江苏省泰州市2020-2021高二第一学期期末考试数学(文科)试题
- 格式:docx
- 大小:604.40 KB
- 文档页数:15
2021-2022年高二下学期第二次段考数学试卷(文科)含解析一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题纸相应位置上.A)∩B=.1.已知全集U={0,1,2,3},集合A={0,1},B={1,2,3},则(∁U2.已知幂函数f(x)=k•xα(k,α∈R)的图象过点(,),则k+α=.3.某学校高一、高二、高三年级的学生人数之比为4:3:3,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为80的样本,则应从高一抽取的学生人数为名.4.从甲、乙、丙、丁4位同学中随机选出2名代表参加学校会议,则甲被选中的概率是.5.“α=”是“tanα=1”的条件.(填“充分不必要”、“必要不充分”、“充要”或“既不充分也不必要”)6.如图是一个算法流程图,则输出S的值是.7.函数f(x)=ln(x2﹣3x+2)的单调减区间为.8.由命题“存在x∈R,使x2+2x+m≤0”是假命题,求得m的取值范围是(a,+∞),则实数a的值是.9.定义在R上的函数f(x),对任意x∈R都有f(x)•f(x+1)=1,当x∈(﹣2,0)时,f(x)=4x,则f=x2﹣3x+a,若函数f(x)在区间(1,3)内有零点,则实数a的取值范围为.11.若f(x)=是R上的单调函数,则实数a的取值范围为.12.已知f(x)是定义在R上的偶函数,且对于任意的x∈[0,+∞),满足f (x+2)=f(x),若当x∈[0,2)时,f(x)=|x2﹣x﹣1|,则函数y=f(x)﹣1在区间[﹣2,4]上的零点个数为.13.已知函数当t∈[0,1]时,f(f(t))∈[0,1],则实数t的取值范围是.14.已知f(x)=,a∈R,对任意非零实数x1,存在唯一的非零实数x2(x1≠x2),使得f(x1)=f(x2)成立,则实数k的取值范围是.二、解答题:本大题共6小题,共90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.某高校从参加今年自主招生考试的学生中随机抽取容量为50的学生成绩样本,得频率分布表如下:组号分组频数频率第一组[230,235)8 0.16第二组[235,240)①0.24第三组[240,245)15 ②第四组[245,250)10 0.20第五组[250,255] 5 0.10合计50 1.00(2)为了选拔出更优秀的学生,高校决定在第三、四、五组中用分层抽样法抽取6名学生进行第二轮考核,分别求第三、四、五各组参加考核人数;(3)在(2)的前提下,高校决定在这6名学生中录取2名学生,求2人中至少有1名是第四组的概率.16.已知命题:“∃x∈[﹣1,1],使等式m=x2﹣x成立”是真命题.(1)求实数m的取值集合M;(2)设不等式(x﹣a)[x﹣(2﹣a)]<0的解集为N,若N⊆M,求a的取值范围.17.已知二次函数f(x)有两个零点0和﹣2,且f(x)最小值是﹣1,函数g(x)与f(x)的图象关于原点对称.(1)求f(x)和g(x)的解析式;(2)若h(x)=f(x)﹣λg(x)在区间[﹣1,1]上是增函数,求实数λ的取值范围.18.某市近郊有一块大约500m×500m的接近正方形的荒地,地方政府准备在此建一个综合性休闲广场,首先要建设如图所示的一个矩形场地,其中总面积为3000平方米,其中阴影部分为通道,通道宽度为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为S平方米.(1)分别用x表示y和S的函数关系式,并给出定义域;(2)怎样设计能使S取得最大值,并求出最大值.19.已知函数f(x)=|x﹣m|和函数g(x)=x|x﹣m|+m2﹣7m.(1)若方程f(x)=|m|在[﹣4,+∞)上有两个不同的解,求实数m的取值范围;(2)若对任意x1∈(﹣∞,4],均存在x2∈[3,+∞),使得f(x1)>g(x2)成立,求实数m的取值范围.20.对于函数f(x),若存在实数对(a,b),使得等式f(a+x)•f(a﹣x)=b对定义域中的每一个x都成立,则称函数f(x)是“(a,b)型函数”.(1)判断函数f(x)=4x是否为“(a,b)型函数”,并说明理由;(2)已知函数g(x)是“(1,4)型函数”,且当x∈[0,1]时,g(x)=x2﹣m(x﹣1)+1(m>0),若当x∈[0,2]时,都有1≤g(x)≤3成立,试求m的取值范围.xx江苏省泰州市泰兴一中高二(下)第二次段考数学试卷(文科)参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题纸相应位置上.1.已知全集U={0,1,2,3},集合A={0,1},B={1,2,3},则(∁U A)∩B={2,3} .【考点】交、并、补集的混合运算.【分析】直接利用补集和交集的运算进行求解即可得到答案.【解答】解:由U={0,1,2,3},集合A={0,1},∴∁U A={2,3},又B={1,2,3},∴(∁U A)∩B={2,3}∩{1,2,3}={2,3}.故答案为:{2,3}.2.已知幂函数f(x)=k•xα(k,α∈R)的图象过点(,),则k+α=.【考点】幂函数的概念、解析式、定义域、值域.【分析】利用幂函数的定义求出k,利用函数的图象经过的点求出α,即可得到结果.【解答】解:因为幂函数f(x)=k•xα(k,α∈R)由幂函数的定义可知k=1,幂函数f(x)=k•xα(k,α∈R)的图象过点(,),所以,,∴k+α==.故答案为:.3.某学校高一、高二、高三年级的学生人数之比为4:3:3,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为80的样本,则应从高一抽取的学生人数为32名.【考点】分层抽样方法.【分析】先求出高一学生在总体中所占的比例,再用样本容量乘以此比例,即得应从高一年级抽取的学生人数.【解答】解:高一学生在总体中所占的比例为=,故应从高一年级抽取的学生人数为80×=32,故答案为:32.4.从甲、乙、丙、丁4位同学中随机选出2名代表参加学校会议,则甲被选中的概率是.【考点】计数原理的应用.【分析】求出从甲、乙、丙、丁4位同学中随机选出2名代表参加学校会议的基本事件,甲被选中的基本事件,即可求出甲被选中的概率.【解答】解:从甲、乙、丙、丁4位同学中随机选出2名代表参加学校会议,共有=6种方法,甲被选中,共有3种方法,∴甲被选中的概率是=.故答案为:.5.“α=”是“tanα=1”的充分不必要条件.(填“充分不必要”、“必要不充分”、“充要”或“既不充分也不必要”)【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分条件、必要条件的概念,以及tanα=1时α的取值情况即可判断是tanα=1的什么条件.【解答】解:时,tanα=1;tanα=1时,,所以不一定得到;∴是tanα=1的充分不必要条件.故答案为:充分不必要.6.如图是一个算法流程图,则输出S的值是35.【考点】程序框图.【分析】执行算法流程,写出每次循环得到的S,k的值,当k=7时满足条件k>5,输出S 的值35.【解答】解:执行算法流程,有S=0,k=1不满足条件k>5,S=1,k=3,不满足条件k>5,S=10,k=5,不满足条件k>5,S=35,k=7,满足条件k>5,输出S的值35.故答案为:35.7.函数f(x)=ln(x2﹣3x+2)的单调减区间为(﹣∞,1).【考点】复合函数的单调性.【分析】求出函数的定义域,结合复合函数的单调性的关系进行求解即可.【解答】解:由x2﹣3x+2>0得x>2或x<1,设t=x2﹣3x+2,则y═lnt为增函数,要求函数f(x)=ln(x2﹣3x+2)的单调减区间,即求函数t=x2﹣3x+2的递减区间,∵t=x2﹣3x+2的递减区间为(﹣∞,1),∴函数f(x)=ln(x2﹣3x+2)的单调减区间为(﹣∞,1),故答案为:(﹣∞,1).8.由命题“存在x∈R,使x2+2x+m≤0”是假命题,求得m的取值范围是(a,+∞),则实数a的值是1.【考点】一元二次不等式的解法.【分析】由题意知“任意x∈R,使x2+2x+m>0”是真命题,由二次函数的性质得△<0,求出m的范围,结合题意求出a的值.【解答】解:∵“存在x∈R,使x2+2x+m≤0”是假命题,∴“任意x∈R,使x2+2x+m>0”是真命题,∴△=4﹣4m<0,解得m>1,故a的值是1.故答案为:1.9.定义在R上的函数f(x),对任意x∈R都有f(x)•f(x+1)=1,当x∈(﹣2,0)时,f(x)=4x,则f=f(x),利用函数的周期性,将条件进行转化即可得到结论.【解答】解:对任意x∈R都有f(x)•f(x+1)=1,可得f(x+2)==f(x),∴f(x+2)=f(x),函数f(x)是定义在R上是周期函数周期为2,当x∈(﹣2,0)时,f(x)=4x,则f=f(﹣1)=4﹣1=故答案为:.10.设f(x)=x2﹣3x+a,若函数f(x)在区间(1,3)内有零点,则实数a的取值范围为(0,] .【考点】函数零点的判定定理;函数奇偶性的性质.【分析】函数f(x)在区间(1,3)内有零点,即a=﹣x2+3x在x∈(1,3)上成立即可,转化出求函数的值域问题即可获得问题的解答.【解答】解:函数f(x)在区间(1,3)内有零点,即a=﹣x2+3x在x∈(1,3)上成立,∵a=﹣x2+3x=﹣(x﹣)2+,x∈(1,3)∴a∈(0,].故答案为:(0,].11.若f(x)=是R上的单调函数,则实数a的取值范围为[﹣,0).【考点】函数单调性的性质.【分析】分f(x)是R上的减函数、增函数两种情况,分别求得实数a的取值范围,再取并集,即得所求.【解答】解:若f(x)=是R上的单调减函数,则,求得﹣≤a<0.若f(x)=是R上的单调增函数,则,求得a∈∅,综上可得实数a的范围为[﹣,0),故答案为:[﹣,0).12.已知f(x)是定义在R上的偶函数,且对于任意的x∈[0,+∞),满足f(x+2)=f(x),若当x∈[0,2)时,f(x)=|x2﹣x﹣1|,则函数y=f(x)﹣1在区间[﹣2,4]上的零点个数为7.【考点】函数零点的判定定理.【分析】如图所示,y=g(x)=f(x)﹣1=,再利用f(x+2)=f(x),可得x∈[2,4]上的图象.由函数f(x)是R上的偶函数,可得g(x)也是R上的偶函数,结合图象即可得出零点个数.【解答】解:如图所示,y=g(x)=f(x)﹣1=,再利用f(x+2)=f(x),可得x∈[2,4]上的图象.由函数f(x)是R上的偶函数,可得g(x)也是R上的偶函数,利用偶函数的性质可得x ∈[﹣2,0)上的图象.x∈[0,2)时,g(0)=g(1)=0,x∈[2,4]时,g(2)=g(4)=g(0)=0,g(3)=g(1)=0.x∈[﹣2,0)时,g(﹣2)=g(2)=0,g(﹣1)=g(1)=0.指数可得:函数g(x)共有7个零点.故答案为:7.13.已知函数当t∈[0,1]时,f(f(t))∈[0,1],则实数t的取值范围是.【考点】函数与方程的综合运用.【分析】通过t的范围,求出f(t)的表达式,判断f(t)的范围,然后代入已知函数,通过函数的值域求出t的范围即可.【解答】解:因为t∈[0,1],所以f(t)=3t∈[1,3],又函数,所以f(f(t)=,因为f(f(t))∈[0,1],所以解得:,又t∈[0,1],所以实数t的取值范围.故答案为:.14.已知f(x)=,a∈R,对任意非零实数x1,存在唯一的非零实数x2(x1≠x2),使得f(x1)=f(x2)成立,则实数k的取值范围是(﹣∞,0]∪[8,+∞).【考点】分段函数的应用.【分析】由题意结合函数图象可将问题转化为关于a的方程(3﹣a)2=k(1﹣a2)有实数解,解△≥0可得.【解答】解:∵f(x)=)=,∴当x=0时,f(x)=k(1﹣a2),∵对任意的非零实数x1,存在唯一的非零实数x2(x2≠x1),使得f(x2)=f(x1)成立.∴函数必须为连续函数,∴(3﹣a)2=k(1﹣a2),问题转化为(k+1)a2﹣6a+9﹣k=0有实数解,∴△=62﹣4(k+1)(9﹣k)≥0,解得k≤0或k≥8.故答案为:(﹣∞,0]∪[8,+∞).二、解答题:本大题共6小题,共90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.某高校从参加今年自主招生考试的学生中随机抽取容量为50的学生成绩样本,得频率分布表如下:组号分组频数频率第一组[230,235)8 0.16第二组[235,240)①0.24第三组[240,245)15 ②第四组[245,250)10 0.20第五组[250,255] 5 0.10合计50 1.00(1)写出表中①②位置的数据;(2)为了选拔出更优秀的学生,高校决定在第三、四、五组中用分层抽样法抽取6名学生进行第二轮考核,分别求第三、四、五各组参加考核人数;(3)在(2)的前提下,高校决定在这6名学生中录取2名学生,求2人中至少有1名是第四组的概率.【考点】等可能事件的概率;分层抽样方法;频率分布表.【分析】(1)由频率分布表,可得①位置的数据为50﹣8﹣15﹣10﹣5=12,②位置的数据为1﹣0.16﹣0.24﹣0.20﹣0.1=0.3,即可得答案;(2)读表可得,第三、四、五组分别有15、10、5人,共15+10+5=30人,要求从中用分层抽样法抽取6名学生,抽取比例为,由第三、四、五组的人数,计算可得答案;(3)设(2)中选取的6人为abcdef(其中第四组的两人分别为d,e),记“2人中至少有一名是第四组”为事件A,用列举法列举从6人中任取2人的所有情形,进而可得事件A所含的基本事件的种数,由等可能事件的概率,计算可得答案.【解答】解:(1)由频率分布表,可得①位置的数据为50﹣8﹣15﹣10﹣5=12,②位置的数据为1﹣0.16﹣0.24﹣0.20﹣0.1=0.3,故①②位置的数据分别为12、0.3;(2)读表可得,第三、四、五组分别有15、10、5人,共15+10+5=30人,要求从中用分层抽样法抽取6名学生,则第三组参加考核人数为15×=3,第四组参加考核人数为10×=2,第五组参加考核人数为5×=1,故第三、四、五组参加考核人数分别为3、2、1;(3)设(2)中选取的6人为a、b、c、d、e、f(其中第四组的两人分别为d,e),则从6人中任取2人的所有情形为:{ab,ac,ad,ae,af,bc,bd,be,bf,cd,ce,cf,de,df,ef}共有15种;记“2人中至少有一名是第四组”为事件A,则事件A所含的基本事件的种数有9种.