双曲线中的最值问题(教学课件2019)
- 格式:ppt
- 大小:164.00 KB
- 文档页数:9
圆锥曲线第2讲 双曲线【知识要点】 一、双曲线的概念 1. 双曲线的第一概念:平面内到两个定点、的距离之差的绝对值等于定长()的点的轨迹叫双曲线,这两个定点叫做双曲线的核心,两个核心之间的距离叫做焦距。
注1:在双曲线的概念中,必需强调:到两个定点的距离之差的绝对值(记作),不但要小于这两个定点之间的距离(记作),而且还要大于零,不然点的轨迹就不是一个双曲线。
具体情形如下:(ⅰ)当时,点的轨迹是线段的垂直平分线; (ⅱ)当时,点的轨迹是两条射线; (ⅲ)当时,点的轨迹不存在; (ⅳ)当时,点的轨迹是双曲线。
专门地,假设去掉概念中的“绝对值”,那么点的轨迹仅表示双曲线的一支。
注2:假设用M 表示动点,那么双曲线轨迹的几何描述法为(,),即。
2. 双曲线的第二概念:平面内到某必然点的距离与它到定直线的距离之比等于常数()的点的轨迹叫做双曲线。
二、双曲线的标准方程 1. 双曲线的标准方程(1)核心在轴、中心在座标原点的双曲线的标准方程是(,); (2)核心在轴、中心在座标原点的双曲线的标准方程是(,).注:假设题目已给出双曲线的标准方程,那其核心究竟是在轴仍是在轴,要紧看实半轴跟谁走。
假设实半轴跟走,那么双曲线的核心在轴;假设实半轴跟走,那么双曲线的核心在轴。
2. 等轴双曲线当双曲线的实轴与虚轴等长时(即),咱们把如此的双曲线称为等轴双曲线,其标准方程为()注:假设题目已明确指出所要求的双曲线为等轴双曲线,那么咱们可设该等轴双曲线的方程为(),再结合其它条件,求出的值,即可求出该等轴双曲线的方程。
进一步讲,假设求得的,那么该等轴双曲线的核心在轴、中心在座标原点;假设求得的,那么该等轴双曲线的核心在轴、中心在座标原点。
三、双曲线的性质以标准方程(,)为例,其他形式的方程可用一样的方式取得相关结论。
(1)范围:,即或;1F 2F a 22120F F a <<a 221F F c 202=a 21F F c a 22=c a 22>c a 220<<a MF MF 221=-ca 220<<c F F 221=2121F F MF MF <-e 1>e x 12222=-b y a x 0>a 0>b y 12222=-b x a y 0>a 0>b x yx x y yb a 22=λ=-22y x 0≠λλ=-22y x 0≠λλ0>λx 0<λy 12222=-b y a x 0>a 0>b ax ≥a x ≥a x -≤(2)对称性:关于轴、轴轴对称,关于坐标原点中心对称;(3)极点:左、右极点别离为、; (4)核心:左、右核心别离为、; (5)实轴长为,虚轴长为,焦距为;(6)实半轴、虚半轴、半焦距之间的关系为;(7)准线:; (8)焦准距:;(9)离心率:且. 越小,双曲线的开口越小;越大,双曲线的开口越大;(10)渐近线:; (11)焦半径:假设为双曲线右支上一点,那么由双曲线的第二概念,有,;(12)通径长:.注1:双曲线(,)的准线方程为,渐近线方程为。
教师日期学生课程编号课型课题椭圆与双曲线教学目标1.理解椭圆的定义,会推导椭圆的标准方程;掌握两种类型的椭圆的标准方程(焦点位于x轴或y 轴)2.掌握椭圆的几何性质和应用3.掌握双曲线的定义和焦距顶点、渐近线的概念;掌握双曲线的标准方程4掌握椭圆的几何性质和应用5.直线被椭圆所截得的弦长公式;与椭圆有关的弦长、中点、垂直等问题的一些重要解题技巧;6.在最值、定值等问题中进一步树立数形结合、函数方程、等价转化、分类讨论等重要数学思想教学重点1.椭圆和双曲线的几何性质和应用;2.直线被椭圆所截得的弦长公式;与椭圆有关的弦长、中点、垂直等问题的一些重要解题技巧;3.在最值、定值等问题中进一步树立数形结合、函数方程、等价转化、分类讨论等重要数学思想教学安排版块时长1 知识梳理152 例题解析503 巩固训练354 师生总结105 课后练习10椭圆与双曲线1.