数字图像相关法实验报告
- 格式:doc
- 大小:1.06 MB
- 文档页数:6
实验一图像增强实验一、实验目标:掌握图像增强的算法。
二、实验目的:1. 了解灰度变换增强和空域滤波增强的Matlab实现方法2. 掌握直方图灰度变换方法3. 掌握噪声模拟和图像滤波函数的使用方法三、实验内容:(1)图像的点操作、邻域操作算法。
(2)图像的直方图处理算法。
四、实验设备:1.PIII以上微机; 2.MATLAB6.5;五、实验步骤:(1)读入图像:用matlab函数实现图像读入(可读入Matlab中的标准测试图像)(原始图像)(2)实现图像点操作运算(如gamma校正,对数校正等)(3)实现图像的邻域处理(实现均值滤波,拉普拉斯滤波)(4)实现直方图均衡处理matlab 源程序clear all;clc;f=imread('girl_noise.jpg');figure,imshow(f),title('原始图像');[m,n]=size(f);f0= im2double(f); % 整型转换为double 类f1=f0;std_i=zeros(1,m-2);%灰线处理for i=2:m-1%灰线处理std_i(i-1)=std(f0(i,:));if(std_i(i-1)<0.1)for j=1:mf0(i,j)=(f0(i-1,j)+f0(i+1,j))/2;endendendfigure,imshow(f0),title('滤除灰线后的图像');fz=f0-f1;[r,c]=find(fz~=0);%寻找灰线噪声的位置f2=f0;change=0;count=0;for i=3:m-2%白线处理for j=1:mif(abs(f0(i,j)-f0(i-1,j))>0.2&&abs(f0(i,j)-f0(i+1,j))>0.2) count=count+1;endif(count>n*0.8)count=0;change=1;break;endendif(change==1)for k=1:mf0(i,k)=(f0(i-1,k)+f0(i+1,k))/2;endchange=0;count=0;endendfigure,imshow(f0),title('滤除白线后的图像');fz1=f2-f0;[r1,c1]=find(fz1~=0); %寻找白线噪声的位置fn = medfilt2(f0); %反射对称填充figure, imshow(fn),title('中值滤波后的图像');f0 = im2double(fn); % 整型转换为double 类g =2*f0- imfilter(f0,w4, 'replicate'); % 增强后的图像figure, imshow(g),title('高提升滤波图像(A=2)');图像处理结果六、结果分析从上面结果可以看出,带状噪声处理部分,已经基本将带状噪声去除。
《遥感图像处理A》实验报告专业地理信息系统班级1112学号1120209201姓名杨飞任课教师白俊武苏州科技学院环境科学与工程学院2014年5月实验报告1 ERDAS Viewer的使用实验地点C1机房日期2013-3-12一、实验目的1熟悉软件界面和组成功能模块;2掌握软件主窗口(Viewer)的基本操作;二、实验要求1 打开图层的设置和图层的放大、缩小等基本操作;2 数据叠加显示(混合显示Blend,卷帘显示Swipe,闪烁显示Ficker);3 Link两个图像,进行图像的比较浏览,最后Unlink;4 图像对比度调整;5 光标查询功能(Inquiry Cursor Function);6 量测功能(Measurement Function);7 文件信息操作(Layer Info);8 三维图像操作(Image Drape);9 AOI的使用;10Viewer其他菜单的熟悉(Raster、Vector、Annotation);三、实验成果1)数据叠加显示图混合显示Blend卷帘显示Swipe闪烁显示Flicker(以下所示两种状态不断交替闪烁)2)三维图像操作图3)AOI操作图实验报告2 卫星影像及航空影像的几何校正实验地点C1机房日期2013-3-19 一、目的1掌握卫星影像及航空影像的几何校正方法二、要求1实现资源卫星图像校正;2实现遥感图像仿射变换;三、实验成果1)航空影像正射校正图2)Viewer to Viewer卫星影像采点模式图实验报告3 雷达图像的几何纠正实验地点C1机房日期2013-3-26 一、实验目的1掌握并熟悉Erdas这款软件的使用2实现雷达图像的正射处理与校正二、实验要求1利用OrthoRadar模块,进行SAR图像地理编码2对SAR图像进行正射校正三、实验成果1)地理编码SAR图像2)正射校正SAR图像3)基本雷达图像处理结果图斑点噪声压缩(注:左图为原图,右图为处理图像,下同)边缘增强处理雷达图像增强图像纹理分析实验报告4 空间增强处理与辐射增强处理实验地点C1机房日期2013-4-9一、实验目的1掌握并熟悉Erdas这款软件的使用2实现遥感图像的空间增强处理和辐射增强处理二、实验要求.1掌握空间增强处理和辐射增强处理2用Erdas这个软件完成实验要求的相关操作三、实验成果1)空间增强处理结果图卷积增强非定向边缘增强聚焦分析纹理分析锐化增强(注:左图为原图,可与右锐化增强结果图进行对比)2)辐射增强处理LUT拉伸直方图均衡化直方图匹配亮度反转(注:左图为处理前,右图为亮度反转结果图)去霾处理(注:左图为处理前,右图为去霾处理结果图)降噪处理(注:左图为处理前,右图为降噪处理结果图)去条带处理(注:左图为处理前,右图为去条带处理结果图)实验报告5 傅立叶变换实验地点C1机房日期2013-4-23一、实验目的傅立叶变换是首先把遥感图像从空间域转换到频率域,然后在频率域上对图像进行滤波处理,减少或消除周期性噪声,再把图像从频率域转换到空间域,达到增强图像的目的二、实验要求掌握相关原理,并用软件实现相关操作三、实验成果1)傅立叶变换图傅立叶处理图像(注:左图为原图)傅立叶处理图像逆变换结果图(注:左图为原图)2)周期噪声去除图(注:左图为原图)3)补充:同态滤波。