所以,故2人中至少有一名是第四组的概率为.16.已知命题:“∃x∈[﹣1,1],使等式m=x2﹣x成立”是真命题.(1)求实数m的取值集合M;(2)设不等式(x﹣a)[x﹣(2﹣a)]<0的解集为N,若N⊆M,求a的取值范围.【考点】集合的包含关系判断及应用;特称命题.【分析】(1)若方程m=x2﹣x在[﹣1,1]上有解,即m的取值范围为函数y=x2﹣x在[﹣1,1]上的值域,结合二次函数的图象和性质,要得M;(2)对a的取值进行分类讨论,求出不等式(x﹣a)[x﹣(2﹣a)]<0的解集为N,结合N⊆M,可得a的取值范围.【解答】解:(1)由题意知,方程m=x2﹣x在[﹣1,1]上有解,即m的取值范围为函数y=x2﹣x在[﹣1,1]上的值域,由函数y=x2﹣x的图象是开口朝上,且以直线x=为对称轴的抛物线,故当x=时,函数最小值为﹣,当x=﹣1时,函数最大值为2,故m=[﹣,2],(2)当a=1时,解集N为空集,满足题意;当a>1时,a>2﹣a,此时集合N={x|2﹣a<x<a},则1<a≤2当a<1时,a<2﹣a,此时集合N={x|a<x<2﹣a},则0≤a<1综上:0≤a≤217.已知二次函数f(x)有两个零点0和﹣2,且f(x)最小值是﹣1,函数g(x)与f(x)的图象关于原点对称.(1)求f(x)和g(x)的解析式;(2)若h(x)=f(x)﹣λg(x)在区间[﹣1,1]上是增函数,求实数λ的取值范围.【考点】函数的零点;函数解析式的求解及常用方法;函数单调性的判断与证明.【分析】(1)根据二次函数的零点,利用待定系数法即可求f(x)和g(x)的解析式;(2)根据h(x)=f(x)﹣λg(x)在区间[﹣1,1]上是增函数,确定对称轴和对应区间之间的关系,即可求实数λ的取值范围.【解答】解:(1)∵二次函数f(x)有两个零点0和﹣2,∴设f(x)=ax(x+2)=ax2+2ax(a>0).f(x)图象的对称轴是x=﹣1,∴f(﹣1)=﹣1,即a﹣2a=﹣1,∴a=1,∴f(x)=x2+2x.∵函数g(x)的图象与f(x)的图象关于原点对称,∴g(x)=﹣f(﹣x)=﹣x2+2x.(2)由(1)得h(x)=x2+2x﹣λ(﹣x2+2x)=(λ+1)x2+2(1﹣λ)x.①当λ=﹣1时,h(x)=4x满足在区间[﹣1,1]上是增函数;②当λ<﹣1时,h(x)图象对称轴是x=则≥1,又λ<﹣1,解得λ<﹣1;③当λ>﹣1时,同理需≤﹣1,又λ>﹣1,解得﹣1<λ≤0.综上,满足条件的实数λ的取值范围是(﹣∞,0].18.某市近郊有一块大约500m×500m的接近正方形的荒地,地方政府准备在此建一个综合性休闲广场,首先要建设如图所示的一个矩形场地,其中总面积为3000平方米,其中阴影部分为通道,通道宽度为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为S平方米.(1)分别用x表示y和S的函数关系式,并给出定义域;(2)怎样设计能使S取得最大值,并求出最大值.【考点】函数模型的选择与应用.【分析】(1)总面积为xy=3000,且2a+6=y,则y=,(其中6<x<500),从而运动场占地面积为S=(x﹣4)a+(x﹣6)a,代入整理即得;(2)由(1)知,占地面积S=3030﹣6x﹣=3030﹣(6x+),由基本不等式可得函数的最大值,以及对应的x的值.【解答】解:(1)由已知xy=3000,∴,其定义域是(6,500).S=(x﹣4)a+(x﹣6)a=(2x﹣10)a,∵2a+6=y,∴,∴,其定义域是(6,500).(2),当且仅当,即x=50∈(6,500)时,上述不等式等号成立,此时,x=50,y=60,S max=2430.答:设计x=50m,y=60m时,运动场地面积最大,最大值为2430平方米.19.已知函数f(x)=|x﹣m|和函数g(x)=x|x﹣m|+m2﹣7m.(1)若方程f(x)=|m|在[﹣4,+∞)上有两个不同的解,求实数m的取值范围;(2)若对任意x1∈(﹣∞,4],均存在x2∈[3,+∞),使得f(x1)>g(x2)成立,求实数m的取值范围.【考点】带绝对值的函数;函数的最值及其几何意义;根的存在性及根的个数判断.【分析】(1)解方程f(x)=|m|,解得x=0,或x=2m.由题意可得2m≥﹣4,且2m≠0,由此求得实数m的取值范围.(2)命题等价于任意x1∈(﹣∞,4],任意的x2∈[3,+∞),f min(x1)>g min(x2)成立,分m<3、3≤m<4、4≤m三种情况,分别求出实数m的取值范围再取并集,即得所求.【解答】解:(1)方程f(x)=|m|,即|x﹣m|=|m|,解得x=0,或x=2m.要使方程|x﹣m|=|m|在[﹣4,+∞)上有两个不同的解,需2m≥﹣4,且2m≠0.解得m≥﹣2 且m≠0.故实数m的取值范围为[﹣2,0)∪(0,+∞).(2)由于对任意x1∈(﹣∞,4],都存在x2∈[3,+∞),使f(x1)>g(x2)成立,故有f min(x1)>g min(x2)成立.又函数f(x)=|x﹣m|=,故f min(x1)=.又函数g(x)=x|x﹣m|+m2﹣7m=,故g min(x2)=.当m<3时,有0>m2﹣10m+9,解得1<m<3.当3≤m<4,有0>m2﹣7m,解得3≤m<4.当4≤m,有m﹣4>m2﹣7m,解得4≤m<4+2.综上可得,1<m<4+2,故实数m的取值范围为(1,4+2 ).20.对于函数f(x),若存在实数对(a,b),使得等式f(a+x)•f(a﹣x)=b对定义域中的每一个x都成立,则称函数f(x)是“(a,b)型函数”.(1)判断函数f(x)=4x是否为“(a,b)型函数”,并说明理由;(2)已知函数g(x)是“(1,4)型函数”,且当x∈[0,1]时,g(x)=x2﹣m(x﹣1)+1(m>0),若当x∈[0,2]时,都有1≤g(x)≤3成立,试求m的取值范围.【考点】函数与方程的综合运用;抽象函数及其应用.【分析】(1)利用定义,直接判断求解即可.(2)由题意得,g(1+x)g(1﹣x)=4,所以当x∈[1,2]时,,其中2﹣x∈[0,1],而x∈[0,1]时,g(x)=x2+m(1﹣x)+1=x2﹣mx+m+1>0,且其对称轴方程为,通过①当,②当,③当,求出函数的值域,然后推出所求m的取值范围.【解答】解:(1)函数f(x)=4x是“(a,b)型函数”…因为由f(a+x)•f(a﹣x)=b,得16a=b,所以存在这样的实数对,如a=1,b=16…(2)由题意得,g(1+x)g(1﹣x)=4,所以当x∈[1,2]时,,其中2﹣x∈[0,1],而x∈[0,1]时,g(x)=x2+m(1﹣x)+1=x2﹣mx+m+1>0,且其对称轴方程为,①当,即m>2时,g(x)在[0,1]上的值域为[g(1),g(0)],即[2,m+1],则g(x)在[0,2]上的值域为,由题意得,此时无解…②当,即1≤m≤2时,g(x)的值域为,即,所以则g(x)在[0,2]上的值域为,则由题意得且,解得1≤m≤2…③当,即0<m≤1时,g(x)的值域为,即,则g(x)在[0,2]上的值域为=,则,解得.综上所述,所求m的取值范围是…xx10月15日> 35055 88EF 裯`M25317 62E5 拥33269 81F5 臵y•(N35864 8C18 谘34971 889B 袛。
2022-2021学年重庆一中高二(下)期末数学试卷(文科)一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列函数是奇函数的是()A.f(x)=x|x| B.f(x)=lgx C.f(x)=2x+2﹣x D.f(x)=x3﹣12.已知a,b∈R,i是虚数单位,若(a+i)(1+i)=bi,则a+bi=()A.﹣1+2i B.1+2i C.1﹣2i D.1+i3.已知命题p:∃x0∈R,sinx0=;命题q:∀x∈R,x2﹣x+1>0.则下列结论正确的是()A.命题是p∨q假命题B.命题是p∧q真命题C.命题是(¬p)∨(¬q)真命题D.命题是(¬p)∧(¬q)真命题4.已知,则等于()A.B.C.D.5.设x∈R+,向量=(1,1),=(x,﹣2),且|+|=,则•=()A.﹣2 B.4 C.﹣1 D.06.函数y=ln的值域为R,则实数a的取值范围是()A.[0,+∞)B.[﹣1,0)∪(0,+∞)C.(﹣∞,﹣1)D.[﹣1,1)7.已知函数f(x)=,则下列结论正确的是()A.f(x)是奇函数B.f(x)在[0,]上递增C.f(x)是周期函数D.f(x)的值域为[﹣1,1]8.在△ABC中,若|+|=|﹣|,AB=2,AC=1,E,F为BC 边的三等分点,则•=()A.B.C.D.9.函数f(x)=的单调增区间为()A.B.[kπ﹣,kπ](k∈Z)C.[kπ+,kπ+](k∈Z)D.[kπ+,kπ+](k∈Z)10.曲线在点M (,0)处的切线的斜率为()A.B.C.D.11.假如对定义在R上的函数f(x),对任意x1≠x2,都有x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1)则称函数f(x)为“H函数”.给出下列函数:①y=﹣x3+x+1;②y=3x﹣2(sinx﹣cosx);③y=e x+1;④f(x)=.其中函数式“H函数”的个数是()A.4 B.3 C.2 D.112.已知点A(0,1),曲线C:y=alnx恒过定点B,P为曲线C 上的动点且•的最小值为2,则a=()A.﹣2 B.﹣1 C.2 D.1二、填空题:(本大题共4小题,每小题5分,共20分.把答案填在题中横线上.)13.计算:=.14.函数f(x)=在[a,b]上的最大值为1,最小值为,则a+b=.15.小明在做一道数学题目时发觉:若复数z1=cosα1+isinα1,z2=cosα2+isinα2,z3=cosα3+isinα3(其中α1,α2,α3∈R),则z1•z2=cos(α1+α2)+isin(α1+α2),z2•z3=cos(α2+α3)+isin(α2+α3),依据上面的结论,可以提出猜想:z1•z2•z3=.16.已知G点为△ABC的重心,且⊥,若+=,则实数λ的值为.三、解答题:(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17.已知p:x2﹣8x﹣20≤0;q:1﹣m2≤x≤1+m2.(Ⅰ)若p是q的必要条件,求m的取值范围;(Ⅱ)若¬p是¬q的必要不充分条件,求m的取值范围.18.在△ABC中,角A,B,C所对的边分别为a,b,c,满足:c•cosBsinC+(a+csinB)cosC=0.(Ⅰ)求C的大小;(Ⅱ)若c=,求a+b的最大值,并求取得最大值时角A,B的值.19.学校某争辩性学习小组在对同学上课留意力集中状况的调查争辩中,发觉其在40分钟的一节课中,留意力指数y与听课时间x(单位:分钟)之间的关系满足如图所示的图象,当x∈(0,12]时,图象是二次函数图象的一部分,其中顶点A(10,80),过点B(12,78);当x∈[12,40]时,图象是线段BC,其中C(40,50).依据专家争辩,当留意力指数大于62时,学习效果最佳.(1)试求y=f(x)的函数关系式;(2)老师在什么时段内支配内核心内容,能使得同学学习效果最佳?请说明理由.20.某同学用“五点法”画函数f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|<)在某一个周期内的图象时,列表并填入的部分数据如下表:x x1x2x3ωx+φ0 π2πAsin(ωx+φ)0 0 ﹣0(Ⅰ)恳求出上表中的x1,x2,x3,并直接写出函数f(x)的解析式;(Ⅱ)将f(x)的图象沿x 轴向右平移个单位得到函数g(x),若函数g(x)在x∈[0,m](其中m∈(2,4)上的值域为[﹣,],且此时其图象的最高点和最低点分别为P、Q ,求与夹角θ的大小.21.定义在R上的奇函数f(x)有最小正周期4,且x∈(0,2)时,.(1)求f(x)在[﹣2,2]上的解析式;(2)推断f(x)在(0,2)上的单调性,并赐予证明;(3)当λ为何值时,关于方程f(x)=λ在[﹣2,2]上有实数解?22.设函数f(x)=lnx ﹣﹣bx(Ⅰ)当a=b=时,求函数f(x)的单调区间;(Ⅱ)令F(x)=f(x)+<x≤3),其图象上任意一点P(x0,y0)处切线的斜率k ≤恒成立,求实数a的取值范围;(Ⅲ)当a=0,b=﹣1时,方程f(x)=mx在区间[1,e2]内有唯一实数解,求实数m的取值范围.2022-2021学年重庆一中高二(下)期末数学试卷(文科)参考答案与试题解析一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列函数是奇函数的是()A.f(x)=x|x| B.f(x)=lgx C.f(x)=2x+2﹣x D.f(x)=x3﹣1考点:函数奇偶性的推断.专题:函数的性质及应用.分析:依据函数奇偶性的定义进行推断即可.解答:解:A.f(﹣x)=﹣x|x|=﹣f(x),则函数f(x)为奇函数,满足条件.B.函数的定义域为(0,+∞),关于原点不对称,函数为非奇非偶函数.C.f(﹣x)=2x+2﹣x=f(x),则函数为偶函数.D.f(﹣x)=﹣x3﹣1,则f(﹣x)≠﹣f(x)且f(﹣x)≠f(x),则函数为非奇非偶函数,故选:A点评:本题主要考查函数奇偶性的推断,依据函数奇偶性的定义是解决本题的关键.2.已知a,b∈R,i是虚数单位,若(a+i)(1+i)=bi,则a+bi=()A.﹣1+2i B.1+2i C.1﹣2i D.1+i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:利用复数代数形式的乘法运算化简,然后由复数相等的条件列式求得a,b的值,则答案可求.解答:解:由(a+i)(1+i)=bi,得a﹣1+(a+1)i=bi,∴,即.∴a+bi=1+2i.故选:B.点评:本题考查了复数代数形式的乘法运算,考查了复数相等的条件,是基础题.3.已知命题p:∃x0∈R,sinx0=;命题q:∀x∈R,x2﹣x+1>0.则下列结论正确的是()A.命题是p∨q假命题B.命题是p∧q真命题C.命题是(¬p)∨(¬q)真命题D.命题是(¬p)∧(¬q)真命题考点:复合命题的真假.专题:简易规律.分析:首先推断命题p和q的真假,再利用真值表对比各选项选择.命题p的真假有正弦函数的有界性推断,命题q的真假结合二次函数的图象只需看△.解答:解:命题p:由于﹣1≤sinx≤1,故不存在x∈R,使sinx=,命题p为假;命题q:△=1﹣4=﹣3<0,故∀x∈R,都有x2+x+1>0为真.∴,命题是p∨q是真,命题“p∧q”是假命题,命题是(¬p)∨(¬q)真命题,命题是(¬p)∧(¬q)假命题.故选:C点评:本题考查命题和复合命题真假的推断、正弦函数的有界性及二次函数恒成立等学问,属基本题型的考查.4.已知,则等于()A.B.C.D.考点:两角和与差的余弦函数.专题:计算题;三角函数的求值.分析:依据,利用同角三角函数的平方关系算出sinα==,再利用两角和的余弦公式加以计算,即可得到的值.解答:解:∵α∈(0,),cosα=,∴sinα===,因此,cos(α+)=cosαcos﹣sinαsin =×﹣×=﹣.故选:A点评:本题给出锐角α的余弦,求的余弦值.着重考查了同角三角函数的基本关系和两角和的余弦公式等学问,属于基础题.5.设x∈R+,向量=(1,1),=(x,﹣2),且|+|=,则•=()A.﹣2 B.4 C.﹣1 D.0考点:平面对量数量积的运算.专题:平面对量及应用.分析:通过向量的模求出x,然后利用数量积的运算法则求解即可.解答:解:向量=(1,1),=(x,﹣2),且|+|=,可得=,解得x=2或x=0(舍去,由于x∈R+).则•=(1,1)•(2,﹣2)=2﹣2=0.故选:D.点评:本题考查向量的数量积的求法,向量的模的求法,考查计算力气.。