已知点A (2,3)、B (1,5)则直线AB 的倾角为( )A.arctan2B.arctan(-2)C.2π+arctan2D. 2π+arctan 21【难度】★ 【答案】D2.下列四个命题中的真命题是( )A.经过定点000(,)P x y 的直线都可以用方程00()y y k x x -=-.B.经过任意两个不同的点111222(,),(,)P x y P x y 的直线方程都可以用方程121121()()()()y y x x x x y y --=--表示. C.不经过原点的直线方程都可以用方程1x ya b+=表示.D.经过定点(0,)A b 的直线都可以用方程y kx b =+表示.【难度】★ 【答案】B3.在ABC ∆中,a 、b 、c 为三内角所对的边长,且C 、B 、A sin lg sin lg sin lg 成等差数列,则直线a A y A x =+sin sin 2和c C y B x =+sin sin 2的位置关系是.【难度】★★【答案】两直线重合4.设),(y x P 为圆1)1(22=-+y x 上任意一点,要使不等式m y x ++≥0恒成立,则m 取值范围是()A .m ≥0B .m ≥12-C .m ≥12+D .m ≥21-【难度】★★ 【答案】B5.过圆522=+y x 内点⎪⎪⎭⎫⎝⎛23,25P 有n 条弦,这n 条弦的长度成等差数列{}n a ,如果过P 点的圆的最短的弦长为1a ,最长的弦长为n a ,且公差)31,61(∈d ,那么n 的取值集合为 .【难度】★★ 【答案】{}7,6,5热身练习一、椭圆1.椭圆定义:平面内到两个定点1F ,2F (12||2F F c =)的距离的和等于常数2(0)a a c >>的 点的轨迹叫做椭圆(ellipse ).这两个定点1F ,2F 叫做椭圆的焦点(foci of anellipse ),两个焦点的距离12||2F F c =叫做焦距(distance between two foci ).注意:若设动点为P ,则 (1)当1212||||||PF PF F F +>时,动点P 的轨迹是椭圆. (2)当1212||||||PF PF F F +=时,动点P 的轨迹是线段.(3)当1212||||||PF PF F F +<时,动点P 的轨迹不存在.2.椭圆的标准方程及性质(Standard equations and properties of ellipse ):焦点在x 轴上焦点在y 轴上标准方程222222201a b x y b c a a b >>⎛⎫+= ⎪+=⎝⎭222222201a b y x b c a a b >>⎛⎫+= ⎪+=⎝⎭图形焦点坐标 1(,0)F c -,2(,0)F c 1(0,)F c ,2(0,)F c -焦距 2c2c范围 a x a -≤≤,b y b -≤≤b x b -≤≤,a y a -≤≤对称性 x 轴、y 轴和原点对称顶点坐标 (,0)a ,(,0)a -,(0,)b ,(0,)b -(,0)b ,(,0)b -,(0,)a ,(0,)a -两轴 长轴长2a ,短轴长2b3.椭圆的其他性质:①椭圆上到中心的距离最小的点是短轴的两个端点,到中心距离最大的点是长轴的两个端点.②椭圆上到焦点距离最大、最小的点是长轴的两个端点,最大距离是a c +,最小距离是a c -.知识梳理③设椭圆的两个焦点为1F ,2F ,P 是椭圆上的点,当点P 在短轴的端点时12F PF ∠最大.④椭圆的焦点的光学性质:从任一焦点发出的光线通过椭圆面反射后,反射光线经过另一焦点. 4.椭圆中的相关结论:①若在椭圆上,则过的椭圆的切线方程是; ②若在椭圆外 ,则过作椭圆的两条切线切点为,则切点弦的直线方程是; ③ 椭圆 ()的左右焦点分别为,点为椭圆上任意一点,则椭圆的焦点角形的面积为; ④是椭圆的不平行于对称轴的弦,为的中点,则,即; ⑤已知椭圆,直线交椭圆于,两点,点是椭圆上异于,的任一点,且,均存在,则.