图像增强实验报告图像增强实验报告引言:图像增强是数字图像处理中的重要技术之一,它可以通过改变图像的亮度、对比度、色彩等参数,使图像更加清晰、细节更加突出。
本实验旨在探究不同图像增强方法对图像质量的影响,并比较它们的效果。
一、实验目的通过实验比较不同的图像增强方法,包括直方图均衡化、拉普拉斯算子增强、灰度变换等,对图像质量的影响,了解各种方法的优缺点,为实际应用提供参考。
二、实验步骤1. 实验准备:准备一组包含不同场景、不同光照条件下的图像样本,以及实验所需的图像处理软件。
2. 直方图均衡化:将图像的直方图进行均衡化,使得图像的像素值分布更加均匀,从而提高图像的对比度和亮度。
3. 拉普拉斯算子增强:使用拉普拉斯算子对图像进行边缘增强,突出图像的细节和纹理。
4. 灰度变换:通过调整图像的灰度级别,改变图像的亮度和对比度,使图像更加清晰明亮。
5. 实验结果分析:对比不同图像增强方法处理后的图像,分析它们在视觉效果上的差异,并根据实验结果评估各种方法的优劣。
三、实验结果与讨论在本次实验中,我们选择了一张室内拍摄的暗淡图像作为样本进行增强处理。
首先,我们对该图像进行了直方图均衡化处理。
结果显示,通过直方图均衡化,图像的亮度和对比度得到了明显的提升,细节也更加清晰可见。
然而,由于直方图均衡化是全局处理,可能会导致图像的局部细节过于突出,从而影响整体视觉效果。
接下来,我们采用了拉普拉斯算子增强方法。
通过对图像进行边缘增强,图像的纹理和细节得到了突出展示。
然而,拉普拉斯算子增强也存在一定的局限性,对于噪声较多的图像,可能会导致边缘增强过程中出现伪影和锯齿现象。
最后,我们尝试了灰度变换方法。
通过调整图像的灰度级别,我们改变了图像的亮度和对比度,使图像的细节更加突出。
与直方图均衡化相比,灰度变换方法更加灵活,可以根据实际需求对图像进行个性化的调整。
综合对比三种图像增强方法的实验结果,我们可以得出以下结论:直方图均衡化适用于对整体亮度和对比度进行提升的场景;拉普拉斯算子增强适用于突出图像的边缘和纹理;灰度变换方法可以根据实际需求对图像进行个性化调整。
实验三图像编码一、实验内容:用Matlab语言、C语言或C++语言编制图像处理软件,对某幅图像进行时域和频域的编码压缩。
二、实验目的和意义:1. 掌握哈夫曼编码、香农-范诺编码、行程编码2.了解图像压缩国际标准三、实验原理与主要框架:3.1实验所用编程环境:Visual C++6.0(简称VC)3.2实验处理的对象:256色的BMP(BIT MAP )格式图像BMP(BIT MAP )位图的文件结构:(如图3.1)图3.1 位图的文件结构具体组成图:单色DIB 有2个表项16色DIB 有16个表项或更少 256色DIB 有256个表项或更少 真彩色DIB 没有调色板每个表项长度为4字节(32位) 像素按照每行每列的顺序排列每一行的字节数必须是4的整数倍biSize biWidth biHeight biPlanes biBitCount biCompression biSizeImagebiXPelsPerMeter biYPelsPerMeter biClrUsedbiClrImportantbfType=”BM ” bfSizebfReserved1 bfReserved2 bfOffBits BITMAPFILEHEADER位图文件头 (只用于BMP 文件)BITMAPINFOHEADER位图信息头Palette 调色板DIB Pixels DIB 图像数据3.3 数字图像基本概念数字图像是连续图像(,)f x y 的一种近似表示,通常用由采样点的值所组成的矩阵来表示:(0,0)(0,1)...(0,1)(1,0)(1,1)...(1,1).........(1,0)(1,1)...(1,1)f f f M f f f M f N f N f N M -⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥----⎣⎦每一个采样单元叫做一个像素(pixel ),上式(2.1)中,M 、N 分别为数字图像在横(行)、纵(列)方向上的像素总数。