江苏省南通、徐州、宿迁、淮安、泰州、镇江六市联考2021届高三第一次调研测试数 学2021.02注意事项:1. 答卷前,考生务必将自己的姓名、考生号,考场号、座位号填写在答题卡上。
2.回答选择题时, 选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共8小题,每小题 5分,共 40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合A ={}26x N x ∈<<,B ={}2log (1)2x x -<,则A B =A .{}35x x ≤<B .{}25x x <<C .{3,4}D .{3,4,5} 2.已知2+i 是关于x 的方程250x ax ++=的根,则实数a =A .2-iB .-4C .2D .4 3.哥隆尺是一种特殊的尺子,图1的哥隆尺可以一次性度量的长度为1,2,3,4,5,6.图2的哥隆尺不能一次性度量的长度为A .11B .13C .15D .174.医学家们为了揭示药物在人体内吸收、排出的规律,常借助恒速静脉滴注一室模型来进行描述,在该模型中,人体内药物含量x (单位:mg )与给药时间t (单位:h )近似满足函数关系式0(1e )kt k x k-=-,其中0k ,k 分别称为给药速率和药物消除速率(单位:mg /h ).经测试发现,当t =23时,02k x k=,则该药物的消除速率k 的值约为(ln2≈0.69) A .3100 B .310 C .103 D .10035.(12)n x -的二项展开式中,奇数项的系数和为 A .2nB .12n - C .(1)32n n -+ D .(1)32n n--6.函数sin 21xy x π=-的图象大致为A BC D 7.已知点P 是△ABC 所在平面内一点,有下列四个等式: 甲:PA PB PC ++=0; 乙:()()PA PA PB PC PA PB ⋅-=⋅-; 丙:PA PB PC ==; 丁:PA PB PB PC PC PA ⋅=⋅=⋅. 如果只有一个等式不成立,则该等式为A .甲B .乙C .丙D .丁8.已知曲线ln y x =在A (1x ,1y ),B (2x ,2y )两点处的切线分别与曲线e x y =相切于C (3x ,3y ),D (4x ,4y ),则1234x x y y +的值为A .1B .2C .52D .174二、 选择题:本大题共4小题,每小题5分, 共计20分.在每小题给出的选项中,有多项符合题目要求。
2020-2021学年河南省郑州市高二(上)期末数学试卷(文科)试题数:22,总分:1501.(单选题,5分)2020是等差数列2,4,6,8,…的()A.第1008项B.第1009项C.第1010项D.第1011项2.(单选题,5分)已知a<0<b,则下列结论正确的是()A.a2<b2B. $\frac{a}{b}$ <1C. $\frac{b}{a}$ + $\frac{a}{b}$ >2D.ab>b23.(单选题,5分)已知命题p:∃x0∈(0,+∞),x0lnx0<0,则¬p为()A.∀x∈(0,+∞),xlnx≥0B.∃x0∉(0,+∞),x0lnx0<0C.∃x∈(0,+∞),xlnx<0D.∀x∉(0,+∞),xlnx≥04.(单选题,5分)若椭圆 $\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}$ =1与双曲线$\frac{{x}^{2}}{{m}^{2}}$ -y2=1有相同的焦点,则正实数m为()A.1B.-1C.±1D.± $\sqrt{3}$5.(单选题,5分)已知命题p:x<2,q:2x2-3x-2<0,则p是q的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件6.(单选题,5分)曲线f(x)=ax+lnx在点(1,f(1))处的切线斜率为3,则实数a的值为()A.1B.2C.3D.47.(单选题,5分)在△ABC中,AC= $\sqrt{7}$ ,BC=2,B=60°,则sinA:sinC=()A. $\frac{2}{3}$B. $\frac{3}{2}$C. $\frac{3\sqrt{7}}{7}$D. $\frac{\sqrt{7}}{3}$8.(单选题,5分)设实数x,y满足约束条件 $\left\{\begin{array}cx-y-2≤0\\ x+2y-5≥0\\ y-2≤0\end{array}\right.$ ,则目标函数z=x+3y的最小值为()A.5B.6C.7D.109.(单选题,5分)在等比数列{a n}中,有a3a15=8a9,数列{b n}是等差数列,且b9=a9,则b7+b11等于()A.4B.8C.16D.2410.(单选题,5分)设F1,F2是椭圆C: $\frac{{x}^{2}}{5}$ +y2=1的两个焦点,O为坐标原点,点P在C上且|OP|=2,则△PF1F2的面积为()A.1B.2C.3D. $\frac{7}{2}$11.(单选题,5分)已知函数y=f(x)的导函数y=f′(x)的图象如图所示,则下列结论正确的是()A.函数y=f(x)在(-∞,-1)上是增函数B.x=3是函数y=f(x)的极小值点C.f′(3)<f′(5)D.f(-1)<f(3)12.(单选题,5分)已知函数f(x)=x2-m与函数g(x)=ln $\frac{1}{x}$ -x,x∈[ $\frac{1}{2}$ ,2]的图象上恰有两对关于x轴对称的点,则实数m的取值范围是()A.(0,2-ln2]B.(0,- $\frac{1}{4}$ +ln2]C.[- $\frac{1}{4}$ +ln2,2-ln2)D.(ln2,- $\frac{1}{4}$ +ln2]13.(填空题,5分)已知数列{a n}为递增等比数列,a1,a2是关于x的方程x2-3x+2=0的两个实数根,则其前5项和S5=___ .14.(填空题,5分)已知正实数x,y满足4x+y=8,则xy的最大值为___ .15.(填空题,5分)在△ABC中,角A,B,C的对边分别为a,b,c,b2=(a+c)2-6,B= $\frac{2π}{3}$,则△ABC的面积是___ .16.(填空题,5分)已知抛物线y2=2x的焦点为F,点A、B在抛物线上,若△FAB为等边三角形,则其边长为___ .17.(问答题,10分)已知命题p:当x∈[ $\frac{1}{2}$ ,2]时,a≤x+ $\frac{1}{x}$ 恒成立;命题q:对任意的x∈R,不等式x2-ax+a>0恒成立,若命题p∧q是真命题,求实数a的取值范围.18.(问答题,12分)已知数列{a n}为等差数列,其前n项和为S n,且a2=4,S4=22.(Ⅰ)求{a n}的通项公式;(Ⅱ)设b n= $\frac{1}{{a}_{n}{a}_{n+1}}$ ,求数列{b n}的前n项和T n.19.(问答题,12分)在△ABC中,角A,B,C的对边分别为a,b,c,且(2b-c)cosA=acosC,b+c=6,a=2 $\sqrt{3}$ .求:(Ⅰ)求角A的大小;(Ⅱ)求sin(B-A)的值.20.(问答题,12分)2020年受疫情影响,全球经济均受到不同程度的冲击.为稳妥有序地推进复工复产,2月11日晚,郑州市相关政府部门印发了《郑州市关于应对新型冠状病毒肺炎疫情促进经济平稳健康发展的若干举措》的通知,并出台多条举措促进全市经济平稳健康发展.某工厂为拓宽市场,计划生产某种热销产品,经调查,该产品一旦投入市场就能全部售出.若不举行促销活动,该产品的年销售量为28万件,若举行促销活动,年销售量y(单位:万件)与年促销费用x(x≥0)(单位:万元)满足y=30- $\frac{k}{x+10}$ (k为常数).已知生产该产品的固定成本为80万元,每生产1万件该产品需要再投生产成本160万元,厂家将每件产品的销售价格定为每件产品平均成本的1.5倍(产品成本包括固定成本和生产成本,不包括促销成本)(Ⅰ)求k的值,并写出该产品的利润L(单位:万元)与促销费用x(单位:万元)的函数关系;(Ⅱ)该工厂计划投入促销费用多少万元,才能获得最大利润?21.(问答题,12分)已知椭圆C: $\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$ =1(a>b>0)的离心率为 $\frac{\sqrt{2}}{2}$ ,过左顶点与上顶点的直线与圆x2+y2=$\frac{4}{3}$ 相切.(Ⅰ)求椭圆C的方程;(Ⅱ)已知斜率为k的直线l在y轴上的截距为m(0<|m|<b),l与椭圆交于A,B两点,是否存在实数k使得k OA•k OB=k2成立?若存在,求出k的值,若不存在,说明理由.22.(问答题,12分)已知函数f(x)= $\frac{a}{3}$ x3+x2+3x-2(a∈R).(Ⅰ)若a=-1,求函数y=f(x)单调区间;(Ⅱ)当x∈(1,e3)时,不等式f′(x)>xlnx+2恒成立,求实数a的取值范围.2020-2021学年河南省郑州市高二(上)期末数学试卷(文科)参考答案与试题解析试题数:22,总分:1501.(单选题,5分)2020是等差数列2,4,6,8,…的()A.第1008项B.第1009项C.第1010项D.第1011项【正确答案】:C【解析】:求出a n=2n,即可求出n的值.【解答】:解:由题意可得公差为2,首项为2,则a n=2+2(n-1)=2n,∴2n=2020,即n=1010,故选:C.【点评】:本题考查了等差数列的通项公式,属于基础题.2.(单选题,5分)已知a<0<b,则下列结论正确的是()A.a2<b2B. $\frac{a}{b}$ <1C. $\frac{b}{a}$ + $\frac{a}{b}$ >2D.ab>b2【正确答案】:B【解析】:根据不等式的性质对每一选项进行判断即可.【解答】:解:已知a<0<b,对于a2<b2和ab>b2,若a=2,b=-1,AD选项错误,等于C,b正数,a负数, $\frac{b}{a}$ + $\frac{a}{b}$ =-[(- $\frac{b}{a}$ )+(-$\frac{a}{b}$ )]<-2 $\sqrt{(-\frac{b}{a})\bullet (-\frac{a}{b})}$ =-2,则C选项错误,而 $\frac{a}{b}$ 是负数,故B选项正确,故选:B.【点评】:本题考查了不等式的基本性质及不等式大小的判断,属于基础题.3.(单选题,5分)已知命题p:∃x0∈(0,+∞),x0lnx0<0,则¬p为()A.∀x∈(0,+∞),xlnx≥0B.∃x0∉(0,+∞),x0lnx0<0C.∃x∈(0,+∞),xlnx<0D.∀x∉(0,+∞),xlnx≥0【正确答案】:A【解析】:根据特称命题的否定是全称命题进行判断即可.【解答】:解:命题是特称命题,则其否定是全称命题,即∀x∈(0,+∞),xlnx≥0,故选:A.【点评】:本题主要考查含有量词的命题的否定,全称命题的否定是特称命题,特称命题的否定是全称命题是解决本题的关键,是基础题.4.(单选题,5分)若椭圆 $\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}$ =1与双曲线$\frac{{x}^{2}}{{m}^{2}}$ -y2=1有相同的焦点,则正实数m为()A.1B.-1C.±1D.± $\sqrt{3}$【正确答案】:A【解析】:先根据椭圆的方程求得焦点坐标,进而可知双曲线的半焦距,根据双曲线的标准方程,求得m,答案可得.【解答】:解:椭圆 $\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}$ =1得∴c1= $\sqrt{2}$ ,∴焦点坐标为( $\sqrt{2}$ ,0)(- $\sqrt{2}$ ,0),双曲线 $\frac{{x}^{2}}{{m}^{2}}$ -y2=1的焦点必在x轴上,则半焦距c2= $\sqrt{m+1}$ ,∴ $\sqrt{m+1}$ = $\sqrt{2}$解得实数m=1.故选:A.【点评】:此题考查学生掌握圆锥曲线的共同特征,考查椭圆、双曲线的标准方程,以及椭圆、双曲线的简单性质的应用,利用条件求出a,b,c值,是解题的关键.5.(单选题,5分)已知命题p:x<2,q:2x2-3x-2<0,则p是q的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件【正确答案】:C【解析】:解关于q的不等式,再结合集合的包含关系判断即可.【解答】:解:由命题p:x<2,q:2x2-3x-2<0,即- $\frac{1}{2}$ <x<2,则p是q的必要不充分条件,故选:C.【点评】:本题考查了充分必要条件,考查集合的包含关系,是一道基础题.6.(单选题,5分)曲线f(x)=ax+lnx在点(1,f(1))处的切线斜率为3,则实数a的值为()A.1B.2C.3D.4【正确答案】:B【解析】:对f(x)求导,根据f(x)在点(1,f(1))处的切线斜率为3,得到关于a的方程,再求出a的值.【解答】:解:由f(x)=ax+lnx,得 $f'(x)=a+\frac{1}{x}$ ,∵f(x)在点(1,f(1))处的切线斜率为3,∴f'(1)=3,∴a+1=3,∴a=2.故选:B.【点评】:本题考查了利用导函数研究曲线上某点的切线,考查了方程思想,属基础题.7.