⑥过椭圆22221(0)x y a b a b+=>>的右焦点F 作直线交y 轴于点P ,交椭圆于点M 和N ,若1PM MF λ=u u u u r u u u u r ,2PN NF λ=u u u r u u u r ,则21222a bλλ+=-.5.直线与椭圆的位置关系(The positional relation between a line and an ellipse) 联立方程,看∆. 0∆>21||k a ∆+(其中a 为二次项系数); 0∆=,直线与椭圆相切,也即直线与椭圆只有一个公共点;0∆<,直线与椭圆无交点.000(,)P x y 22221x y a b +=0P 00221x x y ya b +=000(,)P x y 22221x y a b +=0P 12P P 、12P P 00221x x y ya b+=22221x y a b+=0a b >>12,F F P 12F PF γ∠=122tan 2F PF S b γ∆=AB 22221x y a b+=00(,)M x y AB 22OM AB b k k a ⋅=-0202y a x b K AB -=22221x y a b+=y kx =A B P A B PA k PB k PA k ⋅PB k 22b a=-二、双曲线1.双曲线定义:到两个定点F 1与F 2的距离之差的绝对值等于定长(12F F <)的点的轨迹叫做双曲线(hyperbola ),这两个定点叫双曲线的焦点(foci of a hyperbola ).符号语言:||MF 1|-|MF 2||=2a (2a <|F 1F 2|).当|MF 1|-|MF 2|=2a 时,曲线仅表示焦点F 2所对应的双曲线的一支;当|MF 1|-|MF 2|=-2a 时,曲线仅表示焦点F 1所对应的双曲线的一支;当2a =|F 1F 2|时,轨迹为分别以F 1,F 2为端点的两条射线;当2a >|F 1F 2|时,动点轨迹不存在.2.双曲线标准方程的两种形式:焦点在x 轴上焦点在y 轴上标准方程222222201a b x y b a c a b >⎛⎫-= ⎪+=⎝⎭, 222222201a b y x b a c a b >⎛⎫-= ⎪+=⎝⎭, 图形焦点坐标 1(,0)F c -,2(,0)F c 1(0,)F c -,2(0,)F c焦距 2c 2c范围 ,x a y R ≥∈ ,y a x R ≥∈对称性 x 轴、y 轴和原点对称顶点坐标 (,0)a ,(,0)a -(,0)b ,(,0)b -两轴 实轴长2a ,虚轴长2b渐近线x ab y ±= a y x b=±3.双曲线中的相关结论:①若在双曲线()上,则过的双曲线的切线方程是; x yM F 12F xyMF 12F 000(,)P x y 22221x y a b-=0,0a b >>0P 00221x x y ya b-=②若在双曲线()外 ,则过作双曲线的两条切线切点为,则切点弦的直线方程是; ③双曲线()的左右焦点分别为,点P 为双曲线上任意一点,则双曲线的焦点角形的面积为;④是双曲线()的不平行于对称轴的弦,为的中点,则,即;⑤已知双曲线,直线y kx =交双曲线于A ,B 两点,点是双曲线上异于,的任一点,且,均存在,则.⑥过双曲线22221x y a b-=的右焦点F 作直线交y 轴于点P ,交双曲线于点M 和N ,若1PM MF λ=u u u u r u u u u r ,2PN NF λ=u u u r u u u r ,则21222a bλλ+=.4.直线0=++C By Ax 和双曲线12222=-by a x 的位置关系:将直线的方程与双曲线的方程联立成方程组,消元转化为关于x 或y 的方程.(1)若方程为一元一次方程,则直线和双曲线的的渐近线平行,直线和双曲线有一个交点,但 不相切不是切点;(2)若为一元二次方程,则 ①若0>∆,则直线和双曲线相交,有两个交点(或两个公共点); ②若0∆=,则直线和双曲线相切,有一个切点;③若0∆<,则直线和双曲线相离,无公共点.5.