计算机图像处理实验报告学院:信息学院班级:姓名:学号:实验内容:数字图像处理1、应用MATLAB语言编写显示一幅灰度图像、二值图像、索引图像及彩色图像的程序,并进行相互之间的转换;(1)、显示一副真彩RGB图像代码:I=imread('mikasa.jpg');>>imshow(I);效果:(2)、RGB转灰度图像代码:graycat=rgb2gray(I);>> subplot(1,2,1);>> subimage(I);>> subplot(1,2,2);>> subimage(graycat);效果:(3)、RGB转索引图像代码:[indcat,map]=rgb2ind(I,0.7);>> subplot(1,2,1);>> subimage(I);>> subplot(1,2,2);>> subimage(indcat,map);效果:(4)、索引图像转RGB代码:I1=ind2rgb(indcat,map);>>subplot(1,2,1);>>subimage(indcat,map);>>subplot(1,2,2);>>subimage(I1);效果:(5)、索引转灰度图像代码:i2gcat=ind2gray(indcat,map);>>subplot(1,2,1);>>subimage(indcat,map);>>subplot(1,2,2);>>subimage(i2gcat);效果:(6)、灰度转索引图像代码:[g2icat,map]=gray2ind(graycat,64);>>subplot(1,2,1);>>subimage(graycat);>>subimage(g2icat,map);效果:(7)、RGB转二值图像代码:r2bwcat=im2bw(I,0.5);>>subplot(1,2,1);>>subimage(I);>>subplot(1,2,2);>>subimage(r2bwcat);效果:(8)灰度转二值图像代码:g2bwcat=im2bw(graycat,0.5); subplot(1,2,1);>>subimage(graycat);>>subplot(1,2,2);>>subimage(g2bwcat);效果:(9)、索引转二值图像代码:>> i2bwcat=im2bw(indcat,map,0.7);>>subimage(indcat,map);>>subplot(1,2,2);>>subimage(i2bwcat);效果:2、应用MATLAB工具箱演示一幅图像的傅里叶变换、离散余弦变换,观察其频谱图。
数字图像处理上机实验报告实验名称:图像的几何变换(象素空间关系)学期:2014/2015上学期班级:电子信息工程1102姓名:陈玮学号:3110209424实验时间:2014.09.29实验一:图像的几何变换(象素空间关系)1 目的①了解MATLAB的基本功能,掌握采用MA TLAB进行图像处理的方法;②了解图像象素空间关系;③掌握基本坐标变换,包括平移,缩放,旋转等;④了解形态变换,掌握特殊的形态变换,包括相似变换,刚体变换,等距变换等2 器材装有MATLAB的PC机一台3 原理双线性内差值法:1.数学原理已知的红色数据点与待插值得到的绿色点假如我们想得到未知函数f在点P= (x,y) 的值,假设我们已知函数f在Q11 = (x1,y1)、Q12 = (x1,y2),Q21 = (x2,y1) 以及Q22 = (x2,y2) 四个点的值。
首先在x方向进行线性插值,得到R1和R2,然后在y方向进行线性插值,得到P.这样就得到所要的结果f(x,y).其中红色点Q11,Q12,Q21,Q22为已知的4个像素点.第一步:X方向的线性插值,插入蓝色第二步:做完X方向的插值后再做Y方向的点R1和R2. 插值,由R1与R2计算P点.x方向上Y方向上插入绿色点P.线性插值的结果与插值的顺序无关。
首先进行y方向的插值,然后进行x方向的插值,所得到的结果是一样的。
但双线性插值插值方法这种方法并不是线性的,首先进行y方向的插值,然后进行x 方向的插值,与首先进行x方向的插值,然后进行y方向的插值,所得到的R1与R2是不一样的。
如果选择一个坐标系统使得的四个已知点坐标分别为(0, 0)、(0, 1)、(1, 0) 和(1, 1),那么插值公式就可以化简为f(x,y)=f(0,0)(1-x)(1-y)+f(0,1)(1-x)y+f(1,1)xy+f(1,0)x(1-y)在x与y方向上,z值成单调性特性的应用中,此种方法可以做外插运算,即可以求解Q1~Q4所构成的正方形以外的点的值。
一.实验目的1.掌握读、写图像的基本方法;2.掌握MATLAB 语言中图像数据与信息的读取方法;3.理解图像灰度变换处理在图像增强的作用;4.掌握绘制灰度直方图的方法,理解灰度直方图的灰度变换及均衡化的方法。
二.实验基本原理1. 灰度变换灰度变换是图像增强的一种重要手段,它常用于改变图象的灰度范围及分布,是图象数字化及图象显示的重要工具。
1) 图像反转灰度级范围为[0, L-1]的图像反转可由下式获得r L s --=12) 对数运算:有时原图的动态范围太大,超出某些显示设备的允许动态范围,如直接使用原图,则一部分细节可能丢失。
解决的方法是对原图进行灰度压缩,如对数变换:s = c log(1 + r ),c 为常数,r ≥ 03) 幂次变换:0,0,≥≥=γγc cr s4) 对比拉伸:在实际应用中,为了突出图像中感兴趣的研究对象,常常要求局部扩展拉伸某一范围的灰度值,或对不同范围的灰度值进行不同的拉伸处理,即分段线性拉伸:其对应的数学表达式为:2. 直方图均衡化灰度直方图的横坐标是灰度级,纵坐标是该灰度级出现的频度,它是图像最基本的统计特征。
