想到拿破仑还是这样一位有相当造诣的数学爱好者吧!不少几何史上有名的题目还和拿破仑有着关联,他曾经研究过的三角形称为“拿破仑三角形”,而且还是一个很有趣的三角形.

在任意△ABC的外侧,分别作等边△ABD、△BCE、△CAF,则AE、AB、CD三线共点,并且AE=BF=CD,如下图.这个命题称为拿破仑定理.

以△ABC的三条边分别向外作等边△ABD、△BCE、△CAF,它们的外接圆⊙、⊙、⊙、的圆心构成的△——外拿破仑的三角形.⊙、⊙、⊙三圆共点,外拿破仑三角形是一个等边三角形,如下图.△ABC的三条边分别向△ABC的内侧作等边△ABD、△BCE、△CAF,它们的外接圆⊙、⊙、⊙的圆心构成的△——内拿破仑三角形⊙、⊙、⊙三圆共点,内拿破仑三角形也是一个等边三角形.如下图.由于外拿破仑三角形和内拿破仑三角形都是正三角形,这两个三角形还具有相同的中心.少年朋友,你是否惊讶拿破仑是一位军事家、政治家,同时还是一位受异书籍、热爱知识的数学家呢?拿破仑定理、拿破仑三角

形及其性质是否更让你非常惊讶、有趣呢?

★欧拉圆:三角形三边的中点,三高的垂足和三个欧拉点〔连结三角形各顶点与垂心所得三线段的中点〕九点共圆〔通常称这个圆为九点圆〔nine-point circle〕,或欧拉圆,费尔巴哈圆.

九点圆是几何学史上的一个著名问题,最早提出九点圆的是英国的培亚敏.俾几〔Benjamin Beven〕,问题发表在1804年的一本英国杂志上.第一个完全证明此定理的是法国数学家彭赛列〔1788-1867〕.也有说是1820-1821年间由法国数学家热而工〔1771-1859〕与彭赛列首先发表的.一位高中教师费尔巴哈〔1800-1834〕也曾研究了九点圆,他的证明发表在1822年的《直边三角形的一些特殊点的性质》一文里,文中费尔巴哈还获得了九点圆的一些重要性质〔如下列的性质3〕,故有人称九点圆为费尔巴哈圆.

九点圆具有许多有趣的性质,例如:

1.三角形的九点圆的半径是三角形的外接圆半径之半;

2.九点圆的圆心在欧拉线上,且恰为垂心与外心连线的中点;

3.三角形的九点圆与三角形的内切圆,三个旁切圆均相切〔费尔巴哈定理〕.

初中数学必背几何定理及公式

初中数学必背几何定理及公式 1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理三角形两边的和大于第三边 16 推论三角形两边的差小于第三边 17 三角形内角和定理三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形 36 推论2 有一个角等于60°的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42 定理1 关于某条直线对称的两个图形是全等形

初中几何定理大全之欧阳歌谷创编

初中几何概念、定理 欧阳歌谷(2021.02.01) 平面几何 1.两点之间的所有连线中,线段最短。 2.两点之间线段的长度叫做这两点之间的距离。 3.经过两点有一条直线,并且只有一条直线。 4.将一个角分成相等的两部分的射线叫做这个角的角平分线。 5.如果两个角的和是一个直角,这两个角叫做互为余角。简称 互余,其中的一个角叫做另一个角的余角。 6.如果两个角的和是一个平角,这两个角叫做互为补角。简称 互补,其中的一个角叫做另一个角的补角。 7.同角(或等角)的余角相等。 8.同角(或等角)的补角相等。 9.对顶角相等。 10.在同一平面内,不相交的两条直线叫做平行线。 11.经过直线外一点,有且只有一条直线与已知直线平行。

12.如果两条直线都与第三条直线平行,那么这两条直线相互 平行。 13.如果两条直线相交成直角,那么这两条直线互相垂直。互 相垂直的两条直线的交点叫做垂足。 14.当两条直线互相处置时,其中一条直线叫做另一条直线的 垂线。 15.经过一点有且只有一条直线与已知直线垂直。 16.直线外一点到直线上各点连接的所有线段中,垂线段最 短。 17.直线外一点到这条直线的垂线段的长度,叫做点到直线的 距离。 18.同位角相等,两直线平行。 19.内错角相等,两直线平行。 20.同旁内角互补,两直线平行。 21.两直线平行,同位角相等。 22.两直线平行,内错角相等。 23.两直线平行,同旁内角互补。 24.在平面内,将一个图形沿着某个方向移动一定的距离,这 样的图形运动叫做图形的平移。平移不改变图形的形状、大小。 25.如果两条直线互相平行,那么其中一条直线上任意两点到 另一直线的距离相等,这个距离称为平行线之间的距离。