(单选题,5分)在△ABC中,AC= $\sqrt{7}$ ,BC=2,B=60°,则sinA:sinC=()A. $\frac{2}{3}$B. $\frac{3}{2}$C. $\frac{3\sqrt{7}}{7}$D. $\frac{\sqrt{7}}{3}$【正确答案】:A【解析】:利用余弦定理|AC|2=|AB|2+|BC|2-2|AB|•|BC|cos∠ABC可求得|AB|,利用正弦定理即可求解.【解答】:解:∵△ABC中,AC= $\sqrt{7}$ ,BC=2,B=60°,∴由余弦定理得:|AC|2=|AB|2+|BC|2-2|AB|•|BC|cos∠ABC,可得:7=|AB|2+4-2|AB|,即|AB|2-2|AB|-3=0,∴|AB|=3.∴sinA:sinC=BC:AB=2:3.故选:A.【点评】:本题考查正弦定理,余弦定理在解三角形中的应用,熟练掌握相关定理是基础,属于基础题.8.(单选题,5分)设实数x,y满足约束条件 $\left\{\begin{array}cx-y-2≤0\\ x+2y-5≥0\\ y-2≤0\end{array}\right.$ ,则目标函数z=x+3y的最小值为()A.5B.6C.7D.10【正确答案】:B【解析】:作出不等式组对应的平面区域,利用目标函数的几何意义,数形结合进行求解即可求得最小值.【解答】:解:画出约束条件 $\left\{\begin{array}cx-y-2≤0\\ x+2y-5≥0\\ y-2≤0\end{array}\right.$ 表示的平面区域,如阴影部分所示:目标函数z=x+3y可化为y=- $\frac{1}{3}$ x+ $\frac{1}{3}$ z,平移目标函数知,当直线y=- $\frac{1}{3}$ x+ $\frac{1}{3}$ z经过点A时,直线y=-$\frac{1}{3}$ x+ $\frac{1}{3}$ z的截距最小,此时z最小.由 $\left\{\begin{array}{l}{x+2y-5=0}\\{x-y-2=0}\end{array}\right.$ ,解得A(3,1),代入目标函数得z=3+3×1=6.即z=x+3y的最小值为6.故选:B.【点评】:本题主要考查了线性规划的应用问题,利用目标函数的几何意义与数形结合法,是解决此类问题的基本方法,是中档题.9.(单选题,5分)在等比数列{a n}中,有a3a15=8a9,数列{b n}是等差数列,且b9=a9,则b7+b11等于()A.4B.8C.16D.24【正确答案】:C【解析】:由等比数列的性质即可求得a9,再由等差数列的性质即可求解.【解答】:解:因为在等比数列{a n}中,有a3a15=8a9,所以 ${{a}_{9}}^{2}$ =8a9,解得a9=8或a9=0(舍),所以b9=a9=8,因为数列{b n}是等差数列,所以b7+b11=2b9=16.故选:C.【点评】:本题主要考查等差数列与等比数列的综合,考查等差数列与等比数列的性质,属于基础题.10.(单选题,5分)设F1,F2是椭圆C: $\frac{{x}^{2}}{5}$ +y2=1的两个焦点,O为坐标原点,点P在C上且|OP|=2,则△PF1F2的面积为()A.1B.2C.3D. $\frac{7}{2}$【正确答案】:A【解析】:由椭圆的方程求出a,b,c的值,再根据|OP|的值推出三角形PF1F2为直角三角形,结合椭圆的定义以及勾股定理即可求解.【解答】:解:由题意可得:a= $\sqrt{5}$ ,b=1,c=2,所以|F1F2|=2c=4,又|OP|=2,所以|OP|= $\frac{1}{2}|{F}_{1}{F}_{2}|$ ,所以三角形PF1F2是以点P为直角的直角三角形,所以|PF1|⊥|PF2|,则|PF ${}_{1}{|}^{2}+|P{F}_{2}{|}^{2}=4{c}^{2}=16$ ,又|PF ${}_{1}|+|P{F}_{2}|=2a=2\sqrt{5}$ ,所以|PF1||PF2|=2,则三角形PF1F2的面积为S= $\frac{1}{2}×|P{F}_{1}||P{F}_{2}|=\frac{1}{2}×2=1$ ,故选:A.【点评】:本题考查了椭圆的定义以及直角三角形的性质,考查了学生的运算能力,属于中档题.11.(单选题,5分)已知函数y=f(x)的导函数y=f′(x)的图象如图所示,则下列结论正确的是()A.函数y=f(x)在(-∞,-1)上是增函数B.x=3是函数y=f(x)的极小值点C.f′(3)<f′(5)D.f(-1)<f(3)【正确答案】:D【解析】:分别根据导数图象,判断函数的单调性,即可.【解答】:解:对于A,由f′(x)图象知,当x<-1时,f′(x)<0,此时函数f(x)为减函数,故A错误,对于B,当-1<x<3时,f′(x)>0,函数为增函数,当3<x<5时,f′(x)<0,函数为减函数,则x=3是函数的一个极大值点,故B错误,对于C,f′(3)=f′(5),故C错误,对于D,当-1<x<3时,f′(x)>0,函数为增函数,则f(-1)<f(3)成立,故D正确,故选:D.【点评】:本题主要考查函数图象的识别和判断,结合函数单调性与导数之间的关系是解决本题的关键,是基础题.12.(单选题,5分)已知函数f(x)=x2-m与函数g(x)=ln $\frac{1}{x}$ -x,x∈[ $\frac{1}{2}$ ,2]的图象上恰有两对关于x轴对称的点,则实数m的取值范围是()A.(0,2-ln2]B.(0,- $\frac{1}{4}$ +ln2]C.[- $\frac{1}{4}$ +ln2,2-ln2)D.(ln2,- $\frac{1}{4}$ +ln2]【正确答案】:B【解析】:由已知得到方程m=x2-lnx-x在[ $\frac{1}{2}$ ,2]上有两解,构造函数h(x)=x2-lnx-x,求出h(x)的最值和端点值,即可得到m的范围.【解答】:解:由已知得到方程f(x)=-g(x)在[ $\frac{1}{2}$ ,2]上有两解,即m=x2-lnx-x在[ $\frac{1}{2}$ ,2]上有解.设h(x)=x2-lnx-x,则h′(x)=2x- $\frac{1}{x}$ -1= $\frac{2{x}^{2}-x-1}{x}$ ,令h′(x)=0得x=1.∴当 $\frac{1}{2}$ <x<1时,f′(x)<0,当1<x<2时,f′(x)>0,∴h(x)在( $\frac{1}{2}$ ,1)上单调递减,在(1,2)上单调递增.∴当x=1时,h(x)取得最小值h(1)=0,∵h( $\frac{1}{2}$ )=ln2- $\frac{1}{4}$ ,h(2)=-ln2+2,且h(2)>h( $\frac{1}{2}$ ),0<m≤ln2- $\frac{1}{4}$ .从而m的取值范围为(0,ln2- $\frac{1}{4}$ ]故选:B.【点评】:本题考查了构造函数法求方程的解及参数范围,解题关键是将已知转化为方程在某区间上有解,属于中档题.13.(填空题,5分)已知数列{a n}为递增等比数列,a1,a2是关于x的方程x2-3x+2=0的两个实数根,则其前5项和S5=___ .【正确答案】:[1]31【解析】:由x2-3x+2=0,解得x,然后求出公比q,再求出S5的值.【解答】:解:由x2-3x+2=0,解得x=1,2,∵数列{a n}为递增等比数列,a1,a2是关于x的方程x2-3x+2=0的两个实数根,∴a1=1,a2=2,∴公比q=2.∴其前5项和S5= $\frac{{2}^{5}-1}{2-1}$ =31.故答案为:31.【点评】:本题考查了一元二次方程的解法、等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于基础题.14.(填空题,5分)已知正实数x,y满足4x+y=8,则xy的最大值为___ .【正确答案】:[1]4【解析】:将4x+y=8转换为y=8-4x,代入xy=x(8-4x)=-4x2+8x=-4(x-1)2+4,解一元二次函数在x>0的区间的最值即可.【解答】:解:已知正实数x,y满足4x+y=8,则y=8-4x,即xy=x(8-4x)=-4x2+8x=-4(x-1)2+4,x>0,且仅当x=1时,xy的最大值为4.故答案为:4.【点评】:本题考查了一元二次不等式的解法,考查了计算能力,属于基础题.15.(填空题,5分)在△ABC中,角A,B,C的对边分别为a,b,c,b2=(a+c)2-6,B= $\frac{2π}{3}$,则△ABC的面积是___ .【正确答案】:[1] $\frac{3\sqrt{3}}{2}$【解析】:在△ABC中,由b2=(a+c)2-6,B= $\frac{2π}{3}$,结合余弦定理b2=a2+c2-2accosB可求得ac=6,从而可求得△ABC的面积.【解答】:解:在△ABC中,∵B= $\frac{2π}{3}$,b2=(a+c)2-6=a2+c2+2ac-6,又b2=a2+c2-2accosB=a2+c2-2ac×(- $\frac{1}{2}$ )=a2+c2+ac,∴ac=6,∴S△ABC= $\frac{1}{2}$ acsinB= $\frac{1}{2}$ ×6× $\frac{\sqrt{3}}{2}$ =$\frac{3\sqrt{3}}{2}$ ,故答案为: $\frac{3\sqrt{3}}{2}$ .【点评】:本题考查余弦定理与三角形面积公式的应用,考查运算能力,属于中档题.16.(填空题,5分)已知抛物线y2=2x的焦点为F,点A、B在抛物线上,若△FAB为等边三角形,则其边长为___ .【正确答案】:[1]【解析】:由已知可得AF=BF=AB,分析出点A,B关于x轴对称,设出点A的坐标代入抛物线方程,再由抛物线定义可得AF的关系式,联立方程即可求解.【解答】:解:因为三角形ABF为等边三角形,则AF=BF,又点F在抛物线的对称轴x轴上,所以点A,B两点的横坐标相等,纵坐标相反,则设点A(m,n)(n>0),所以B(m,-n),满足n2=2m,且AB=2n,又由抛物线的定义可得AF=AB=m+ $\frac{p}{2}=m+\frac{1}{2}$ =2n,联立方程 $\left\{\begin{array}{l}{{n}^{2}=2m}\\{m+\frac{1}{2}=2n}\end{array}\right.$ ,解得n=2 $±\sqrt{3}$ ,所以三角形ABF的边长为2n=4 $±2\sqrt{3}$ ,故答案为:4 $±2\sqrt{3}$ .【点评】:本题考查了抛物线的定义以及等边三角形的性质,考查了学生的运算能力,属于中档题.17.(问答题,10分)已知命题p:当x∈[ $\frac{1}{2}$ ,2]时,a≤x+ $\frac{1}{x}$ 恒成立;命题q:对任意的x∈R,不等式x2-ax+a>0恒成立,若命题p∧q是真命题,求实数a的取值范围.【正确答案】:【解析】:分别解出p、q命题为真命题时a的取值范围,再结合复合命题的真假可得答案.【解答】:解:命题p:当x∈[ $\frac{1}{2}$ ,2]时,a≤x+ $\frac{1}{x}$ 恒成立;若P真命题,则a≤(x+ $\frac{1}{x}$ )min.因为x∈[ $\frac{1}{2}$ ,2],所以x+ $\frac{1}{x}$ ≥2 $\sqrt{x\bullet \frac{1}{x}}$ =2,当且仅当x= $\frac{1}{x}$ 时,即x=1时等号成立,所以a≤2;命题q:对任意的x∈R,不等式x2-ax+a>0恒成立,若q真命题,则,Δ=a2-4a<0,即0<a<4.若命题p∧q是真命题,则p.q都是真命题,即 $\left\{\begin{array}{l}{a≤2}\\{0<a<4}\end{array}\right.$ ,所以0<a≤2.故答案为:实数a的取值范围为{a|0<a≤2}.【点评】:本题主要考查复合命题之间的关系,根据不等式的性质分别判定命题p,q的真假是解决本题的关键,比较基础.18.(问答题,12分)已知数列{a n}为等差数列,其前n项和为S n,且a2=4,S4=22.(Ⅰ)求{a n}的通项公式;(Ⅱ)设b n= $\frac{1}{{a}_{n}{a}_{n+1}}$ ,求数列{b n}的前n项和T n.【正确答案】:【解析】:(Ⅰ)先设等差数列{a n}的公差为d,然后根据已知条件列出关于首项a1与公差d 的方程组,解出a1与d的值,即可计算出等差数列{a n}的通项公式;(Ⅱ)先根据第(Ⅰ)题的结果计算出数列{b n}的通项公式,然后运用裂项相消法即可计算出前n项和T n.【解答】:解:(Ⅰ)由题意,设等差数列{a n}的公差为d,则 $\left\{\begin{array}{l}{{a}_{1}+d=4}\\{4{a}_{1}+6d=22}\end{array}\right.$ ,解得$\left\{\begin{array}{l}{{a}_{1}=1}\\{d=3}\end{array}\right.$ ,∴a n=1+3(n-1)=3n-2,n∈N*,(Ⅱ)由(Ⅰ),可得:b n= $\frac{1}{{a}_{n}{a}_{n+1}}$ = $\frac{1}{(3n-2)(3n+1)}$ =$\frac{1}{3}$ ( $\frac{1}{3n-2}$ - $\frac{1}{3n+1}$ ),∴T n=b1+b2+…+b n= $\frac{1}{3}$ ×(1- $\frac{1}{4}$ )+ $\frac{1}{3}$ ×( $\frac{1}{4}$ - $\frac{1}{7}$ )+…+ $\frac{1}{3}$ ×( $\frac{1}{3n-2}$ - $\frac{1}{3n+1}$ )= $\frac{1}{3}$ ×(1- $\frac{1}{4}$ + $\frac{1}{4}$ - $\frac{1}{7}$ +…+ $\frac{1}{3n-2}$ - $\frac{1}{3n+1}$ )= $\frac{1}{3}$ ×(1- $\frac{1}{3n+1}$ )= $\frac{n}{3n+1}$ .【点评】:本题主要考查等差数列的基本量的运算,以及运用裂项相消法求前n项和.考查了方程思想,转化与化归思想,定义法,以及逻辑推理能力和数学运算能力,是中档题.19.(问答题,12分)在△ABC中,角A,B,C的对边分别为a,b,c,且(2b-c)cosA=acosC,b+c=6,a=2 $\sqrt{3}$ .求:(Ⅰ)求角A的大小;(Ⅱ)求sin(B-A)的值.【正确答案】:【解析】:(Ⅰ)利用正弦定理化简已知等式,变形后利用两角和与差的正弦函数公式及诱导公式化简,根据sinB不为0求出cosA的值,即可确定出A的度数;(Ⅱ)利用余弦定理列出关系式,再利用完全平方公式变形,将b+c,a以及cosA的值代入求出bc的值,由此求得∠B,∠C的值,代入求值即可.