依据定义,在离散形式下, 用r k 代表离散灰度级,用p r (r k )代表p r (r ),并且有下式成立:nn r P k k r =)( 1,,2,1,010-=≤≤l k rk式中:n k 为图像中出现r k 级灰度的像素数,n 是图像像素总数,而n k /n 即为频数。
直方图均衡化处理是以累积分布函数变换法为基础的直方图修正法。
假定变换函数为ωωd p r T s r r)()(0⎰==(a) Lena 图像 (b) Lena 图像的直方图图1-1 Lena 图像及直方图当灰度级是离散值时,可用频数近似代替概率值,即1,,1,010)(-=≤≤=l k r nn r p k k k r式中:l 是灰度级的总数目,p r (r k )是取第k 级灰度值的概率,n k 是图像中出现第k 级灰度的次数,n 是图像中像素总数。
1.灰度变换与空间滤波一种成熟的医学技术被用于检测电子显微镜生成的某类图像。
为简化检测任务,技术决定采用数字图像处理技术。
发现了如下问题:(1)明亮且孤立的点是不感兴趣的点;(2)清晰度不够,特别是边缘区域不明显;(3)一些图像的对比度不够;(4)技术人员发现某些关键的信息只在灰度值为I1-I2的范围,因此,技术人员想保留I1-I2区间范围的图像,将其余灰度值显示为黑色。
(5)将处理后的I1-I2范围内的图像,线性扩展到0-255灰度,以适应于液晶显示器的显示。
请结合本章的数字图像处理处理,帮助技术人员解决这些问题。
1.1问题分析及多种方法提出(1)明亮且孤立的点是不够感兴趣的点对于明亮且孤立的点,其应为脉冲且灰度值为255(uint8)噪声,即盐噪声,为此,首先对下载的细胞图像增加盐噪声,再选择不同滤波方式进行滤除。
均值滤波:均值滤波是典型的线性滤波算法,它是指在图像上对目标像素给一个模板,该模板包括了其周围的临近像素(以目标像素为中心的周围8个像素,构成一个滤波模板,即去掉目标像素本身),再用模板中的全体像素的平均值来代替原来像素值。
优点:速度快,实现简单;缺点:均值滤波本身存在着固有的缺陷,即它不能很好地保护图像细节,在图像去噪的同时也破坏了图像的细节部分,从而使图像变得模糊,不能很好地去除噪声点。
其公式如下:使用矩阵表示该滤波器则为:中值滤波:滤除盐噪声首选的方法应为中值滤波,中值滤波法是一种非线性平滑技术,它将每一像素点的灰度值设置为该点某邻域窗口内的所有像素点灰度值的中值。
其过程为:a 、存储像素1,像素2.....像素9的值;b 、对像素值进行排序操作;c 、像素5的值即为数组排序后的中值。
优点:由于中值滤波本身为一种利用统计排序方法进行的非线性滤波方法,故可以滤除在排列矩阵两边分布的脉冲噪声,并较好的保留图像的细节信息。
缺点:当噪声密度较大时,使用中值滤波后,仍然会有较多的噪声点出现。
实验报告五姓名:胡文松学号:6103413007 班级:生医131实验日期:2016.5.16 实验成绩:实验题目:图像的傅里叶变换一.实验目的(1)熟练掌握图像的快速傅里叶变换及其逆变换。
(2)熟练掌握图像的radon变换及其逆变换。
二.实验原理傅里叶变换是线性系统分析的一个有力工具,它能够定量地分析诸如数字化系统、采样点、电子放大器、卷积滤波器、噪音和显示点等的作用。
傅里叶变换是将时间域的函数f(t)表示为频率域的函数F(ω)的积分。
一般可称函数f (t)为原函数,而称函数F(ω)为傅里叶变换的像函数,原函数和像函数构成一个傅里叶变换对(transform pair)。
图像傅里叶变换,谱对图像的平移是不敏感的,但它随旋转图像以相同的角度旋转。
图像平移后,他们的频谱不变,但旋转后,其频谱也以以相同的角度旋转。
三.实验内容及结果(1)任意选择一副图像,对图像进行旋转,显示原始图像和旋转后的图像,分别对其进行傅里叶变换,分析原图的傅里叶频谱与旋转后的傅里叶频谱的对应关系。
(2)选择一副图像boy.jpg,使用radon函数和iradon函数构建一个简单图像的投影并重建图像。
源程序和结果:I=phantom(256);figure;subplot(2,2,1);imshow(I);title('原始图像')J=fft2(I);F=abs(J);J1=fftshift(F);subplot(2,2,2);imshow(J1,[5 50]);title('原始图像的傅里叶频谱')K=imrotate(I,315,'bilinear','crop');subplot(2,2,3);imshow(K);title('原始图像进行旋转')K1=fft2(K);M=abs(K1);J2=fftshift(M);subplot(2,2,4);imshow(J2,[5 50]);title('旋转后图像的傅里叶频谱')theta=0:1:179;[R1,xp]=radon(I,theta);figure;subplot(2,2,1);imagesc(theta,xp,R1);xlabel('\theta');ylabel('x\prime' );title('18度');I1=iradon(R1,1);subplot(2,2,2);imshow(I1);title('18度');2.用MATLAB中的iradon函数对获得的投影数据进行滤波反投影重建,获得Shepp-Logan 模型的重建图像I1=iradon(R1,10);I2=iradon(R2,5);I3=iradon(R3,2);I4=iradon(R4,1);figure;subplot(2,2,1);imshow(I1);title('18 angles');subplot(2,2,2);imshow(I2);title('36 angles');subplot(2,2,3);imshow(I3);title('90 angles');subplot(2,2,4);imshow(I4);title('180 angles');四.结果分析从实验结果可知(1)图像旋转后,相应的傅里叶频谱也跟着做相应的旋转,且旋转角度是一样的,时域中信号被压缩,到频域中被拉伸。