专题平面几何之圆的性质问题

备考2020中考数学高频考点剖析 平面几何之圆的性质问题 (1)垂径典例相关问题; (2)圆心角相关问题; (3)圆周角相关问题. 考点剖析 例1(2018·湖北荆州·3分)如图,平面直角坐标系中,⊙P经过三点A(8,0),O(0,0),B (0,6),点D是⊙P上的一动点.当点D到弦OB的距离最大时,tan∠BOD的值是() A.2 B.3 C.4 D.5 【解答】解:连接AB,过点P作PE⊥BO,并延长EP交⊙P于点D,此时点D到弦OB的距离最大,∵A(8,0),B(0,6), ∴AO=8,BO=6, ∵∠BOA=90°, ∴AB==10,则⊙P的半径为5, ∵PE⊥BO, ∴BE=EO=3, ∴PE==4, ∴ED=9, ∴tan∠BOD==3. 故选:B. 例2(2018?乐山?3分)《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最

高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆形木材的直径是多少?” 如图所示,请根据所学知识计算:圆形木材的直径AC是() A.13寸B.20寸C.26寸D.28寸 解:设⊙O的半径为r. 在Rt△ADO中,AD=5,OD=r﹣1,OA=r,则有r2=52+(r﹣1)2,解得r=13,∴⊙O的直径为26寸.故选C. 例3(2018·四川自贡·4分)如图,若△ABC内接于半径为R的⊙O,且∠A=60°,连接OB、OC,则边BC的长为() A. B. C. D. 【分析】延长BO交圆于D,连接CD,则∠BCD=90°,∠D=∠A=60°;又BD=2R,根据锐角三角函数的定义得BC=R. 【解答】解:延长BO交⊙O于D,连接CD, 则∠BCD=90°,∠D=∠A=60°, ∴∠CBD=30°, ∵BD=2R, ∴DC=R, ∴BC=R, 故选:D.

初中数学所有几何证明定理

初中数学所有几何证明定理 证明题的思路 很多几何证明题的思路往往是填加辅助线,分析已知、求证与图形,探索证明。对于证明题,有三种思考方式: (1)正向思维。对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。 (2)逆向思维。顾名思义,就是从相反的方向思考问题。在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显。 同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。 例如: 可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要证出某两个三角形相等即可;要证三角形全等,结合所给的条件,看还缺少什么条件需要证明,证明这个条件又需要怎样做辅助线,这样思考下去……这样我们就找到了解题的思路,然后把过程正着写出来就可以了。 (3)正逆结合。对于从结论很难分析出思路的题目,可以结合结论和已知条件认真的分析。 初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知条件中寻找思路,比如给我们三角形某边中点,我们就要想到是否要连出中位线,或者是否要用到中点倍长法。给我们梯形,我们就要想到是否要做高,或平移腰,或平移对角线,或补形等等。正逆结合,战无不胜。 证明题要用到哪些原理?

要掌握初中数学几何证明题技巧,熟练运用和记忆如下原理是关键。 下面归类一下,多做练习,熟能生巧,遇到几何证明题能想到采用哪一类型原理来解决问题。 一、证明两线段相等 1.两全等三角形中对应边相等。 2.同一三角形中等角对等边。 3.等腰三角形顶角的平分线或底边的高平分底边。 4.平行四边形的对边或对角线被交点分成的两段相等。 5.直角三角形斜边的中点到三顶点距离相等。 6.线段垂直平分线上任意一点到线段两段距离相等。 7.角平分线上任一点到角的两边距离相等。 8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。 9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。 10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。 11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。 12.两圆的内(外)公切线的长相等。 13.等于同一线段的两条线段相等。 二、证明两个角相等 1.两全等三角形的对应角相等。 2.同一三角形中等边对等角。 3.等腰三角形中,底边上的中线(或高)平分顶角。

新人教版初中数学中考几何的知识点大全

初中中考数学几何知识点大全 直线:没有端点,没有长度 射线:一个端点,另一端无限延长,没有长度 线段:两个端点,有长度 一、图形的认知 1、余角;补角:邻补角: 二、平行线知识点 1、对顶角性质:对顶角相等。注意:对顶角的判断 2、垂线、垂足。过一点有条直线与已知直线垂直 3、垂线段;垂线段长度==点到直线的距离 4、过直线外一点只有一条直线与已知直线平行 5、直线的两种关系:平行与相交(垂直是相交的一种特殊情况) 6、如果a∥b,a∥c,则b∥c 7、同位角、内错角、同旁内角的定义。注意从文字角度去解读。 8、两直线平行====同位角相等、内错角相等、同旁内角互补 三、命题、定理 1、真命题;假命题。 4、定理:经过推理证实的,这样得到的真命题叫做定理。 四、平移 1、平移性质:平移之后的图形与原图形相比,对应边相等,对应角相等 五、平面直角坐标系知识点 1、平面直角坐标系: 2、象限:坐标轴上的点不属于任何象限 横坐标上的点坐标:(x,0)纵坐标上的点坐标:(0,y) 3、距离问题:点(x,y)距x轴的距离为y的绝对值,距y轴的距离为x的绝对值 坐标轴上两点间距离:点A(x1,0)点B(x2,0),则AB距离为x1-x2的绝对值 点A(0,y1)点B(0,y2),则AB距离为y1-y2的绝对值 4、角平分线:x=y x+y=0 5、若直线l与x轴平行,则直线l上的点纵坐标值相等 若直线l与y轴平行,则直线l上的点横坐标值相等 6、对称问题: 7、距离问题(选讲):坐标系上点(x,y)距原点距离为 坐标系中任意两点(x1,y1),(x2,y2)之间距离为 8、中点坐标(选讲):点A(x1,0)点B(x2,0),则AB中点坐标为 六、与三角形有关的线段 1、三角形分类:不等边;等腰;等边三角形