弦长公式:直线:l y kx b =+与椭圆或双曲线22221(00)x y a b a b-=>>,相交于)()(2211y x B y x A ,,,则 2122122124)(11x x x x k x x k AB -++=-+=.000(,)P x y 22221x y a b-=0,0a b >>0P 12P P 、12P P 00221x x y ya b-=22221x y a b-=0,0a b >>12,F F 12F PF γ∠=122t 2F PF S b co γ∆=AB 22221x y a b -=0,0a b >>00(,)M x y AB 22OM AB b K K a ⋅=0202y a x b K AB =22221x y a b-=P A B PA k PB k PA k ⋅PB k 22b a=一、椭圆1、椭圆的方程及其基本量运算【例1】根据下列条件分别求椭圆的标准方程.(1)对称轴是坐标轴,短轴的一个端点与两焦点组成正三角形,焦点到椭圆的最短距离是3; (2)椭圆中心在原点,对称轴是坐标轴,长轴长是短轴长的3倍,并且过点(3,0)-. 【难度】★【答案】(1)2213627x y +=或2213627y x +=;(2)2219x y +=或221819y x +=. 【例2】已知方程222222(2)60k x k y k k -++--=表示椭圆,求实数k 的取值范围. 【难度】★★【答案】(2,2)(2,2)(2,3)k ∈--U U【巩固训练】1.(1)ABC △周长为20,(4,0)B -,(4,0)C ,则点A 的轨迹方程为 ;(2)方程22132x y k k+=++表示椭圆,则k 的取值范围是 ; (3)长轴长为短轴长的2倍,且过点(2,3)的椭圆标准方程为 . 【难度】★【答案】(1)221(0)3620x y y +=≠; (2)2k >-; (3)2214010x y +=或22125254y x += 2.已知:焦点在x 轴上的椭圆焦点与短轴两端点的连线互相垂直,求此焦点与长轴较近的端点距离为105-的椭圆的标准方程. 【难度】★★【答案】221105x y += 例题解析2、椭圆定义的应用【例3】点P 在椭圆22143x y +=上运动,Q 、R 分别在两圆22(1)1x y ++=和22(1)1x y -+=上运动,则||||PQ PR +的最大值为 ,最小值为 . 【难度】★★ 【答案】6,2【解析】1(1,0)C -,11r =,2(1,0)C -,21r = 把点P 想成定点,max 111(||)||||1PQ PC r PC =+=+, max 222(||)||||1PR PC r PC =+=+ 又12||||24PC PC a +==,∴max (||||)6PQ PR +=; 类似,min 12(||||)||1||12PQ PR PC PC +=-+-=.【例4】椭圆2221x y a+=(a 定值,且1a >)的左焦点为F ,直线x m =与椭圆相交于点A 、B ,FAB △周长的最大值是8,则椭圆上的点与两焦点连线的最大夹角为 .【难度】★★ 【答案】120︒【巩固训练】1.已知椭圆22221(0)x y a b a b +=>>上一点P 满足12F PF θ∠=(1F ,2F 为椭圆的两个焦点),求12F PF △的面积.【难度】★★ 【答案】2tan2b θ2.已知(1,1)A 为椭圆22195x y +=内一点,1F 为椭圆左焦点,P 为椭圆上一动点,则1||||PF PA +的最大值是 ,最小值是 . 【难度】★★【答案】62+,62-3.椭圆22143x y +=的右焦点为F ,点P 是椭圆上一动点,点M 是圆22:(3)1C x y +-=上一动点,求||||PM PF +的最大值及此时点P 的坐标. 【难度】★★【答案】max (||||)510PM PF +=+,122103610,1313P ⎛⎫+-- ⎪ ⎪⎝⎭ 【解析】利用椭圆定义进行转化||||||4|'|4|||'|4|'|4|'|15|'|510PM PF PM PF PM PF MF CF CF +=+-=+-≤+≤++=+=+此时,122103610,1313P ⎛⎫+--⎪ ⎪⎝⎭3、椭圆的综合问题【例5】在椭圆2214x y +=上求一点P ,使它到直线:2100l x y ++=的距离最大(小),并求最大(小)值. 