【解答】:解:(Ⅰ)已知等式(2b-c)cosA=a•cosC,由正弦定理化简得(2sinB-sinC)cosA=sinA•cosC,整理得:2sinB•cosA=sinCcosA+sinAcosC,即2sinBcosA=sin(A+C)=sinB,在△ABC中,sinB≠0,∴cosA= $\frac{1}{2}$ ,∴A= $\frac{π}{3}$;(Ⅱ)∵b+c=6,a=2 $\sqrt{3}$ ,∴由余弦定理得:a2=b2+c2-2bcosA,即12=b2+c2-bc,∴12=(b+c)2-3bc,∵b+c=6,∴bc=8,∴ $\left\{\begin{array}{l}{b=2}\\{c=4}\end{array}\right.$ 或$\left\{\begin{array}{l}{b=4}\\{c=2}\end{array}\right.$ .当b=2,c=4时,C= $\frac{π}{2}$,B= $\frac{π}{6}$,∴sin(B-A)=sin(- $\frac{π}{6}$)=- $\frac{1}{2}$ .当b=4,c=2时,B= $\frac{π}{2}$,∴sin(B-A)=sin $\frac{π}{6}$ = $\frac{1}{2}$ .综上所述,sin(B-A)的值为- $\frac{1}{2}$ 或 $\frac{1}{2}$ .【点评】:此题考查了正弦、余弦定理,两角和与差的正弦函数公式,熟练掌握定理及公式是解本题的关键.20.(问答题,12分)2020年受疫情影响,全球经济均受到不同程度的冲击.为稳妥有序地推进复工复产,2月11日晚,郑州市相关政府部门印发了《郑州市关于应对新型冠状病毒肺炎疫情促进经济平稳健康发展的若干举措》的通知,并出台多条举措促进全市经济平稳健康发展.某工厂为拓宽市场,计划生产某种热销产品,经调查,该产品一旦投入市场就能全部售出.若不举行促销活动,该产品的年销售量为28万件,若举行促销活动,年销售量y(单位:万件)与年促销费用x(x≥0)(单位:万元)满足y=30- $\frac{k}{x+10}$ (k为常数).已知生产该产品的固定成本为80万元,每生产1万件该产品需要再投生产成本160万元,厂家将每件产品的销售价格定为每件产品平均成本的1.5倍(产品成本包括固定成本和生产成本,不包括促销成本)(Ⅰ)求k的值,并写出该产品的利润L(单位:万元)与促销费用x(单位:万元)的函数关系;(Ⅱ)该工厂计划投入促销费用多少万元,才能获得最大利润?【正确答案】:【解析】:(1)当x=0时,y=28,代入y的解析式中,可求得k的值;由题意可得,每件产品的销售价格为1.5× $\frac{80+160y}{y}$ 元,然后根据利润=销售价格×年销售量-成本,写出L的解析式即可;(2)结合(1)中L的解析式,利用基本不等式,即可得解;【解答】:解:(1)∵不举行促销活动,该产品的年销售量为28万件,∴当x=0时,y=28,∴28=30- $\frac{k}{10}$ ,解得k=20,∴y=30- $\frac{20}{x+10}$ ,∵每件产品的销售价格定为每件产品平均成本的1.5倍,∴每件产品的销售价格为1.5× $\frac{80+160y}{y}$ 元,∴L=y•(1.5× $\frac{80+160y}{y}$ )-(80+160y+x)=40+80y-x=40+80•(30- $\frac{20}{x+10}$ )-x=2440- $\frac{1600}{x+10}$ -x(x≥0).(2)由(1)知,L=2440- $\frac{1600}{x+10}$ -x=2450- $\frac{1600}{x+10}$ -(x+10)≤2450-2 $\sqrt{\frac{1600}{x+10}\bullet (x+10)}$ =2370,当且仅当 $\frac{1600}{x+10}$ =x+10,即x=30时,等号成立,此时L取得最大值,为2370万元,故该工厂计划投入促销费用30万元,才能获得最大利润.【点评】:本题考查函数的实际应用,以及利用基本不等式解决最值问题,选择合适的函数模型是解题的关键,考查学生的逻辑推理能力和运算能力,属于中档题.21.(问答题,12分)已知椭圆C: $\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$ =1(a >b>0)的离心率为 $\frac{\sqrt{2}}{2}$ ,过左顶点与上顶点的直线与圆x2+y2=$\frac{4}{3}$ 相切.(Ⅰ)求椭圆C的方程;(Ⅱ)已知斜率为k的直线l在y轴上的截距为m(0<|m|<b),l与椭圆交于A,B两点,是否存在实数k使得k OA•k OB=k2成立?若存在,求出k的值,若不存在,说明理由.【正确答案】:【解析】:(Ⅰ)根据题意可得e= $\frac{c}{a}$ = $\frac{\sqrt{2}}{2}$ ,b2=a2-c2,$\frac{\sqrt{2}c}{\sqrt{3}}$ = $\frac{2\sqrt{3}}{3}$ ,解得c,a,b,进而可得椭圆的方程.(Ⅱ)假设存在实数k满足题意,直线l的方程为y=kx+m,设A(x1,y1),B(x2,y2),联立直线与椭圆的方程,可得关于x的一元二次方程,由韦达定理可得x1+x2,x1x2,在化简计算k OA k OB=k2,即可解得k的值.【解答】:解:(Ⅰ)因为e= $\frac{c}{a}$ = $\frac{\sqrt{2}}{2}$ ,所以a= $\sqrt{2}$ c,又b2=a2-c2,所以b=c,所以左顶点与上顶点的直线方程为 $\frac{x}{-\sqrt{2}c}$ + $\frac{y}{c}$ =1,即x- $\sqrt{2}$ y+ $\sqrt{2}$ c=0,所以 $\frac{\sqrt{2}c}{\sqrt{3}}$ = $\frac{2\sqrt{3}}{3}$ ,c= $\sqrt{2}$ ,a=2,b=$\sqrt{2}$ ,所以椭圆的方程为 $\frac{{x}^{2}}{4}$ + $\frac{{y}^{2}}{2}$ =1.(Ⅱ)假设存在实数k满足题意,理由如下:由题知- $\sqrt{2}$ <m< $\sqrt{2}$ 且m≠0,直线l的方程为y=kx+m,设A(x1,y1),B(x2,y2),联立$\left\{\begin{array}{l}{y=kx+m}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1}\end{array}\righ t.$ ,消去y得(1+2k2)x2+4kmx+2m2-4=0,所以x1+x2= $\frac{-4km}{1+2{k}^{2}}$ ,x1x2= $\frac{2{m}^{2}-4}{1+2{k}^{2}}$ ,Δ=(4km)2-4(1+2k2)(2m2-4)=8(4k2-m2+2)>0恒成立,因为k OA k OB= $\frac{{y}_{1}{y}_{2}}{{x}_{1}{x}_{2}}$ =$\frac{(k{x}_{1}+m)(k{x}_{2}+m)}{{x}_{1}{x}_{2}}$ =$\frac{{k}^{2}{x}_{1}{x}_{2}+km({x}_{1}+{x}_{2})+{m}^{2}}{{x}_{1}{x}_{2}}$= $\frac{{k}^{2}(2{m}^{2}-4)-4{k}^{2}{m}^{2}+{m}^{2}(1+2{k}^{2})}{2{m}^{2}-4}$ =$\frac{-4{k}^{2}+{m}^{2}}{2{m}^{2}-4}$ ,所以 $\frac{-4{k}^{2}+{m}^{2}}{2{m}^{2}-4}$ =k2,所以(2k2-1)m2=0,解得k=± $\frac{\sqrt{2}}{2}$ ,所以存在实数k=± $\frac{\sqrt{2}}{2}$ ,使得k OA k OB=k2成立.【点评】:本题考查椭圆的方程,直线与椭圆的相交问题,解题中需要一定的运算化简能力,属于中档题.22.(问答题,12分)已知函数f(x)= $\frac{a}{3}$ x3+x2+3x-2(a∈R).(Ⅰ)若a=-1,求函数y=f(x)单调区间;(Ⅱ)当x∈(1,e3)时,不等式f′(x)>xlnx+2恒成立,求实数a的取值范围.【正确答案】:【解析】:(Ⅰ)将a=-1代入f(x)中,求出f'(x),根据导函数f'(x)在不同区间上的符号,确定f(x)的单调区间;(Ⅱ)对f(x)求导,将f′(x)>xlnx+2恒成立转化为 $a>\frac{lnx}{x}-\frac{2}{x}-\frac{1}{x^{2}}$ 恒成立,然后令g(x)= $\frac{lnx}{x}$ - $\frac{2}{x}$ - $\frac{1}{x^{2}}$ ,判断g(x)的单调性,进一步求出a的取值范围.【解答】:解:(Ⅰ)f(x)定义域为R,由a=-1,得 $f(x)=-\frac{1}{3}x^{3}+x^{2}+3x-2$ ,∴f′(x)=-x2+2x+3=-(x+1)(x-3),令f′(x)>0,得-1<x<3,令f′(x)<0,得x<-1或x>3∴函数f(x)的单调增区间为(-1,3),单调减区间为(-∞,-1),(3,+∞).(Ⅱ)∵ $f(x)=\frac{a}{3}x^{3}+x^{2}+3x-2$ ,∴f′(x)>xlnx+2,即ax2+2x+3>xlnx+2,∵x∈(1,e3),∴原问题等价于 $a>\frac{lnx}{x}-\frac{2}{x}-\frac{1}{x^{2}}$ 恒成立.令 $g(x)=\frac{lnx}{x}-\frac{2}{x}-\frac{1}{x^{2}},(1<x<e^{3})$ ,则$g′(x)=\frac{1-lnx}{x^{2}}+\frac{2}{x^{2}}+\frac{2}{x^{3}}=\frac{3x-xlnx+2}{x^{3}}$ ,令h(x)=3x-xlnx+2(1<x<e3),则h′(x)=2-lnx,∴当x∈(1,e2)时,h′(x)>0,当x∈(e2,e3)时,h′(x)<0,∴h(x)在区间(1,e2)上是增函数,在区间(e2,e3)上是减函数,又h(1)=5>0,h(e3)=2>0,∴当x∈(1,e3)时,h(x)>0,∴g′(x)>0,∴函数 $g(x)=\frac{lnx}{x}-\frac{2}{x}-\frac{1}{x^{2}}$ 在区间(1,e3)上是增函数,∴ $g(x)<g(e^{3})=\frac{1}{e^{3}}-\frac{1}{e^{6}}$ ,∴ $a≥\frac{1}{e^{3}}-\frac{1}{e^{6}}$ ,即实数a的取值范围为 $[\frac{1}{e^{3}}-\frac{1}{e^{6}},+∞)$.【点评】:本题考查了利用导数研究函数的单调性和根据不等式恒成立求参数的范围,考查了转化思想,属中档题.。
2020-2021学年江苏省南通市如东县高二(上)期末数学试卷一、选择题(共8小题).1.一物体做直线运动,其位移s与时间t的关系是s=t2+2t,则物体在t=2时的瞬时速度为()A.4B.6C.8D.102.命题p:“3<m<4”是命题q:“曲线表示双曲线”的()A.充要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件3.抛物线y=ax2的焦点是直线x+4y﹣1=0与坐标轴的交点,则该抛物线的准线方程是()A.B.x=﹣1C.D.y=﹣14.古代数学著作《九章算术》有如下问题:“今有女子善织,日自倍,五日五尺,问日织几何?”意思是:“女子善于织布,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这名女子每天分别织布多少?”某数学兴趣小组依托某制造厂用织布机完全模拟上述情景,则从第一天开始,要使织布机织布的总尺数为165尺,则所需的天数为()A.7B.8C.9D.105.若函数在区间(1,+∞)单调递增,则k的取值范围是()A.B.[1,+∞)C.[2,+∞)D.(﹣∞,﹣2] 6.已知m>0,xy>0,当x+y=2时,不等式≥恒成立,则m的取值范围是()A.B.[1,+∞)C.(0,1]D.7.在公差不为0的等差数列{a n}中,a1,a2,,,成公比为4的等比数列,则k3=()A.84B.86C.88D.968.已知函数f(x)=lnx,若对任意的x1,x2∈(0,+∞),都有[f(x1)﹣f(x2)](x12﹣x22)>k(x1x2+x22)恒成立,则实数k的最大值是()A.﹣1B.0C.1D.2二、选择题(共4小题).9.如图是函数y=f(x)的导函数的图象,下列结论中正确的是()A.f(x)在[﹣2,﹣1]上是增函数B.当x=3时,f(x)取得最小值C.当x=﹣1时,f(x)取得极小值D.f(x)在[﹣1,2]上是增函数,在[2,4上是减函数10.等差数列{a n}中,a5=11,a12=﹣10,S n是数列{a n}的前n项和,则()A.a1+a16=1B.S8是{S n}中的最大项C.S9是{S n}中的最小项D.|a8|<|a9|11.下列命题中是真命题的是()A.的最小值为2B.当a>0,b>0时,C.若a2+b2=2,则a+b的最大值为2D.若正数a,b满足a+b=2,则的最小值为12.已知F1,F2是椭圆(a1>b1>0)和双曲线(a2>b2>0)的公共焦点,P是它们的一个公共点,且,则以下结论正确的是()A.a12﹣b12=a22﹣b22B.b12=3b22C.=1D.e12+e22的最小值为1+三、填空题:本大题共4小题,每小题5分,共20分。