平面几何60条著名定理

1、勾股定理(毕达哥拉斯定理) 2、射影定理(欧几里得定理) 3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分 4、四边形两边中心的连线的两条对角线中心的连线交于一点 5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。 6、三角形各边的垂直一平分线交于一点。 7、三角形的三条高线交于一点 8、设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,设垂足为L,则AH=2OL 9、三角形的外心,垂心,重心在同一条直线(欧拉线)上。 10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上, 11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上 12、库立奇*大上定理:(圆内接四边形的九点圆) 圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。 13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式:r=(s-a)(s-b)(s-c)s,s为三角形周长的一半 14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点 15、中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有AB2+AC2=2(AP2+BP2) 16、斯图尔特定理:P将三角形ABC的边BC内分成m:n,则有n×AB2+m×AC2=(m+n)AP2+mnm+nBC2 17、波罗摩及多定理:圆内接四边形ABCD的对角线互相垂直时,连接AB中点M和对角线交点E的直线垂直于CD 18、阿波罗尼斯定理:到两定点A、B的距离之比为定比m:n(值不为1)的点P,位于将线段AB分成m:n的内分点C和外分点D为直径两端点的定圆周上 19、托勒密定理:设四边形ABCD内接于圆,则有AB×CD+AD×BC=AC×BD 20、以任意三角形ABC的边BC、CA、AB为底边,分别向外作底角都是30度的等腰△BDC、△CEA、△AFB,则△DEF是正三角形,

苏科版教材初中数学几何定理定义公式大全

苏科版初中数学几何定理定义公式大全 班级学号姓名以下标注真命题的条目,解答题时要先证明,再使用。未标注的定理、定义、公式可以直接使用。 第一部分相交线、平行线 1、直线公理:经过两点有且只有一条直线(两点确定一直线)。 2 、线段公理:两点之间线段最短。 3、同角或等角的补角相等,同角或等角的余角相等。 4、对顶角相等。 5、垂线的性质: ①经过一点 ..有且只有一条直线和已知直线垂直。 ②直线外一点与直线上各点连接的所有线段中,垂线段最短。(简写为:垂线段最短。) 6、平行线的定义:在同一平面内不相交的两条直线叫作平行线。 7、在同一平面中两条直线的位置关系有两种,相交和平行。 在空间几何中两条直线的位置关系有三种,相交、平行和异面。 8、平行公理:经过直线外一点 .....,有且只有一条直线与这条直线平行。 7、平行公理的推论:如果两条直线都和第三条直线平行,这两条直线也互相平行。 9、平行线的判定: ①同位角相等,两直线平行。 ②内错角相等,两直线平行。 ③同旁内角互补,两直线平行。 10、平行线的性质: ①两直线平行,同位角相等。 ②两直线平行,内错角相等。 ③两直线平行,同旁内角互补。 10、三视图(略) 第二部分三角形 1、三角形的定义:由不在同一直线上的三条线段首尾顺次相接组成的图形,叫作三角形。 2、三角形的中线:连接三角形的一个顶点和对边中点的线段叫作三角形的中线。 3、三角形的角平分线:三角形的一个内角的平分线与对边相交,顶点和交点之间的线段叫作三角形的角平分线。

4、三角形的高:经过三角形的一个顶点向对边所在直线作垂线,顶点和垂足之间的线段叫作三角形的高。 5、三角形三边关系定理:三角形两边的和大于第三边,三角形两边的差小于第三边。 6、三角形内角和定理:三角形三个内角的和等于180° 7、推论:三角形的一个外角等于和它不相邻的两个内角的和。 8、真命题:三角形的一个外角大于任何一个和它不相邻的内角。 9、多边形的内角和公式:N=(n-2)180° 10、任意多边的外角和等于360°。 11、连接多边形的不相邻顶点的直线叫作对角线。从n 边形(n ≥3)的一个顶点可以引(n-3)条对角线,n 边形(n ≥3)一共有)3(2 1 n n 条对角线。 12、能够完全重合的两个图形叫作全等形。 13、能够完全重合的两个三角形叫作全等三角形。全等三角形的对应边、对应角相等 。 14、全等三角形的判定: ①边角边(SAS):有两边和它们的夹角对应相等的两个三角形全等。 ②角边角( ASA):有两角和它们的夹边对应相等的两个三角形全等 。 ③角角边(AAS) :有两角和其中一角的对边对应相等的两个三角形全等。 ④边边边(SSS) :有三边对应相等的两个三角形全等。 ⑤斜边、直角边(HL) :有斜边和一条直角边对应相等的两个直角三角形全等 第三部分 轴对称图形 1、轴对称:如果把一个图形沿着一条直线折叠后能够与另一个图形完全重合,那么这两个图形关于直线成轴对称。 2、轴对称图形:如果把一个图形沿着一条直线折叠后,直线两旁的部分能够完全重合,那么这个图形是轴对称图形。 3、轴对称的性质: ①关于某条直线对称的两个图形是全等形。 ②如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线。 ③两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。 ④真命题:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。