【难度】★★ 【答案】当22,2P ⎛⎫--⎪ ⎪⎝⎭时,min 210255d =-;当22,2P ⎛⎫⎪ ⎪⎝⎭,max 210255d =+ 【例6】已知P 为椭圆2214x y +=上任意一点,(,0)()M m m ∈R ,求PM 的最小值. 【难度】★★【答案】22341,[2,2]433m m PM x x ⎛⎫=-+-∈- ⎪⎝⎭,2min 3|2|293333223|2|2m m m PM m m m ⎧+<-⎪⎪⎪-=-≤≤⎨⎪⎪->⎪⎩【巩固训练】1.P 是椭圆224312x y +=上任一点,1F 、2F 是它的两个焦点,则12F PF ∠的最大值是( ).A .32arctan 4B .12arcsin 4C .3πD .23π【难度】★★ 【答案】C2.22(40)(40)1259x y ABC A B C C ∆-+=的顶点是,、,、,又是椭圆上异于长轴端点的点,则=+CBA sin sin sin ( )A .2B .54 C D .12 【难度】★★ 【答案】B3.设点)0,(m M 在椭圆1121622=+y x 的长轴上,点P 是椭圆上任意一点.当MP u u u r 的模最小时,点P 恰好落在椭圆的右顶点,求实数m 的取值范围.二、双曲线1、双曲线的方程和基本量计算【例7】点P 在22125144x y -=上,若116PF =,则2PF = .【难度】★ 【答案】26【例8】平面直角坐标系xoy 中,双曲线()22122:10,0x y C a b a b-=>>的渐近线与抛物线22:2C x py =()0p >交于点,,O A B ,若OAB ∆的垂心为2C 的焦点,则1C 的ca的值为 .【巩固训练】1.若x k y k22211-+-=表示焦点在y 轴上的双曲线,那么它的半焦距c 的取值范围是( )A. ()1,+∞B. (0,2)C. ()2,+∞D. (1,2)【难度】★★ 【答案】A2.0ab <时,方程22ax by c +=表示双曲线的是( )A. 必要但不充分条件B. 充分但不必要条件C. 充分必要条件D. 既不充分也不必要条件【难度】★★ 【答案】A【解答】若22ax by c +=表示双曲线,则一定有0ab <;若000c ab c ≠⎧<⎨=⎩当时,表示双曲线当时,表示直线∴选A2、双曲线定义的应用【例9】圆C 1:()x y ++=3122和圆C 2:()x y -+=3922,动圆M 同时与圆1C 及圆2C 相外切,求动圆圆心M 的轨迹方程. 【难度】★★A.①②B.①③C.①④D.③④【难度】★★【答案】A【巩固训练】1.设P是双曲线22xa-219y=上一点,双曲线的一条渐近线方程为320x y-=,F1、F2分别是双曲线的左、右焦点,若13PF=,则2PF等于.【难度】★★【答案】72.已知点,,,动圆与直线切于点,过、与圆相切的两直线相交于点,则点的轨迹方程为( )A .B .C .(x > 0)D . 【难度】★ 【答案】B【解析】,点的轨迹是以、为焦点,实轴长为2的双曲线的右支.3.设1F 、2F 是双曲线C :12222=-by a x (0>a ,0>b )的两个焦点,P 是C 上一点,若a PF PF 6||||21=+,且△21F PF 最小内角的大小为︒30,则双曲线C 的渐近线方程是( )A .02=±y xB .02=±y xC .02=±y xD .02=±y x 【难度】★★ 【答案】B【解析】12112112||||2()||=4||||6||=22||PF PF a PF aPF PF a PF a c F F -=⎧⎧⇒⎨⎨+=<=⎩⎩双曲线定义∵△21F PF 最小内角的大小为︒30,∴1230PF F ∠=︒ 易知3c a =,∴2b a =,∴渐近线方程为2by x x a=±=±3、双曲线的综合问题【例11】已知12,F F 分别为双曲线C :221927x y -=的左、右焦点,点C A ∈,点M 的坐标为)0,2(,AM 为21AF F ∠的平分线,则2AF = .