数字图像处理实验(MATLAB版)数字图像处理(MATLAB版)实验指导书(试用版)湖北师范学院教育信息与技术学院2009年4月试行目录实验一、数字图像获取和格式转换 2 实验二、图像亮度变换和空间滤波 6 实验三、频域处理7 实验四、图像复原9 实验五、彩色图像处理101实验六、图像压缩11 实验七、图像分割13 教材与参考文献142《数字图像处理》实验指导书实验一、数字图像获取和格式转换一、实验目的1掌握使用扫描仪、数码相机、数码摄像级机、电脑摄像头等数字化设备以及计算机获取数字图像的方法;2修改图像的存储格式;并比较不同压缩格式图像的数据量的大小。
二、实验原理数字图像获取设备的主要性能指标有x、y方向的分辨率、色彩分辨率(色彩位数)、扫描幅面和接口方式等。
各类设备都标明了它的光学分辨率和最大分辨率。
分辨率的单位是dpi,dpi是英文Dot Per Inch的缩写,意思是每英寸的像素点数。
扫描仪扫描图像的步骤是:首先将欲扫描的原稿正面朝下铺在扫描仪的玻璃板上,原稿可以是文字稿件或者图纸照片;然后启3动扫描仪驱动程序后,安装在扫描仪内部的可移动光源开始扫描原稿。
为了均匀照亮稿件,扫描仪光源为长条形,并沿y方向扫过整个原稿;照射到原稿上的光线经反射后穿过一个很窄的缝隙,形成沿x方向的光带,又经过一组反光镜,由光学透镜聚焦并进入分光镜,经过棱镜和红绿蓝三色滤色镜得到的RGB三条彩色光带分别照到各自的CCD 上,CCD将RGB光带转变为模拟电子信号,此信号又被A/D变换器转变为数字电子信号。
至此,反映原稿图像的光信号转变为计算机能够接受的二进制数字电子信号,最后通过串行或者并行等接口送至计算机。
扫描仪每扫一行就得到原稿x方向一行的图像信息,随着沿y方向的移动,在计算机内部逐步形成原稿的全图。
扫描仪工作原理见图1.1。
4图1.1扫描仪的工作原理在扫描仪的工作过程中,有两个元件起到了关键的作用。
一个是CCD,它将光信号转换成为电信号;另一个是A/D变换器,它将模拟电信号变为数字电信号。
数字图像处理实验一 MATLAB数字图像处理初步一、显示图像1.利用imread( )函数读取一幅图像,假设其名为lily.tif,存入一个数组中;2.利用whos 命令提取该读入图像flower.tif的基本信息;3.利用imshow()函数来显示这幅图像;实验结果如下图:源代码:>>I=imread('lily.tif')>> whos I>> imshow(I)二、压缩图像4.利用imfinfo函数来获取图像文件的压缩,颜色等等其他的详细信息;5.利用imwrite()函数来压缩这幅图象,将其保存为一幅压缩了像素的jpg文件,设为lily.jpg;语法:imwrite(原图像,新图像,‘quality’,q), q取0-100。
6.同样利用imwrite()函数将最初读入的tif图象另存为一幅bmp图像,设为flily.bmp。
7.用imread()读入图像Sunset.jpg和Winter.jpg;8.用imfinfo()获取图像Sunset.jpg和Winter.jpg的大小;9.用figure,imshow()分别将Sunset.jpg和Winter.jpg显示出来,观察两幅图像的质量。
其中9的实验结果如下图:源代码:4~6(接上面两个) >>I=imread('lily.tif')>> imfinfo 'lily.tif';>> imwrite(I,'lily.jpg','quality',20);>> imwrite(I,'lily.bmp');7~9 >>I=imread('Sunset.jpg');>>J=imread('Winter.jpg')>>imfinfo 'Sunset.jpg'>> imfinfo 'Winter.jpg'>>figure(1),imshow('Sunset.jpg')>>figure(2),imshow('Winter.jpg')三、二值化图像10.用im2bw将一幅灰度图像转化为二值图像,并且用imshow显示出来观察图像的特征。
遥感数字图像处理实验报告(四)姓名:学号:班级:指导老师:1)项目名称:遥感图像频域增强处理2)实验目的:进一步了解ERDAS软件的使用,掌握对图像进行傅立叶变换的方法步骤,学会使用低通、高通及其它滤波器对遥感图像进行频率域的增强处理,尝试改变滤波器窗口大小,看滤波后的图像差异。
3)实验原理:傅里叶变换首先是将图像有空间域转换为频率域,把RGB图像转变为一系列不同频率的二维正弦波傅里叶图像,然后在频率域图像中对傅里叶图像进行滤波、掩膜等各种编辑,减少或滤除部分或全部高频或低频成分,最后再把频率域图像转换为RGB彩色空间域,得到经过处理的彩色图像。