初中数学几何定理汇总

几何是初中数学中重要的一部分内容,考试时一般会出现在大题里。学习几何,需要证明,这时定理就很重要! 点的定理: 1、过两点有且只有一条直线 2、两点之间线段最短 角的定理: 1、同角或等角的补角相等 2、同角或等角的余角相等 直线定理: 1、过一点有且只有一条直线和已知直线垂直 2、直线外一点与直线上各点连接的所有线段中,垂线段最短 平行定理:经过直线外一点,有且只有一条直线与这条直线平行 推论:如果两条直线都和第三条直线平行,这两条直线也互相平行 证明两直线平行定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行 两直线平行推论:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补 定理:三角形两边的和大于第三边

推论:三角形两边的差小于第三边 三角形内角和定理:三角形三个内角的和等于180° 定理:全等三角形的对应边、对应角相等 边角边定理(SAS):有两边和它们的夹角对应相等的两个三角形全等 角边角定理(ASA):有两角和它们的夹边对应相等的两个三角形全等 推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等 边边边定理(SSS):有三边对应相等的两个三角形全等 斜边、直角边定理(HL):有斜边和一条直角边对应相等的两个直角三角形全等 定理1:在角的平分线上的点到这个角的两边的距离相等 定理2:到一个角的两边的距离相同的点,在这个角的平分线上角的平分线是到角的两边距离相等的所有点的集合 等腰三角形的性质定理:等腰三角形的两个底角相等(即等边对等角) 推论1: 等腰三角形顶角的平分线平分底边并且垂直于底边 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

圆的基本概念与性质

圆的有关概念和性质 一 本讲学习目标 1、理解圆的概念及性质,能利用圆的概念和性质解决有关问题。 2、理解圆周角和圆心角的关系;能运用几何知识解决与圆周角有关的问题。 3、了解垂径定理的条件和结论,能用垂径定理解决有关问题。 二 重点难点考点分析 1、运用性质解决有关问题 2、圆周角的转换和计算问题 3、垂径定理在生活中的运用及其计算 三 知识框架 圆的定义 确定一个圆 不在同一直线上的三点点与圆的位置关系 圆的性质 圆周角定理及其推论 垂径定理及其推论距关系定理及其推论圆心角、弦、弧、弦心对称性 四 概念解析 1、 圆的定义,有两种方式: 错误!未找到引用源。在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,一个端点A 随之旋转说形成的图形叫做圆。固定端点O 叫做圆心,以O 为圆心的圆记作O ,线段OA 叫做半径; 错误!未找到引用源。圆是到定点的距离等于定长的点的集合。注意:圆心确定圆的位置,半径决定圆的大小。 2、 与圆有关的概念: 错误!未找到引用源。弦:连接圆上任意两点的线段叫做弦;如图1所示 线段AB ,BC ,AC 都是弦; 错误!未找到引用源。直径:经过圆心的弦叫做直径;如AC 是O 的直径,直径是圆中最长的弦; 错误!未找到引用源。弧:圆上任意两点之间的部分叫做圆弧,简 称弧,如曲线BC,BAC 都是O 中的弧,分别记作BC 和BAC ; 错误!未找到引用源。半圆:圆中任意一条直径的两个端点分圆成

两条弧,每条弧都叫做半圆,如AC 是半圆; 错误!未找到引用源。劣弧和优弧:像BC 这样小于半圆周的圆弧叫做劣弧,像BAC 这样大于 半圆周的圆弧叫做优弧; 错误!未找到引用源。同心圆:圆心相同,半径不等的圆叫做同心圆; 错误!未找到引用源。弓形:由弦及其说对的弧所组成的图形叫做弓形; 错误!未找到引用源。等圆和等弧:能够重合的两个圆叫做等圆,在同圆或等圆中,能够重合的弧叫做等弧; 错误!未找到引用源。圆心角:定点在圆心的角叫做圆心角如图1中的∠AOB,∠BOC 是圆心角,圆心角的度数:圆心角的读书等于它所对弧的度数;∠ 错误!未找到引用源。 圆周角:定点在圆上,两边都和圆相交的角叫做圆周角;如图1中的∠BAC,∠ACB 都是圆周角。 3、 圆的有关性质 ①圆的对称性 圆是轴对称图形,经过圆心的直线都是它的对称轴,有无数条。圆是中心对称图形,圆心是对称中心,优势旋转对称图形,即旋转任意角度和自身重合。 错误!未找到引用源。垂径定理 A. 垂直于弦的直径平分这条弦,且评分弦所对的两条弧; B. 平分弦(不是直径)的直径垂直于弦,并且评分弦所对的两条弧。如图2 所示。 注意 (1)直径CD ,(2)CD ⊥AB,(3)AM=MB,(4)BD AC =BC ,(5)AD =BD .若 上述5个条件中有2个成立,则另外3个业成立。因此,垂径定理也称五二三定理,即推二知三。(以(1),(3)作条件时,应限制AB 不能为直径)。 错误!未找到引用源。弧,弦,圆心角之间的关系 A. 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等; B. 同圆或等圆中,两个圆心角,两条弧,两条弦中有一组量相等,他们所对应的其余各组量也相等; 错误!未找到引用源。圆周角定理及推论 A.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半; B.圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90的圆周角所对的弦是直径。 五 例题讲解 例1. 如图所示,C 是⊙O 上一点,O 是圆心,若80AOB =∠,求B A ∠+∠ 的值. 例1题图 A B C O