2020-2021高二下学期第一次月考金牌模拟试卷(二)注意事项:1.本试卷共6页,包含单项选择题(第1题~第8题,共40分)、多项选择题(第9题~第12题,共20分)、填空题(第13题~第16题,共20分)和解答题(第17题~第22题,共70分)四部分.本卷满分150分,考试时间120分钟.2.答卷前,考生务必将自己的姓名、准考证号等用0.5毫米黑色墨水的签字笔填写在答题卡、试卷和草稿纸的指定位置上.3.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,用0.5毫米黑色墨水的签字笔将答案写在答题卡上.写在本试卷或草稿纸上均无效.4.考试结束后,将本试卷、答题卡和草稿纸一并交回.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、单项选择题:(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题意要求的.)1.已知i 是虚数单位,复数12z i =-的虚部为( )A .2-B .2C .2i -D .1【答案】A【分析】根据复数的概念可得出结论.【详解】复数12z i =-的虚部为2-.故选:A.2.一个物体的运动方程为21s t t =-+,其中s 的单位是米,t 的单位是秒,那么物体在3秒末的瞬时速度是( )A .7米/秒B .6米/秒C .5米/秒D .8米/秒 【答案】C【分析】根据导数的物理意义可求得结果.【详解】根据导数的物理意义可知物体在3秒末的瞬时速度是21s t t =-+在3t =时的导数值,因为12s t '=-+,所以物体在3秒末的瞬时速度是1235-+⨯=米/秒.故选:C3.()()444i i i -+=( )A .815i -B .15iC .815i +D .15i - 【答案】A【分析】由41i =,结合复数代数形式的乘法运算,即可化简复数.【详解】()()()()444144815i i i i i i -+=-+=-.故选:A .4.函数y =(x 2-1)n 的复合过程正确的是( )A .y =u n ,u =x 2-1B .y =(u -1)n ,u =x 2C .y =t n ,t =(x 2-1)nD .y =(t -1)n ,t =x 2-1【答案】A【分析】直接根据函数的结构,找到内层函数和外层函数即可得解.【详解】函数y =(x 2-1)n ,可由y =u n ,u =x 2-1,利用复合函数求导.故选:A.5.已知i 是虚数单位,在复平面内,复数2i -+和13i -对应的点之间的距离是( )A B C .5 D .25【答案】C【分析】根据复数的几何意义,分别得到两复数对应点的坐标,再由两点间距离公式,即可得出结果.【详解】由于复数2i -+和13i -对应的点分别为()2,1-,()1,3-,5=.故选:C.6.将一个边长为a 的正方形铁片的四角截去四个边长相等的小正方形,做成一个无盖方盒.若该方盒的体积为2,则a 的最小值为( )A .1B .2C .3D .【答案】C【分析】设出小正方形的边长,表示出方盒的体积,然后求导,判断出单调性,然后求解最大值即可.【详解】设截去的小正方形边长为x ,则方盒高为x ,底边长为2a x -,所以()22,0,2a V a x x x ⎛⎫=-⋅∈ ⎪⎝⎭,则()224(2)(2)(6)V a x x a x x a x a '=-+-=--,令0V '=,得2a x =(舍) 或6a x =,当06a x <<时,0V '>,单调递增;当62a a x <<时,0V '<,单调递减;由题意,则23max2263627a a a a V V a ⎛⎫⎛⎫==-⋅=≥ ⎪ ⎪⎝⎭⎝⎭,则3a ≥,故a 的最小值为3. 故选:C.【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决生活中的优化问题;(4)考查数形结合思想的应用.7.在复平面xOy 内,复数z 对应的向量()1,1OZ =-,z 是复数z 的共轭复数,i 为虚数单位,则复数2z z +的虚部是( )A .1B .-1C .i -D .-3【答案】B【分析】先求出z ,再求出2z z +,从而可求2z z +的虚部.【详解】因为复数z 对应的向量()1,1OZ =-,故1z i =-,故1z i =+,故()22111z z i i i +=-++=-,其虚部为1-,故选:B.8.设函数()f x 是定义在R 上的奇函数,函数()f x 的导函数为()'f x ,且当[0,)x ∈+∞时,()sin ()cos ()f x x f x x ef x ''<-,e 为自然对数的底数,则函数()f x 在R 上的零点个数为( ) A .0B .1C .2D .3【答案】B【分析】为了利用条件()sin ()cos ()f x x f x x ef x ''<-,构造函数()(cos )()g x x e f x =-即可. 【详解】由()sin ()cos e ()f x x f x x f x ''<-,得(cos e)()()sin 0x f x f x x '-->.令()(cos )()g x x e f x =-,因为cos 0x e -≠,所以()0f x =等价于()0g x =.当[0,)x ∈+∞时,()0g x '>,()g x 在[0,)+∞上单调递增,又()f x 是定义在R 上的奇函数,所以()(cos )()g x x e f x =-也是定义在R 上的奇函数,从()g x 在R 上单调递增,又(0)0g =,所以()g x 在R 上只有1个零点,从而可得()f x 在R 上只有1个零点.故选:B.二、多项选择题:(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.)9.设123,,z z z 为复数,10z ≠.下列命题中正确的是( )A .若23z z =,则23z z =±B .若1213z z z z =,则23z z =C .若23z z =,则1213z z z z =D .若2121z z z =,则12z z = 【答案】BC【分析】取特殊值法可判断AD 错误,根据复数的运算及复数模的性质可判断BC.【详解】 由复数模的概念可知,23z z =不能得到23z z =±,例如23,11i i z z =+=-,A 错误;由1213z z z z =可得123()0z z z -=,因为10z ≠,所以230z z -=,即23z z =,B 正确; 因为2121||||z z z z =,1313||||z z z z =,而23z z =,所以232||||||z z z ==,所以1213z z z z =,C 正确; 取121,1z i z i =+=-,显然满足2121z z z =,但12z z ≠,D 错误. 故选:BC10.已知函数()f x 及其导数()'f x ,若存在0x ,使得()()00f x f x '=,则称0x 是()f x 的一个“巧值点”.下列函数中,有“巧值点”的是( )A .2()f x x =B .()x f x e -=C .()ln f x x =D .1()f x x= 【答案】ACD【分析】利用“巧值点”的定义,逐个求解方程()()00f x f x '=判断即可【详解】在A 中,若2()f x x =,则()2f x x '=,则22x x =,这个方程显然有解,故A 符合要求;在B 中,若()xf x e -=,则111()ln x x x f x e e e e -'⎡⎤⎛⎫⎛⎫===-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦',即x x e e --=-,此方程无解,故B 不符合要求;在C 中,若()ln f x x =,则1()f x x '=,由1ln x x=,令ln y x =,1y x =(0x >),作出两函数的图像如图所示,由两函数图像有一个交点可知该方程存在实数解,故C 符合要求;在D 中,若1()f x x =,则21()f x x '=-,由211x x=-,可得1x =-,故D 符合要求. 故选:ACD .11.已知i 为虚数单位,下面四个命题中是真命题的是( )A .342i i +>+B .24(2)()a a i a R -++∈为纯虚数的充要条件为2a =C .()2(1)12z i i =++的共轭复数对应的点为第三象限内的点 D .12i z i +=+的虚部为15i 【答案】BC【分析】根据复数的相关概念可判断A ,B 是否正确,将()2(1)12z i i =++展开化简可判断C 选项是否正确;利用复数的除法法则化简12i z i+=+,判断D 选项是否正确.【详解】对于A ,因为虚数不能比较大小,故A 错误;对于B ,若()242a a i ++-为纯虚数,则24020a a ⎧-=⎨+≠⎩,解得2a =,故B 正确;对于C ,()()()211221242z i i i i i =++=+=-+, 所以42z i =--对应的点为()4,2--位于第三象限内,故C 正确;对于D ,()()()()12132225i i i iz i i i +-++===++-,虚部为15,故D 错误.故选:BC .12.已知函数()2tan f x x x =+,其导函数为()'f x ,设()()cos g x f x x '=,则( ) A .()f x 的图象关于原点对称 B .()f x 在R 上单调递增C .2π是()g x 的一个周期D .()g x 在0,2π⎛⎫⎪⎝⎭上的最小值为【答案】AC【分析】对A :求出()f x 的定义域,再利用奇偶性的定义判断即可;对B :利用()f x 的导数可判断;对C :计算(2)g x π+,看是否等于()g x 即可;对D :设cos t x =,根据对勾函数的单调性可得最值.【详解】()2tan f x x x =+的定义域是,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭∣,其定义域关于坐标原点对称, 且()2tan()2tan (2tan )()f x x x x x x x f x -=-+-=--=-+=-,所以()f x 是奇函数,所以()f x 的图象关于原点对称,故A 项正确;由()2tan f x x x =+,得22()1cos f x x '=+,则2()()cos cos cos g x f x x x x'==+. 22()10cos f x x '=+>恒成立,所以()f x 在,()22k k k Z ππππ⎛⎫-++∈ ⎪⎝⎭上单调递增,并不是在R 上单调递增,故B 项错误; 由2()cos cos g x x x =+,得函数()g x 的定义域是,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭∣22(2)cos(2)cos ()cos(2)cos g x x x g x x x πππ+=++=+=+,故C 项正确; 设cos t x =,当0,2x π⎛⎫∈ ⎪⎝⎭时,(0,1)t ∈, 此时()2()h t g x t t==+,(0,1)t ∈,根据对勾函数的单调性,()h t 在(0,1)上单调递减, ()()13g x h ∴>=,故D 项错误.故选:AC .三、填空题:(本题共4小题,每小题5分,共20分)13.复数1z ,2z 满足121z z ==,12z z -=,则12z z +=______.【答案】1【分析】根据复数的运算法则,进行计算即可.【详解】解:12||||1z z ==,12||-=z z , ∴221122||2||3z z z z -+=,122231z z ∴=-=-;12||1z z ∴+=. 故答案为:1.14.曲线2y lnx x =-在1x =处的切线的倾斜角为α,则sin 2πα⎛⎫+=⎪⎝⎭___________. 【答案】10【分析】对函数求导代入,即可得出tan 3(0)2παα=<<,进而可得结果.【详解】1212,|3x y y x x ='+'==则tan 3(0),sin cos 22ππαααα=<<∴+===()15.若复数z 1=1+3i ,z 2=-2+ai ,且z 1+z 2=b +8i ,z 2-z 1=-3+ci ,则实数a =________,b =________,c =________.【答案】5 -1 2【分析】根据复数的加法法则和减法法则分别求出z 1+z 2,z 2-z 1,再根据复数相等的定义得到方程组,解出即可.【详解】z 1+z 2=(1-2)+(3+a )i =-1+(3+a )i =b +8i ,z 2-z 1=(-2-1)+(a -3)i =-3+(a -3)i =-3+ci ,所以1383b a a c =-⎧⎪+=⎨⎪-=⎩,解得152b a c =-⎧⎪=⎨⎪=⎩.故答案为: 5;-1;2.16.已知()32f x x x =+,()2,01ln ,02x e x g x x x ⎧≤⎪=⎨+>⎪⎩,若函数()()y f g x m =+(m 为实数)有两个不同的零点1x ,2x ,且12x x <,则21x x -的最小值为___________. 【答案】11ln 22+【分析】 由题可知()()0f g x m +=有两个不等实根,设()g x t =,则()f t m =-,根据()f x 在R 上单调递增,结合()g x 的图像可知,()g x t =在(]0,1t ∈上有两个不同的实根,即1221ln 2x e x t =+=,构造函数12211()ln 2t h t x x e t -=-=-,利用导数研究函数的最小值,即可求解. 【详解】()32f x x x =+,求导()2320f x x '=+>,()f x ∴在R 上单调递增.函数()()y f g x m =+有两个不同零点,等价于方程()()0f g x m +=有两个不等实根.设()g x t =,则()f t m =-,又()f x 在R 上单调递增,作出函数()g x 的图像,则问题转化为()g x t =在(]0,1t ∈上有两个不同的实根1x ,2x ,12x x < 则1221ln 2x e x t =+=,则11ln 2x t =,122t x e -=,12211ln 2t x x e t --=-. 设121()ln 2t h t e t -=-,(]0,1t ∈,则()1212t h t e t -'=-,()122102t h t e t -''=+> ()h t '∴在(]0,1t ∈上单调递增,且102h ⎛⎫'= ⎪⎝⎭,由零点存在性定理知,()0h t '=在(]0,1t ∈上有唯一零点,故()h t 在10,2⎛⎫ ⎪⎝⎭上单调递减,在1,12⎛⎫ ⎪⎝⎭上单调递增, 所以()min 111ln 222h t h ⎛⎫==+ ⎪⎝⎭. 故答案为:11ln 22+【点睛】 思路点睛:本题考查利用导数研究函数的零点及最值,利用导数研究方程的根(函数的零点)的策略,研究方程的根或曲线的交点个数问题,可构造函数,转化为研究函数的零点个数问题,可利用导数研究函数的极值、最值、单调性、变化趋势等,从而画出函数的大致图象,然后根据图象判断函数的零点个数.四、解答题:(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.已知复数z =(m 2+5m +6)+(m 2-2m -15)i (m ∈R ).(1)若复数z 是实数,求实数m 的值;(2)若复数z 是虚数,求实数m 的取值范围;(3)若复数z 是纯虚数,求实数m 的值;(4)若复数z 是0,求实数m 的值.