傅里叶变换主要用于消除周期性噪声,此外,还可以消除由于传感器异常而引起的规则性错误。
同时这种处理技术还以模式识别的形式用于多波段图像处理。
4)数据来源及数据基本信息:(下载源、波段数、对应的波长、分辨率、投影、地区)图像数据来自国际科学数据服务平台,Landsat5 2010年9月18日的图像,是经裁剪后的图像。
图像共7个波段,波段1-5和波段7的空间分辨率为30米,6波段(热红外波段)的空间分辨率为120米。
对应的波段、波长、分辨率、主要作用如表:图像采用的投影为WGS 84投影,条带号为122,行编号为36,覆盖豫东、皖北、苏北、鲁西四省交界地区。
裁剪后的图像范围为河南省永城市东西城区及周边。
5)实验过程:具体步骤如下:1.傅里叶变换:——弹出对话框,选择要进行变换的图像,开始变换;2.傅里叶变换编辑,打开:——打开经傅里叶变换后的.fft文件layer1,如图1,对其进行编辑:a.低通滤波:低通滤波的目的是消弱图像的高频组分,从而让低频组份通过,使得图像更加平滑、柔和。
b.高通滤波:与低通滤波的作用相反,高通滤波是消弱图像的低频组份,而让高频组份通过,低频组保留,可以使图像锐化和边缘增强。
如图2,傅里叶逆变换,——,打开,如图3;原图像傅里叶变换后低通滤波编辑逆变换后图像高通滤波编辑1 逆变换后图像1高通滤波编辑2 逆变换后图像26)实验结果与分析:应用低通滤波时,通低频,阻高频,应用后图像平滑柔和,进行傅里叶编辑时选择的编辑范围越大则阻止的越少,反之越多,图像差异也很大;应用高通滤波时,通高频,阻低频,图像锐化,边缘突出,进行傅里叶编辑的范围越大则阻止的越少,反之越多。
数字图像处理实验三均值滤波、中值滤波的计算机实现12281166 崔雪莹计科1202 班一、实验目的:1)熟悉均值滤波、中值滤波处理的理论基础;2)掌握均值滤波、中值滤波的计算机实现方法;3)学习VC++ 6。
0 的编程方法;4)验证均值滤波、中值滤波处理理论;5)观察均值滤波、中值滤波处理的结果。
二、实验的软、硬件平台:硬件:微型图像处理系统,包括:主机,PC机;摄像机;软件:操作系统:WINDOWS2000或WINDOWSXP应用软件:VC++6.0三、实验内容:1)握高级语言编程技术;2)编制均值滤波、中值滤波处理程序的方法;3)编译并生成可执行文件;4)考察处理结果。
四、实验要求:1)学习VC+确6。
0编程的步骤及流程;2)编写均值滤波、中值滤波的程序;3)编译并改错;4)把该程序嵌入试验二给出的界面中(作适当修改);5)提交程序及文档;6)写出本次实验的体会。
五、实验结果截图实验均值滤波采用的是3X3的方块,取周围的像素点取得其均值代替原像素点。
边缘像素的处理方法是复制边缘的像素点,增加一个边框,计算里面的像素值得均值滤波。
均值氓浜1W赵六、实验体会本次实验在前一次的实验基础上增加均值滤波和中值滤波,对于椒盐噪声的处理,发现中值滤波的效果更为好一点,而均值滤波是的整个图像变得模糊了一点,效果差异较大。
本次实验更加增加了对数字图像处理的了解与学习。
七、实验程序代码注释及分析// HistDemoADIg.h :头文件//#in elude "ImageWnd.h"#pragma once// CHistDemoADIg 对话框classCHistDemoADIg : public CDialogEx{//构造public:CHistDemoADlg(CWnd* pParent = NULL); // 标准构造函数intnWidth;intnHeight;intnLen;intnByteWidth;BYTE *lpBackup;BYTE *lpBitmap;BYTE *lpBits;CStringFileName;CImageWndsource,dest;// 对话框数据enum { IDD = IDD_HISTDEMOA_DIALOG };protected:virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV 支持// 实现protected:HICON m_hIcon;// 生成的消息映射函数virtual BOOL OnInitDialog();afx_msg void OnSysCommand(UINT nID, LPARAM lParam);afx_msg void OnPaint();afx_msg HCURSOR OnQueryDragIcon();DECLARE_MESSAGE_MAP()public:voidLoadBitmap(void);afx_msg void OnOpen();afx_msg void OnHist();voidHistogramEq(void);voidNoColor(void);void HistogramEq1(intnWidth,intnHeight,BYTE *lpInput,BYTE *lpOutput);voidMeanFilter(intnWidth,intnHeight,BYTE *lpInput,BYTE *lpOutput);voidMedianFilter(intnWidth,intnHeight,BYTE *lpInput,BYTE *lpOutput); afx_msgvoid OnBnClickedClose();afx_msg void OnBnClickedMeanfilter();afx_msg void OnBnClickedMedianfilter();};HistDemoADlg.cpp 对HistDemoADlg.h 进行具体的实现,OnOpen() 函数响应ID 为IDC_OPEN的按钮事件,而且会调取文件选择对话框,选取文件之后,会显示在原始图像区域显示对应的位图图像,OnHist()函数会响应ID为IDC_HIST的按钮事件,调用HistogramEq()进行直方图均衡化的处理,HistogramEq()会调用HistogramEq1()进行直方图均衡化的处理,并用dst.setlmage()显示处理之后的图像,以及NoColor()函数,对原始图像转化为灰度图像之后再显示。