初中数学几何定理

初中数学几何定理 摘要:切线的性质定理①经过圆心垂直于切线的直线必经过切点。②圆的切线垂直于经过切点的半径。③经过切点垂直于切线的直线必经过圆心 初中数学几何定理 1。同角(或等角)的余角相等。 3。对顶角相等。 5。三角形的一个外角等于和它不相邻的两个内角之和。 6。在同一平面内垂直于同一条直线的两条直线是平行线。 7。同位角相等,两直线平行。 12。等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合。 16。直角三角形中,斜边上的中线等于斜边的一半。 19。在角平分线上的点到这个角的两边距离相等。及其逆定理。 21。夹在两条平行线间的平行线段相等。夹在两条平行线间的垂线段相等。 22。一组对边平行且相等、或两组对边分别相等、或对角线互相平分的四边形是平行四边形。 24。有三个角是直角的四边形、对角线相等的平行四边形是矩形。 25。菱形性质:四条边相等、对角线互相垂直,并且每一条

对角线平分一组对角。 27。正方形的四个角都是直角,四条边相等。两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角。 34。在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两个弦心距中有一对相等,那么它们所对应的其余各对量都相等。 36。垂直于弦的直径平分这条弦,并且平分弦所对弧。平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。 43。直角三角形被斜边上的高线分成的两个直角三角形和原三角形相似。 46。相似三角形对应高线的比,对应中线的比和对应角平分线的比都等于相似比。相似三角形面积的比等于相似比的平方。 37.圆内接四边形的对角互补,并且任何一个外角等于它的内对角。 47。切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线。 48。切线的性质定理①经过圆心垂直于切线的直线必经过切点。②圆的切线垂直于经过切点的半径。③经过切点垂直于切线的直线必经过圆心。 49。切线长定理从圆外一点引圆的两条切线,它们的切线长相等。连结圆外一点和圆心的直线,平分从这点向圆所作的两条切线所夹的角。 50。弦切角定理弦切角的度数等于它所夹的弧的度数的一

初中数学几何公式定理大全

初中数学几何公式、定理大全 一、有关“线”的公式定理 1、过两点有且只有一条直线 2、两点之间线段最短 3、同角或等角的补角相等 4、同角或等角的余角相等 5、过一点有且只有一条直线和已知直线垂直 6、直线外一点与直线上各点连接的所有线段中,垂线段最短 7、平行公理经过直线外一点,有且只有一条直线与这条直线平行 8、如果两条直线都和第三条直线平行,这两条直线也互相平行 二、有关“角”的公式定理 1、同位角相等,两直线平行 2、内错角相等,两直线平行 3、同旁内角互补,两直线平行 4、两直线平行,同位角相等 5、两直线平行,内错角相等

6、两直线平行,同旁内角互补 三、有关“三角形”的公式定理 1、定理三角形两边的和大于第三边 2、推论三角形两边的差小于第三边 3、三角形内角和定理三角形三个内角的和等于180° 4、推论1 直角三角形的两个锐角互余 5、推论2 三角形的一个外角等于和它不相邻的两个内角的和 6、推论3 三角形的一个外角大于任何一个和它不相邻的内角 7、全等三角形的对应边、对应角相等 8、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等 9、角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等. 10、推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 11、边边边公理(SSS) 有三边对应相等的两个三角形全等 12、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等

13、定理1 在角的平分线上的点到这个角的两边的距离相等 14、定理2 到一个角的两边的距离相同的点,在这个角的平分线上 15、角的平分线是到角的两边距离相等的所有点的集合 四、有关“等腰三角形”的公式定理 1、等腰三角形的性质定理等腰三角形的两个底角相等 2、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 3、等腰三角形的顶角平分线、底边上的中线和高互相重合 4、推论3 等边三角形的各角都相等,并且每一个角都等于60° 5、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 6、推论1 三个角都相等的三角形是等边三角形 7、推论 2 有一个角等于60°的等腰三角形是等边三角形 8、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 9、直角三角形斜边上的中线等于斜边上的一半 10、定理线段垂直平分线上的点和这条线段两个端点的距离相等