【答案】(1)m =5或-3;(2){m |m ≠5且m ≠-3};(3)m =-2;(4)m =-3.【分析】(1)利用虚部等于零列方程求解即可;(2)利用虚部不等于零列不等式求解即可;(3)利用实部等于零且虚部不等于零求解即可;(4)利用实部等于零且虚部等于零求解即可【详解】(1)当m 2-2m -15=0时,复数z 为实数,所以m =5或-3.(2)当m 2-2m -15≠0时,复数z 为虚数.所以m ≠5且m ≠-3.所以实数m 的取值范围为{m |m ≠5且m ≠-3}.(3)当222150,560m m m m ⎧--≠⎨++=⎩时,复数z 是纯虚数,所以m =-2. (4)当222150,560m m m m ⎧--=⎨++=⎩时,复数z 是0,所以m =-3.18.求下列函数的导数.(1)sin y x x =+;(2)2ln 1x y x =+. 【答案】(1)cos 1x +;(2)()22221211x x nx x x +-+.【分析】根据导数的运算法则进行求导即可.【详解】(1)函数的导数:(sin )cos 1y x x x '''=+=+;(2)函数的导数:()()()2222222111212111x nx x x x nx x y x x x +-⋅+-'==++. 【点睛】本题主要考查导数的计算,结合导数的公式以及运算法则是解决本题的关键,比较基础.19.已知复数112z i =-,234z i =+,i 为虚数单位.(1)若复数12z az +,在复平面上对应的点在第四象限,求实数a 的取值范围;(2)若12z z z =,求z 的共轭复数 【答案】(1)11(,)32-;(2)1255i -+ 【分析】(1)化简复数12(13)(42)z az a a i +=++-,再由复数12z az +在复平面上对应的点在第四象限,列出不等式组,即可求解;(2)由复数的除法运算法则,化简得1255z i =--,再根据共轭复数的概念,即可求解. 【详解】(1)由题意,复数1212,34z i z i =-=+, 则1212(34)(13)(42)z az i a i a a i +=-++=++-因为复数12z az +在复平面上对应的点在第四象限,所以130420a a +>⎧⎨-<⎩,解得1132a -<<, 即实数a 的取值范围11(,)32-. (2)由()()()()12123412510123434342555i i z i i z i z i i i -----=====--++-, 所以1255z i =-+. 【点睛】与复数的几何意义相关问题的一般步骤:(1)先根据复数的运算法则,将复数化为标准的代数形式;(2)把复数问题转化为复平面内的点之间的关系,依据复数(,)a bi a b R +∈与复平面上的点(,)a b 一一对应,列出相应的关系求解.20.已知函数3()f x x ax =-在[4,)+∞上为增函数,求a 的取值范围. 【答案】(,48]-∞【分析】由()f x 在区间[4,)+∞上为增函数,可得()0f x '在[4,)+∞上恒成立,即23a x 在[4,)+∞上恒成立,从而可得答案.【详解】因为()23f x x a ='-,且()f x 在区间[4,)+∞上为增函数,所以()0f x '在[4,)+∞上恒成立,即230x a -在[4,)+∞上恒成立,所以23a x 在[4,)+∞上恒成立,因为2234834x ≥⨯=所以48a ,即a 的取值范围为(,48]-∞.21.新冠肺炎疫情发生后,政府为了支持企业复工复产,某地政府决定向当地企业发放补助款,其中对纳税额x (万元)在[]4,8x ∈的小微企业做统一方案,方案要求同时具备下列两个条件:∈补助款()f x (万元)随企业原纳税额x (万元)的增加而增加;∈补助款不低于原纳税额的50%.经测算政府决定采用函数模型()44x m f x x=-+(其中m 为参数)作为补助款发放方案. (1)判断使用参数12m =是否满足条件,并说明理由;(2)求同时满足条件∈∈的参数m 的取值范围.【答案】(1)满足,理由见解析;(2)[]4,12-.【分析】(1)当12m =,求得()'0f x >,得到()f x 在[]4,8x ∈为增函数,又由121442x x x -+≥,结合二次函数的性质,即可得到答案;(2)求得224'()4x m f x x+=,分类讨论求得函数的单调性,得到4m ≥-,再由不等式44x m x +≤在[]4,8上恒成立,求得12m ≤,即可求解.【详解】(1)当12m =时,所以12()44x f x x =-+,可得2112'()04f x x=+>, 所以函数()f x 在[]4,8x ∈为增函数,满足条件①; 又由不等式121442x x x -+≥,可化为216480x x -+≤, 设()21648g x x x =-+,可得对称轴为8x =且在()4,8x ∈为递减函数且()40g =, 所以121()442x f x x x =-+≥恒成立, 综上可得,当使用参数12m =时满足条件;(2)由函数()44x m f x x =-+,可得22214'()44m x m f x x x+=+=, 所以当0m ≥时,()'0f x ≥满足条件①,当0m <时,由()'0f x =,可得x =当)x ⎡∈+∞⎣时,()'0f x ≥,()f x 单调递增,所以4≤,解得40m -≤<,综上可得,4m ≥-,由条件①可知,()2x f x ≥,即不等式44x m x +≤在[]4,8上恒成立,等价于22114(8)1644m x x x ≤-+=--+. 当4x =时,21(8)164y x =--+取最小值12,所以12m ≤, 综上,参数m 的取值范围是[]4,12-.【点睛】本题主要考查函数的实际应用,以及导数在函数的中的应用,其中解答中正确理解题意,结合导数求得函数的单调性是解答的关键,着重考查推理与运算能力.22.已知数列()*11n n a n n ⎛⎫=+∈ ⎪⎝⎭N . (1)证明:n a e <(*n ∈N ,e 是自然对数的底数);(2)若不等式()*11,0n a e n a n +⎛⎫+≤∈> ⎪⎝⎭N 成立,求实数a 的最大值.【答案】(1)证明见解析;(2)最大值为11ln 2-. 【分析】(1)将所要证明的不等式转化为证明()()()ln 101f x x x x =+-<≤在区间(]0,1上小于零,利用导数研究()f x 在区间(]0,1上的单调性和最值,由此证得结论成立.(2)将不等式()*11,0n a e n a n +⎛⎫+≤∈> ⎪⎝⎭N 成立,转化为()()()ln 1011x g x x x ax =+-<≤+在区间(]0,1上()0g x ≤恒成立,利用导数研究()g x 的单调性,结合对a 进行分类讨论,求得a 的取值范围,由此求得a 的最大值.【详解】(1)要证()*11ne n n ⎛⎫+<∈ ⎪⎝⎭N 成立,两边取对数: 只需证明11ln 1n n⎛⎫+< ⎪⎝⎭成立, 令1x n=,01x <≤,构造函数()()()ln 101f x x x x =+-<≤, 即只需证明函数()f x 在区间(]0,1上小于零,由于()1x f x x =-+', 在区间(]0,1上,()0f x '<,函数()f x 单调递减,且()00f =,所以在区间(]0,1上函数()0f x < 所以不等式()*11ne n n ⎛⎫+<∈ ⎪⎝⎭N 成立; (2)对于不等式()11n a e n n +*⎛⎫+≤∈ ⎪⎝⎭N ,两边取对数: 只需不等式11ln 1n n a⎛⎫+≤ ⎪+⎝⎭成立, 令1x n=,01x <≤,构造函数()()()ln 1011x g x x x ax =+-<≤+, 不等式()11n a e n n +*⎛⎫+≤∈ ⎪⎝⎭N 成立,等价于在区间(]0,1上()0g x ≤恒成立其中,()222(21)(1)(1)a x a x g x x ax +-=++' 由分子22(21)0a x a x +-=,得其两个实数根为10x =,2212a x a -=;当12a ≥时,20x ≤, 在区间(]0,1上,()0g x '>,函数()g x 单调递増,由于()()00g x g >=,不等式不成立112a <<时,()20,1x ∈, 在区间()20,x 上()0g x '<,在区间()2,1x 上()0g x '>;函数()g x 在区间()20,x 上单调递减,在区间()2,1x 上单调递增; 且()00g =,只需()11ln 201g a =-≤+,得11ln 2a ≤-111ln 2a -<≤-时不等式成立当01a <≤时,21x ≥,在区间(]0,1上,()0g x '<,函数()g x 单调递减,且()()00g x g <=,不等式恒成立 综上,不等式(),011n a a e n n +*⎛⎫+≤∈ ⎪⎝⎭>N 成立,实数a 的最大值为11ln 2-. 【点睛】可将不等式恒成立问题,转化为函数最值来求解,要注意导数的工具性作用.。
2020-2021学年高二数学下学期期末考试试题一、 选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知随机变量X 服从正态分布N (μ,σ2),且P (μ-2σ<X<μ+2σ)=0.954 4,P (μ-σ<X<μ+σ)=0.682 6.若μ=4,σ=1,则P (5<X<6)=( )A .0.135 9B .0.135 8C .0.271 8D .0.271 6 1.(文科做)若f (x )=x 2+2(a -1)x +2在区间(-∞,4)上是减函数,则实数a 的取值范围是( )A .a <-3B . a >-3C . a ≤-3D .a ≥-32.集合A ={1,2,3,a },B ={3,a },则使A ∪B =A 成立的a 的个数是 ( ) A .2个 B .5个 C .3个 D . 4个3.设集合U ={1,2,3,4,5,6},A ={1,3,5},B ={3,4,5},则∁U (A ∪B )=( )A .{3,6}B .{2,6}C .{1,3,4,5}D .{1,2,4,6}4.已知随机变量ξ,η满足ξ+η=8,且ξ服从二项分布B (10,0.6),则E (η)和D (η)的值分别是( ) A .6和2.4B .2和5.6C .2和2.4D .6和5.64.(文科做)函数y =f (2x -1)的定义域为[0,1],则y =f (x )的定义域为( )A . [0,1]B .⎣⎢⎡⎦⎥⎤12,1 C . [-1,1] D .[]-1,0其线性回归方程一定过的定点是( ) A .(2,2) B .(1,2) C .(1.5,0)D .(1.5,5)6.已知集合A={x|2<x<4},B={x|x<3或x>5},则A ∩B=( )A .{x|2<x<3}B .{x|x<4或x>5}C .{x|2<x<5}D .{x|x<2或x>5}7.设x ∈R ,则“1<x <2”是“|x -2|<1”的( )A .必要而不充分条件B .充分而不必要条件C .充要条件D .既不充分也不必要条件 8.(文科做)已知某四个家庭xx 上半年总收入x (单位:万元)与总投资y (单位:万元)的对照数据如表所示:根据上表提供的数据,若用最小二乘法求出y 关于x 的线性回归方程为y ^=0.7x +0.35,则m 的值为( )A . 3B . 5C . 4D .68.有10件产品,其中3件是次品,从这10件产品中任取两件,用ξ表示取到次品的件数,x 0 1 2 3 y2468x 3 4 5 6y 2.5 3 m 4.5则E (ξ)等于( )A .35B .815C .1415D .1 9. 甲、乙两人同时报考某一所大学,甲被录取的概率为0.6,乙被录取的概率为0.7,两人是否被录取互不影响,则其中至少有一人被录取的概率为( )A .0.12B .0.42C .0.46D .0.889.(文科做)函数f (x )=x 2+x -6的单调增区间是( )A .(-∞,-3)B .[2,+∞)C .[0,2)D .[-3,2]10(文科做).函数f (x )=ax 2+bx +2a -b 是定义在[a -1,2a ]上的偶函数,则a +b =( )A .13B .0C .-13D .1 10.箱子里有5个黑球,4个白球,每次随机取出一个球,若取出黑球,则放回箱中,重新取球;若取出白球,则停止取球,那么在第4次取球之后停止的概率为( )A .C 35C 14C 45B .⎝ ⎛⎭⎪⎫593×49C .35×14D .C 14×⎝ ⎛⎭⎪⎫593×4911. f (x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1, 当f (x )+f (x -8)≤2时,x 的取值范围是( )A .(8,+∞) B.[8,9] C .(8,9] D .(0,8) 12.函数f (x )=log 2(x 2+2x -3)的定义域是( )A .[-3,1]B .(-3,1)C . (-∞,-3)∪(1,+∞)D .(-∞,-3]∪[1,+∞)二.填空题:(本大题共4小题,每小题5分,共20分)13.从装有3个红球,2个白球的袋中随机取出2个球,用ξ表示取到白球的个数,则P (ξ=1)= 13.(文科做)下列不等式:①x <1;②0<x <1;③-1<x <0;④-1<x <1.其中可以作为“x 2<1”的一个充分条件的所有序号为_______14,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体.经过搅匀后,从中随机取一个小正方体,记它的涂漆面数为X ,则X 的均值E (X )=14(文科做).已知f (x )=ax 3+bx +xx ,且f (xx)=xx ,则f (-xx)=________.15.下列是关于男婴与女婴出生时间调查的列联表:那么a= ,b= ,c= ,d= ,e= .16.已知命题“∀x ∈R ,x 2-5x +152a >0”的否定为假命题,则实数a 的取值范围是________三.解答题:(本大题共6小题,共70分)17.(本题满分10分)已知集合P ={x |a +1≤x ≤2a +1},Q ={x |x 2-3x ≤10}.(1)若a =3,求(∁R P )∩Q ;(2)若P ∪Q =Q ,求实数a 的取值范围.18.(本题满分12分)设命题p :函数f (x )=lg (ax 2-4x +a )的定义域为R ;命题q :不等式2x 2+x >2+ax 在x ∈(-∞,-1)上恒成立,如果命题“p ∨q ”为真命题,命题“p ∧q ”为假命题,求实数a 的取值范围.19.