实验一一、实验要求1、熟悉MATLAB软件的开发环境、基本操作以及图像处理工具箱,为编写图像处理程序奠定基础。
2、掌握二进制(黑白)图像、灰度图像、彩色图像读、写和显示的基本方法,分别选择以上几种类型的图像,观察其图像类型参数。
3、说明以下程序的显示结果为何是一幅几乎全黑的图像。
clear; close all;myi=zeros(20,20);myi(2:2:18,2:2:18)=1;myi=uint8(myi);figure, imshow(myi,'notruesize');编写程序将图一中orangutan_1.tif图片拉伸一倍后形成orangutan_2.tif所示的图片。
4、应用MATLAB(或C)语言编写一幅灰度图像直方图统计程序,并选择一幅图像显示其直方图,将结果与MATLAB图像处理工具箱中提供的灰度直方图函数imhist的处理结果进行比较。
5、利用以上编写的程序,估算图一所示图像iris.tif中的瞳孔半径(以像素为单位)。
orangutan_1.tif orangutan_2.tif iris.tif图一二、实验内容1,通过安装matlab软件,熟悉MATLAB软件的开发环境、基本操作以及图像处理工具箱2,图像的读、写、显示和图像类型参数查看通过 I= imread(FILENAME),读取图像,注意FILENAME=‘图像文件所在的位置+文件名’;1)通过imwrite(a,FILENAME,fmt),可以把a图像写进FILENAME图像,即是替换掉FILENAME,但是文件图像格式不替换。
2)通过imshow(I),可以把I图像显示出来。
3)例如:在matlab软件中,运行如下命令:I = imread('E:\orangutan_2.tif');figure,imshow(I)I1 = imread('E:\iris.tif');figure,imshow(I1)imwrite(I,'E:\iris.tif','tif')I2 = imread('E:\iris.tif');figure,imshow(I2)原图:orangutan_2.tif iris.tif运行结果:可以看到orangutan_2.tif已成功写入 iris.tif中。
遥感数字图像处理及应用实验报告姓名:学号:专业:学院:学校:实验一遥感图像统计特性一、实验目的掌握遥感图像常用的统计特性的意义和作用,能运用高级程序设计语言实现遥感图像统。
二、实验内容编程实现对遥感图像进行统计特性分析,均值、方差(均方差)、直方图、相关系数等。
三、实验原理1.均值像素值的算术平均值,反映图像中地物的平均反射强度。
公式为:2.方差像素值与平均值差异的平方和,反映了像素值的离散程度。
也是衡量图像信息量大小的重要参数。
公式为:3.相关系数反映了两个波段图像所包含信息的重叠程度。
f,g为两个波段的图像。
公式为:四、实验数据及图像显示:原始图像:运行结果:实验二遥感图像增强处理一、实验目的掌握常用遥感图像的增强方法,能运用高级程序设计语言实现遥感图像的增强处理。
二、实验内容编程实现对遥感图像的IHS 变换、IHS 逆变换、进行统计特性分析,均值、方差(均方差)、直方图、相关系数等。
三、实验原理:1.IHS变换2.SPOT图像真彩色模拟模拟真彩色:通过某种形式的运算得到模拟的红、绿、蓝三个通道,然后通过彩色合成近似的产生真彩色图像。
(1)SPOT IMAGE 公司提供的方法该方法实际上是将原来的绿波段当作蓝波段,红波段(0.61-0.68 μm)仍采用原来的波段,绿波段用绿波段、红波段、红外波段的算术平均值来代替。
(2)ERDAS IMAGING 软件中的方法此法将原来的绿波段当作蓝波段,红波段仍采用原来的波段,绿波段用绿波段、红外波段按3:1 的加权算术平均值来代替。
四、实验数据及图像显示原始图像:ISH变换所的图像:SPORT真彩色图像:实验三遥感图像融合一、实验目的掌握多源遥感图像融合的原理与方法,能运用高级程序设计语言实现遥感图像的融合。
二、实验内容选择IHS 变换、PCA 变换和Brovey 变换三种方法中的一种,编程实现多源遥感图像融合,即将低空间分辨率的多光谱图像与高空间分辨率的全色图像实现融合。
电子科技大学数字图像处理实验报告实验名称彩色图像处理实验序号学生姓名学生学号指导教师提交日期摘要本实验利用MATLAB软件,对彩色图像作了一些简单处理。
通过访问数字图像RGB三个通道的对应矩阵,改变数字图像的色彩,得到了原图像的补色图像。
并编写了图像的RGB模型与HSI模型相互转换的程序,实现了两个模型之间的互相转换。