平面几何基础知识教程(圆)解剖

平面几何基础知识教程(圆) 一、几个重要定义 外心:三角形三边中垂线恰好交于一点,此点称为外心 内心:三角形三内角平分线恰好交于一点,此点称为内心 垂心:三角形三边上的高所在直线恰好交于一点,此点称为垂心 凸四边形:四边形的所有对角线都在四边形ABCD内部的四边形称为凸四边形折四边形:有一双对边相交的四边形叫做折四边形(如下图) (折四边形) 二、圆内重要定理: 1.四点共圆 定义:若四边形ABCD的四点同时共于一圆上,则称A,B,C,D四点共圆基本性质:若凸四边形ABCD是圆内接四边形,则其对角互补 证明:略 判定方法: 1.定义法:若存在一点O使OA=OB=OC=OD,则A,B,C,D四点共圆2.定理1:若凸四边形ABCD的对角互补,则此凸四边形ABCD有一外接圆证明:略 特别地,当凸四边形ABCD中有一双对角都是90度时,此四边形有一外接圆3.视角定理:若折四边形ABCD中,∠=∠ ADB ACB,则A,B,C,D四点共圆

证明:如上图,连CD,AB,设AC与BD交于点P 因为∠=∠ ADB ACB,所以 180 = ∠=∠ ∠=∠ ∠+∠=∠+∠+∠= ∠+∠+∠= ΔCPB∽ΔDPA 所以有 再注意到 因此Δ∽Δ 因此 由此 (ΔABD的内角和) 因此A,B,C,D四点共圆 PC PB PD PA CPD BPA CPD BPA PCD PBA BCD BAD BCA PCD BAD BDA PBA BAD 特别地,当∠=∠ ADB ACB=90时,四边形ABCD有一外接圆 2.圆幂定理: 圆幂定理是圆的相交弦定理、切割线定理、割线定理、切线长定理的统一形式。相交弦定理:P是圆内任一点,过P作圆的两弦AB,CD,则PA PB PC PD ?=? 证明:

初中八年级数学几何定理符号语言

初中数学“图形与几何”内容 在中考中,几何解答题、几何证明题是热点内容,在解答过程中经常要用到定义、定理,而具体的过程需要用到符号语言表示,因此学生必须熟练掌握每个定理的几何表示法,下面就把初中阶段八年级涉及的所有几何定理的符号语言归纳出来:

初中数学“图形与几何”内容 八年级上册 20、全等三角形的性质:全等三角形的对应边、对应角相等。 F E D A B C 21、全等三角形的判定方法: (1)边边边:三边对应相等的两个三角形全等。(SSS ) 几何语言:如图所示 ∵AB=DE ,BC=EF ,AC=DF ∴△ABC ≌△DEF (2)边角边:两边和它们的夹角对应相等的两个三角形全等。(SAS ) 几何语言:如图所示 ∵AB=DE ,∠A=∠D ,AC=DF ∴△ABC ≌△DEF (3)角边角:两角和它们的夹边对应相等的两个三角形全等。(ASA ) 几何语言:如图所示 ∵∠A=∠D ,AB=DE ,∠B=∠E ∴△ABC ≌△DEF (4)角角边:两角和其中一个角的对边对应相等的两个三角形全等。(AAS ) 几何语言:如图所示 ∵∠A=∠D ,∠B=∠E ,BC=EF ∴△ABC ≌△DEF (5)斜边、直角边:斜边和一条直角边对应相等的两个直角三角形全等。(H L ) 22、角平分线的性质:角的平分线上的点到角的两边的距离相等。 23、推论:角的内部到角的两边的距离相等的点在角的平分线上。 24、轴对称的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点连线的垂直平分线。 E F P A B C D

25 、线段垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等。 26、推论:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。 27、轴对称: (1)由一个平面图形可以得到它关于一条直线成轴对称的图形,这个图形与原图形的形状、大小完全相同; (2)新图形式的每一点,都是原图形上的某一点关于直线的对称点; (3)连接任意一对对应点的线段被对称轴垂直平分。 28、用坐标表示轴对称: 点(x ,y)关于x 轴对称的点的坐标为(x ,-y); 点(x ,y)关于y 轴对称的点的坐标为(- x ,y)。 29、等腰三角形的性质: (1)等腰三角形的两个底角相等。(等边对等角) 几何语言: 如图所示,在△ABC 中 ∵AB =AC ∴∠B =∠C (等边对等角) (2)等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。 30、等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等。(等角对等边) 几何语言: 如图所示,在△ABC 中 ∵∠B =∠C ∴AB =AC (等角对等边) N M A B C D C C C