(本题满分12分)甲、乙两人各进行3次射击,甲每次击中目标的概率为1/2,乙每次击中目标的概率为2/3 (1)记甲击中目标的次数为X ,求X 的概率分布列及数学期望E (X ); (2)求乙至多击中目标2次的概率; (3)求甲恰好比乙多击中目标2次的概率19(文科做)已知p :A ={x |x 2-2x -3≤0,x ∈R },q :B ={x |x 2-2mx +m 2-9≤0,x ∈R ,m ∈R }.(1)若A ∩B =[1,3],求实数m 的值;(2)若p 是非q 的充分条件,求实数m 的取值范围20(本题满分12分)将编号为1,2,3,4的四个材质和大小都相同的球,随机放入编号为1,2,3,4的四个盒子中,每个盒子放一个球,ξ表示球的编号与所放入盒子的编号正好相同的个数. (1)求1号球恰好落入1号盒子的概率;(2)求ξ的分布列.20(文科做)某城市随机抽取一年(365天)内100天的空气质量指数API 的监测数据,结果统计如下: API [0, 50] (50, 100] (100, 150] (150, 200] (200, 250] (250, 300] (300, +∞) 空气 质量 优 良 轻微 污染 轻度 污染 中度 污染 中度 重污染 重度 污染 天数413183091115(1)若某企业每天由空气污染造成的经济损失S (单位:元)与空气质量指数API(记为ω)的关系式为S =⎩⎪⎨⎪⎧0,0≤ω≤100,3ω-200,100<ω≤300,2000,ω>300.试估计在本年内随机抽取一天,该天经济损失S 大于400元且不超过700元的概率;(2)若本次抽取的样本数据有30天是在供暖季,其中有8天为重度污染,完成下面2×2列联表,并判断能否有95%的把握认为该市本年空气重度污染与供暖有关?附:P (K 2≥k 0)0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001 k 0 1.323 2.072 2.706 3.841 5.024 6.635 7.87910.828K 2=n ad -bc 2a +bc +d a +cb +d非重度污染重度污染合计供暖季非供暖季合计10021.(本题满分12分)已知函数f(x)=x·|x|-2x.(1)求函数f(x)=0时x的值;(2)画出y=f(x)的图象,并结合图象写出f(x)=m有三个不同实根时,实数m的取值范围.22.已知关于x的不等式|2x+1|-|x-1|≤log2a(其中a>0).(1)当a=4时,求不等式的解集;(2)若不等式有解,求实数a的取值范围.西宁市第四高级中学xx —17xx 第二学期期末测试试题答案高二数学1 2 3 4 5 6 A DABCD7 8 9 10 11 12 AB D D D B (13)0.6 13文(2)(3)(4) (14)6/5 文 xx (15)47 92 88 82 53 (16) a>5/617. 解 (1)因为a =3,所以P ={x |4≤x ≤7},∁R P ={x |x <4或x >7}.又Q ={x |x 2-3x -10≤0}={x |-2≤x ≤5},所以(∁R P )∩Q ={x |x <4或x >7}∩{x |-2≤x ≤5}={x |-2≤x <4}.(2)当P ≠∅时,由P ∪Q =Q 得P ⊆Q ,所以⎩⎪⎨⎪⎧a +1≥-2,2a +1≤5,2a +1≥a +1,解得0≤a ≤2;当P =∅,即2a +1<a +1时,有P ⊆Q ,得a <0. 综上,实数a 的取值范围是(-∞,2]. 18.对于命题p :Δ<0且a >0,故a >2;对于命题q :a >2x -2x+1在x ∈(-∞,-1)上恒成立,又函数y =2x -2x+1为增函数,所以⎝⎛⎭⎪⎫2x -2x+1<1,故a ≥1,命题“p ∨q ”为真命题,命题“p ∧q ”为假命题,等价于p ,q 一真一假.故1≤a ≤2.19. (1)X 的概率分布列为X 0 1 2 3 PE (X )=0E (X )=3(2)乙至多击中目标2次的概率为1(3)设甲恰好比乙多击中目标2次为事件A ,甲恰好击中目标2次且乙恰好击中目标0次为事件B 1,甲恰好击中目标3次且乙恰好击中目标1次为事件B 2,则A=B 1+B 2.B 1,B 2为互斥事件,P (A )=P (B 1)+P (B 2)19 文科做(1)A ={x |-1≤x ≤3,x ∈R },B ={x |m -3≤x ≤m +3,x ∈R ,m ∈R },∵A ∩B =[1,3],∴m =4.(2)∵p 是綈q 的充分条件,∴A ⊆∁R B ,∴m >6或m <-4.20.(1)设事件A 表示“1号球恰好落入1号盒子”,P (A )=A 33A 44=14,所以1号球恰好落入1号盒子的概率为14.(2)ξ的所有可能取值为0,1,2,4.P (ξ=0)=3×3A 44=38,P (ξ=1)=4×2A 44=13, P (ξ=2)=C 24A 44=14,P (ξ=4)=1A 44=124.所以随机变量ξ的分布列为20.文科做(1)记“在本年内随机抽取一天,该天经济损失S 大于400元且不超过700元”为事件A .由400<S ≤700,即400<3ω-200≤700,解得200<ω≤300,其满足条件天数为20.所以P (A )=20100=15. (2)根据以上数据得到如下列联表:非重度污染重度污染合计 供暖季 22 8 30 非供暖季 63 7 70 合计85 15100K 2=100×63×8-22×7285×15×30×70≈4.575>3.841,所以有95%的把握认为该市本年空气重度污染与供暖有关.21.(1)由f (x )=0可解得x =0,x =±2,所以函数f (x )=0时x 的值为-2,0,2. (2)f (x )=x |x |-2x ,即f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,-x 2-2x ,x <0.图象如图由图象可得实数m ∈(-1,1).22. (1)当a =4时,不等式为|2x +1|-|x -1|≤2.当x <-12时,-x -2≤2,解得-4≤x <-12;当-12≤x ≤1时,3x ≤2,解得-12≤x ≤23;当x >1时,x ≤0,此时x 不存在,∴原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-4≤x ≤23. (2)令f (x )=|2x +1|-|x -1|,则f (x )=⎩⎪⎨⎪⎧-x -2,x <-12,3x ,-12≤x ≤1,x +2,x >1.故f (x )∈⎣⎢⎡⎭⎪⎫-32,+∞,即f (x )的最小值为-32. 若f (x )≤log 2a 有解,则log 2a ≥-32,解得a ≥24,即a 的取值范围是⎣⎢⎡⎭⎪⎫24,+∞ 【感谢您的阅览,下载后可自由编辑和修改,关注我 每天更新】。
【全国市级联考】江苏省泰州市2017-2018高二第一学期期末考试数学(文科)试题 学校:___________姓名:___________班级:___________考号:___________
一、填空题 1.命题“若0x,则20x”的逆命题为______.
2.复数2(1i)(i为虚数单位)在复平面上对应的点的坐标为______. 3.抛物线28xy的准线方程是______.
4.曲线sinyx在4x处切线的斜率为__________.
5.双曲线221169xy的两条渐近线的方程为________.
6.椭圆22221(0)xyabab在其上一点00(,)Pxy处的切线方程为00221xxyyab.类
比上述结论,双曲线22221(0,0)xyabab在其上一点00(,)Pxy处的切线方程为______. 7.若“11x”是“不等式2xm” 成立的充分条件,则实数m的取值范围
是______. 8.抛物线22(0)ypxp上一点P(2,)m到其焦点F的距离为4,则p______.
9.已知22334422,33,4433881515,若
8888aa
(*aN),则a______. 10.已知双曲线22125144xy左支上一点P到左焦点的距离为16,则点P到右准线的
距离为______. 11.P为椭圆221164xy上一点,2,0Q(),则线段PQ长度的最小值为______. 12.若函数2ln(21)0)yxaxaxa(在1x处取得极小值,则a的取值范围是
______. 13.已知椭圆:22221(0)xyabab的左、右焦点分别为12,FF,点,AB在椭圆
上,1120AFFF且22AFFB,则当[2,3]时,椭圆的离心率的取值范围为______. 14.已知函数31()243fxxax在[1,2]上单调递增,则a的取值范围为______.
二、解答题 15.已知复数121i,46izz.
⑴求21
z
z;
⑵若复数1izb(R)b满足1zz为实数,求||z.
16.已知p:xR,20xaxa;q:方程22221+124xyaa表示双曲线.
⑴若p为真命题时,求实数a的取值范围; ⑵当p为假命题,且q为真命题,求实数a的取值范围. 17.⑴当1x时,求证:2211xxxx; ⑵已知Rx,221,4,2axxbxcxx.试证明,,abc至少有一个不小于1.
18.某工厂利用辐射对食品进行灭菌消毒,现准备在该厂附近建一职工宿舍,并对宿舍
进行防辐射处理,建房防辐射材料的选用与宿舍到工厂的距离有关.若建造宿舍的所有费用p(万元)和宿舍与工厂的距离kmx的关系为:1000285pxx.为了交通方便,工厂与宿舍之间还要修一条简易便道,已知修路每公里成本为5万元,工厂一次性补贴职工交通费21252x万元.设fx为建造宿舍、修路费用与给职工的补贴之和. (1)求fx的表达式; (2)宿舍应建在离工厂多远处,可使总费用fx最小,并求最小值.
19.已知椭圆22221(0)xyabab的离心率为32,左顶点为(2,0)A,过原点且
斜率不为0的直线与椭圆交于,BC两点,其中点B在第二象限,过点B作x轴的垂线交AC于点D. ⑴求椭圆的标准方程; ⑵当直线BC的斜率为2时,求ABD的面积; ⑶试比较2AB与ADAC大小. 20.已知函数()ln(0)xfxexx的最小值为m. ⑴设()'()gxfx,求证:()gx在(0,)上单调递增; ⑵求证:2m;
⑶求函数()lnxmhxeex的最小值. 参考答案 1.若20x,则0x
【解析】 命题“若0x,则20x”的逆命题为“若20x,则0x”. 2.(0,2) 【解析】 复数2(1i)2i在复平面上对应的点的坐标为0,2. 3.2y 【解析】 由题意可得p=4,所以准线方程为2y,填2y
4.22.
【解析】 因为'()cosfxx,且ππ2()cos442f,即函数sinfxx在4x处的切线的斜
率为22. 5.34yx 【分析】
令220169xy解得结果 【详解】 令220169xy解得两条渐近线的方程为34yx 【点睛】 本题考查双曲线渐近线的方程,考查基本分析求解能力,属基础题. 6.00221xxyyab 【解析】 由类比,得双曲线22221(0,0)xyabab在其上一点00,Pxy处的切线方程为00221xxyyab
.
7.[1,1] 【解析】 因为222xmmxm,且“11x”是“不等式2xm” 成立的充分
条件,所以[1,1][2,2]mm,则2121mm,解得11m,即实数m的取值范围是[1,1]. 点睛:本题考查充分条件和必要条件的判定;在处理涉及数集的充分条件或必要条件的判定时,往往将问题转化为集合间的包含关系处理,已知命题:,:pxAqxB,若AB,则p是q的充分条件,q是p的必要条件. 8.4
【解析】 因为抛物线22(0)ypxp上一点2,Pm到其焦点F的距离为4,所以242p,解得4p. 点睛:本题考查抛物线的定义;在求抛物线上的点到焦点的距离时,往往利用抛物线的定义将点到焦点的距离转化为该点到准线的距离,但要注意抛物线是哪一种标准方程,如抛物线22(0)ypxp上一点,Pxy到其焦点F的距离为2px,抛物线22(0)xpyp上
一点,Pxy到其焦点F的距离为2py,等等. 9.63
【解析】
由22222222334422,33,44212131314141归纳,得
2288888181,即88886363,即63a. 10.10
【解析】
因为双曲线22125144xy左支上一点P到左焦点的距离为16,所以该点到右焦点的距离为
161026,且离心率为251441355cea,设点P到右准线的距离为d,则由双
曲线的第二定义,得26135d,解得10d,即点P到右准线的距离为10. 点睛:本题考查双曲线的第一定义和第二定义的应用;椭圆和双曲线均有两个定义,第一定义是到两个定点的和(或差的绝对值)为定值的动点的轨迹,但要注意定值和两个定点间的距离的大小关系,第二定义是圆锥曲线的统一定义,是到定点到定直线的距离的比值为常数的动点的轨迹,但要注意定点不在定直线上.
11.263 【解析】 设(,)Pxy,则224(44)4xyx,2223(2)484PQxyxx
2382426()4393x,即线段PQ长度的最小值为263.
12.12a 【解析】
由题意,得2121221112221axxaxaxayaxaxxx,
若112a时,令0y,得10,1,2xa,令0y,得11,2xa,即函数2ln21yxaxax
在1x处取得极大值(舍);当112a时,
2210axyx
恒成立,即函数不存在极值;若1012a时,令0y,得10,1,2xa,令0y,得1,12xa,即若函数2ln21yxaxax在1x处取得极小值,此时12a. 点睛:本题考查利用导数研究函数的极值;利用导数研究函数的极值时,要注意可导函数fx在0xx时存在极值,则00fx,且0x两侧的导函数异号,若0xx时,
0fx, 0xx时, 0fx,则fx在0xx时取得极小值,往往忽视验证两
侧的导函数是否异号.
13.53[,]53 【解析】 因为1120AFFF,所以可设2(,),(,0),(,)bAcFcBxya,由22AFFB,得2(2,)(,)bcxcya,即22((1),)bBca,因为22((1),)bBca在椭圆22221xyab
上,所以2222222(1)()1bcaab,即22222(2)cba,即22222(2)cba,
即2222(43)(1)ca,即2211414333ca在区间[2,3]上为增函数,所以53[,]53ca,即椭圆的离心率的取值范围为53[,]
53.
点睛:本题考查椭圆的几何性质、平面向量的共线和垂直的判定;在研究椭圆中过焦点的弦时,要注意与对称轴垂直的情形,即椭圆和双曲线的通径,如过椭圆22221(0)xyabab
的左焦点(,0)Fc与对称轴垂直的弦称为椭圆的通径,长度为22ba,记住结论可减少运算量. 14.31[2,]2 【解析】 当0a时,3143fxx在1,2上递增,显然成立;当0a时,