为了得到HSI模型的补色,可将HSI模型转换为RGB模型,用RGB的反色来近似HSI的反色。
然后对彩色图像加入高斯与椒盐噪声,观察了加入噪声后RGB三个通道的图像效果,并通过算术均值滤波与中值滤波分别对三个通道进行去噪,达到对整个彩色图像的去噪。
最后证明了单个通道的噪声会通过到HSI的转换扩散到所有HSI图像上。
实验原理:1、三基色原理:人的眼睛就像一个三色接收器的体系,大多数的颜色可以通过红、绿、蓝三色按照不同的比例合成产生。
同样绝大多数单色光也可以分解成红(red)绿(green)蓝(blue)三种色光。
这是色度学的最基本原理,即三基色原理。
三种基色是相互独立的,任何一种基色都不能由其它两种颜色合成。
红绿蓝是三基色,这三种颜色合成的颜色范围最为广泛。
红绿蓝三基色按照不同的比例相加合成混色称为相加混色。
人眼接收色彩的方法:加法混色。
光色(红色+绿色)=黄色(yellow)光色(红色+蓝色)=紫红(magenta)光色(蓝色+绿色)=青色(cyan)印刷四色:减法呈色颜料(黄色+青色)=白色-红色-蓝色=绿色颜料(紫红+青色)=白色-红色-绿色=蓝色颜料(黄色+紫红)=白色-绿色-蓝色=红色颜料色另外会附加一个黑色,即cyan、magenta、yellow、black四色(cmyk)。
2、彩色图像表示方法:RGB图像:一幅RGB图像就是彩色像素的一个M×N×3数组,其中每一个彩色像素点都是在特定空间位置的彩色图像相对应的红绿蓝三个分量。
RGB图像可以看成是一个有三幅灰度图像形成的“堆”,形成一幅RGB图像的三个图像常称为红、绿或蓝分量图像。
数字图像相关法(2D DIC)测量物体面内位移
一.实验目的
1.了解和掌握DIC测量物体面内位移的方法和技术;
2.学会用DIC方法测试试件的面内位移。
二.实验器材和装置
列出实验器材,画出实验布置示意图。
三.DIC的基本原理
简述DIC原理
四.实验步骤
1、测量试件的几何尺寸。
2、把试件在加载装置上固定好。
3、摆好光路。
调试光路要求成像清楚,可用带字的纸张成像来判断。
4、用图象采集卡采集并存储不同载荷级次下的散斑图(*.bmp)。
5、把刻度尺贴近试件表面,刻度图片(scale.bmp)。
得到象素和毫米间的换算关系。
6、打开DIC分析软件。
7、打开需要计算的两幅散斑图,一幅为变形前的散斑图;另一幅为变形后的散斑图。
8、用鼠标在变形后的散斑图上选定一个矩形计算区域(ROI),或者通过输入左上角和右下角两点的坐标(像素)来选定计算区域。
9、点击计算。
程序将对计算区域内以步距为大小的微小子集自动进行相关计算,计算完成以后,在下面的状态栏可以看到计算的点数和计算的时间。
保持数据*.txt文件,其中五列数据(以像素表示),依次为坐标X、坐标Y、U值、V值、C值。
五.三点弯曲U场、V场图
1. 调整光路,将试件中间两倍高度以上的区域放入CCD视场中,在三点弯曲试验过程中采集散斑图,通过相关计算得U、V场和εx场,并作适当说明。
2. 再调整光路,放大视场,仅取试件中部下方的微小区域(宏观上为可也认为是一点)。
采集三点弯曲过程中的散斑图,计算其U场、V场,计算试件的弯曲弹性模量E f :
数字图像相关法(3D DIC)测量曲面物体的离面位移六.实验目的
1.了解和掌握3D DIC的标定方法;
2.学会用3D DIC方法测试曲面物体的离面位移。
七.实验器材和装置
实验器材:计算机、光学镜头、标定板、已做好的散斑柱体试样、摄像机2台、图像采集卡
图7 三维DIC 测量系统装置简图
八.DIC的基本原理
基于双目视觉原理,采用两个CCD 镜头可以代表人的两只眼睛,采用两个镜头可以较为全面完整的测量出物体的整个三维数据,两个镜头之间互相联系,从而根据标定结果,通过计算机计算从而得出较为准确的物体表面信息。
九.实验步骤
1、把试件在加载装置上固定好。
2、摆好光路。
调试光路要求成像清楚,可用带字的纸张成像来判断。
3、用标定板,采集标定图像(cal*.bmp)。
4. 用图象采集卡采集并存储不同载荷级次下的散斑图(test*.bmp)。
5、打开DIC分析软件。
6、打开标定图,对外部参数和内部参数进行标定。
7、打开需要实验加载的散斑图,选定一个矩形计算区域(ROI),…,点击计算。
程序将对计算区域内以步距为大小的微小子集自动进行相关计算,计算完成以后,在下面的状态栏可以看到计算的点数和计算的时间。
保持数据*.txt文件,其中五列数据(以像素表示),依次为坐标X、坐标Y、U值、V值、C值。
十.结果
1. 获得测试对象的3D形貌图
图8 圆柱体3D 形貌图原图
图9 圆柱体3D形貌图(移动1次)
图10 圆柱体3D形貌图(移动2次)
图11 圆柱体3D形貌图(移动3次)
图12 圆柱体3D形貌图(移动4次)
图13 圆柱体3D形貌图(移动5次)
2. 计算离面位移,并与螺旋测微器给出的位移做对比,画出曲线。
表1 圆柱体最表层的位置(图中的红色最深的区域)单位:mm
图像原图移动 1
次移动 2
次
移动 3
次
移动 4
次
移动 5
次
位置 4.6 5.2 7.4 7.6 9.2 12.8
实际位移0 0.6 2.2 0.2 1.6 3.6
理论位移0 2 2 2 2 2
误差分析:主要是由于实验对焦不准确以及读数产生的误差。
实验效果不是很理想。
图14 实际位移与理论位移比较曲线。