初中数学几何定理大全

初中数学公理和定理 一、公理(不需证明) 1、两直线被第三条直线所截,如果同位角相等,那么这两条 直线平行; 2、两条平行线被第三条直线所截,同位角相等; 3、两边和夹角对应相等的两个三角形全等; (SAS) 4、角及其夹边对应相等的两个三角形全等; (ASA) 5、三边对应相等的两个三角形全等; (SSS) 6、全等三角形的对应边相等,对应角相等. 7、线段公理:两点之间,线段最短。 8、直线公理:过两点有且只有一条直线。 9、平行公理:过直线外一点有且只有一条直线与已知直线 平行 10、垂直性质:经过直线外或直线上一点,有且只有一条 直线与已知直线垂直 以下对初中阶段所学的公理、定理进行分类: 一、直线与角 1、两点之间,线段最短。 2、经过两点有一条直线,并且只有一条直线。 3、同角或等角的补角相等,同角或等角的余角相等。 4、对顶角相等 二、平行与垂直 5、经过直线外或直线上一点,有且只有一条直线与已知直线垂直。 6、经过已知直线外一点,有且只有一条直线与已知直线平行。 7、连接直线外一点与直线上各点的所有线段中,垂线段最短。 8、夹在两平行线间的平行线段相等 9、平行线的判定: (1)同位角相等,两直线平行; (2)内错角相等,两直线平行; (3)同旁内角互补,两直线平行; (4)垂直于同一条直线的两条的直线互相平行. (5)如果两条直线都和第三条直线平行,那么这两条直线也平行 10、平行线的性质: (1)两直线平行,同位角相等。 (2)两直线平行,内错角相等。 (3)两直线平行,同旁内角互补。 三、角平分线、垂直平分线、图形的变化(轴对称、平称、旋转) 11、角平分线的性质:角平分线上的点到这个角的两边的距离相等. 12、角平分线的判定:到一个角的两边距离相等的点在这个角的平分线上. 13、线段垂直平分线的性质:线段的垂直平分线上的点到这条线段的两个端点的距离相等. 14、线段垂直平分线的判定:到一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上. 15、轴对称的性质: (1)如果图形关于某一直线对称,那么连结对应点的线段被对称轴垂直平分. (2)对应线段相等、对应角相等。 16、平移:经过平移,图形上的每个点都沿着相同方向移动了相同的距离,平移后,新图形和原图形的形状和大小都没有发现改变,即它们是全等图形。即对应线段平行且相等,对应角相等,对应点所连的线段平行且相等 17、旋转对称: (1)图形中每一点都绕着旋转中心旋转了同样大小的角度(2)对应点到旋转中心的距离相等; (3)对应线段相等、对应角相等 18、中心对称: (1)具有旋转对称的所有性质: (2)中心对称图形上的每一对对应点所连成的线段都被对 称中心平分 四、三角形: (一)一般性质 19、三角形内角和定理:三角形的内角和等于180° 20、三角形外角的性质: ①三角形的一个外角等于与它不相邻的两个内角的和; ②三角形的一个外角大于任何一个与它不相邻的内角; ③三角形的外角和等于360° 21、三边关系: (1)两边之和大于第三边; (2)两边之差小于第三边 22、三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半. 23、三角形的三边的垂直平分线交于一点(外心),这点 到三个顶点的距离(外接圆半径)相等。 24、三角形的三条角平分线交于一点(内心),这点到三 边的距离(内切圆半径)相等。 (二)特殊性质: 25、等腰三角形、等边三角形 (1)等腰三角形的两个底角相等.(简写成“等边对等角”)(2)如果一个三角形有两个角相等,那么这两个角所对的 边也相等.(简写成“等角对等边”) (3)“三线合一”定理:等腰三角形的顶角平分线、底边 上的中线和底边上的高互相重合 (4)等边三角形的三个内角都相等,并且每一个内角都等 于60°. (5)三个角都相等的三角形是等边三角形。 (6)有一个角是60°的等腰三角形是等边三角形 26、直角三角形: (1)直角三角形的两个锐角互余; (2)勾股定理:直角三角形两直角边的平方和等于斜边的 平方; (3)勾股定理逆定理:如果一个三角形的一条边的平方等于另外两条边的平方和,那么这个三角形是直角三角形. (4)直角三角形斜边上的中线等于斜边的一半. (5)在直角三角形中,如果一个锐角等于30°,那么它所 对的直角边等于斜边的一半. (6)三角形一边的中线等于这边的一半,这个三角形是直 角三角形。 五、四边形 27、多边形中的有关公理、定理: (1)四边形的内角和为360° (2)N边形的内角和:( n-2)×180°. (3)任意多边形的外角和都为360° 28、平行四边形的性质: (1)平行四边形的对边平行且相等; (2)平行四边形的对角相等; (3)平行四边形的对角线互相平分。

专题平面几何的四个重要定理

专题平面几何的四个重 要定理 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

竞赛专题讲座06 -平面几何四个重要定理 四个重要定理: 梅涅劳斯(Menelaus)定理(梅氏线) △ABC的三边BC、CA、AB或其延长线上有点P、Q、R,则P、 Q、R共线的充要条件是。 塞瓦(Ceva)定理(塞瓦点) △ABC的三边BC、CA、AB上有点P、Q、R,则AP、BQ、CR共点 的充要条件是。 托勒密(Ptolemy)定理 四边形的两对边乘积之和等于其对角线乘积的充要条件是该 四边形内接于一圆。 西姆松(Simson)定理(西姆松线) 从一点向三角形的三边所引垂线的垂足共线的充要条件是 该点落在三角形的外接圆上。 例题: 1.设AD是△ABC的边BC上的中线,直线CF交AD于F。求 证:。

【分析】CEF截△ABD→(梅氏定理) 【评注】也可以添加辅助线证明:过A、B、D之一作CF的平行线。 2.过△ABC的重心G的直线分别交AB、AC于E、F, 交CB于D。 求证:。 【分析】连结并延长AG交BC于M,则M为BC的 中点。 DEG截△ABM→(梅氏定理) DGF截△ACM→(梅氏定理) ∴===1 【评注】梅氏定理 3. D、E、F分别在△ABC的BC、CA、AB边上, ,AD、BE、CF交成△LMN。 求S△LMN。 【分析】 【评注】梅氏定理 4.以△ABC各边为底边向外作相似的 等腰△BCE、△CAF、△ABG。求证:AE、 BF、CG相交于一点。

【分析】 【评注】塞瓦定理 5.已知△ABC中,∠B=2∠C。求证:AC2=AB2+AB·BC。 【分析】过A作BC的平行线交△ABC的外接圆于D,连结BD。则 CD=DA=AB,AC=BD。 由托勒密定理, AC·BD=AD·BC+CD·AB。 【评注】托勒密定理 6.已知正七边形A 1A2A3A4A5A6A7。 求证:。(第21届全苏数学竞赛) 【分析】 【评注】托勒密定理 7.△ABC的BC边上的高AD的延长线交 外接圆于P,作PE⊥AB于E,延长ED交 AC延长线于F。 求证:BC·EF=BF·CE+BE·CF。 【分析】 【评注】西姆松定理(西姆松线) 8.正六边形ABCDEF的对角线AC、CE分别被内分点M、N分成的 比为AM:AC=CN:CE=k,且B、M、N共 线。求k。(23-IMO-5) 【分析】 【评注】面积法 9. O为△ABC内一点,分别以d a、d b、d c表示O到BC、CA、AB的距离,以R a、 R b、R c表示O到A、B、C的距离。

初中数学几何公式大全

初中数学几何公式 1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 错角相等,两直线平行 11 同旁角互补,两直线平行 12 两直线平行,同位角相等 13 两直线平行,错角相等 14 两直线平行,同旁角互补 15 定理三角形两边的和大于第三边 16 推论三角形两边的差小于第三边 17 三角形角和定理三角形三个角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的角 21 全等三角形的对应边、对应角相等 22 边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形 36 推论 2 有一个角等于60°的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

第十九讲平面几何中的几个著名定理

第十九讲平面几何中的几个著名定理 几何学起源于土地测量,几千年来,人们对几何学进行了深入的研究,现已发展成为一门具有严密的逻辑体系的数学分支.人们从少量的公理出发,经过演绎推理得到不少结论,这些结论一般就称为定理.平面几何中有不少定理,除了教科书中所阐述的一些定理外,还有许多著名的定理,以这些定理为基础,可以推出不少几何事实,得到完美的结论,以至巧妙而简捷地解决不少问题.而这些定理的证明本身,给我们许多有价值的数学思想方法,对开阔眼界、活跃思维都颇为有益.有些定理的证明方法及其引伸出的结论体现了数学的美,使人们感到对这些定理的理解也可以看作是一种享受.下面我们来介绍一些著名的定理. 1.梅内劳斯定理 亚历山大里亚的梅内劳斯(Menelaus,约公元100年,他和斯巴达的Menelaus是两个人)曾著《球面论》,着重讨论球面三角形的几何性质.以他的名子命名的“梅内劳斯定理”现载在初等几何和射影几何的书中,是证明点共线的重要定理. 定理一直线与△ABC的三边AB,BC,CA或延长线分别相交于X,Y,Z,则 证过A,B,C分别作直线XZY的垂线,设垂足分别为Q,P,S,见图3-98.由△AXQ∽△BXP得

同理 将这三式相乘,得 说明(1)如果直线与△ABC的边都不相交,而相交在延长线上,同样可证得上述结论,但一定要有交点,且交点不在顶点上,否则定理的结论中的分母出现零,分子也出现零,这时定理的结论应改为 AX×BY×CZ=XB×YC×ZA, 仍然成立. (2)梅内劳斯定理的逆定理也成立,即“在△ABC 的边AB和AC上分别取点X,Z,在BC的延长线上取点Y,如果 那么X,Y,Z共线”.梅内劳斯定理的逆定理常被用来证明三点共线. 例1 已知△ABC的内角∠B和∠C的平分线分别为BE和CF,∠A的外角平分线与BC的延长线相交于D,求证:D,E,F共线. 证如图3-99有 相乘后得

相关主题
文本预览
相关文档 最新文档