【难度】★★ 【答案】6【解析】 根据角平分线的性质,211212==MF MF AF AF ,又621=-AF AF ,故26AF =.(3,0)M -(3,0)N (1,0)B C MN B M N C P P 221(1)8y x x -=<-221(1)8y x x -=>1822=+y x 221(1)10y x x -=>2=-=-BN BM PN PM P M N【例12】如图,已知点P 为双曲线221169x y -=右支上一点,12,F F 分别为双曲线的左、右焦点,I 为21F PF ∆的内心,若1212IPF IPF IF F S S S λ∆∆∆=+成立,则λ的值为 .【例13】已知双曲线的焦点在x 轴上,且过点)0,1(A 和)0,1(-B ,P 是双曲线上异于A 、B 的任一点,如果APB ∆的垂心H 总在此双曲线上,求双曲线的标准方程.【巩固训练】1.已知椭圆和双曲线有公共的焦点, (1)求双曲线的渐近线方程;(2)直线过焦点且垂直于x 轴,若直线与双曲线的渐近线围成的三角形的面积为,求双曲线的方程. 1532222=+n y m x 1322222=-n y m x l l 43三、椭圆与双曲线的综合问题1、椭圆双曲线混合问题【例14】曲线11622=--ky k x 与曲线22525922=+y x 的焦距相等的充要条件是( ) A .016≠<k k 且 B .160≠>k k 且 C .160<<k D .160><k k 或 【难度】★★ 【答案】A【例15】已知曲线C :22||||1x x y y a b-=,下列叙述中错误的是( ). A .垂直于x 轴的直线与曲线C 只有一个交点B .直线y kx m =+(,k m ∈R )与曲线C 最多有三个交点 C .曲线C 关于直线y x =-对称D .若111(,)P x y ,222(,)P x y 为曲线C 上任意两点,则有12120y y x x ->-【难度】★★ 【答案】C【巩固训练】1.如果函数2y x =-的图像与曲线22:4C x y λ+=恰好有两个不同的公共点,则实 数λ的取值范围是( )A .[1,1)-B .{}1,0-C .(,1][0,1)-∞-UD .[1,0](1,)-+∞U 【难度】★★【答案】A 【解析】①两平行直线:0λ=(符合) ②圆:1λ=(符合) ③椭圆ⅰ)焦点在x 轴的椭圆: (1,)λ∈+∞(不符合) ⅱ)焦点在y 轴的椭圆: (0,1)λ∈(符合) ④双曲线 ⅰ)等轴双曲线:1λ=-(符合)ⅱ)渐近线较陡: (1,0)λ∈-(符合) ⅲ)渐近线较平:(,1)λ∈-∞-(不符合)2、直线与椭圆【例16】设1F ,2F 是椭圆22132x y +=的左、右焦点,弦AB 过2F ,求1ABF △的面积的最大值. 【难度】★★ 【答案】433【例17】已知椭圆2222+=1(0)x y a b a b >>的左焦点为(,0)F c -,33c a =,点M 在椭圆上且位于第一象限,直线FM 被圆2224b x y +=截得的线段的长为c ,43||=3FM .(1)求直线FM 的斜率; (2)求椭圆的方程;(3)设动点P 在椭圆上,若直线FP 的斜率大于2,求直线OP (O 为原点)的斜率的取值范围. 【难度】★★【巩固训练】1.过点(0,2)P 作直线l 与椭圆2212x y +=交于A 、B 两点,O 为坐标原点, (1)当AOB △面积为23时,求直线l 的方程; (2)当AOB △面积取得最大值时,求直线l 的方程.2.已知椭圆2222:1x y C a b+= (0>>b a )的一个焦点坐标为(1,0),且长轴长是短轴长的2倍.(1)求椭圆C 的方程;(2) 设O 为坐标原点,椭圆C 与直线1y kx =+相交于两个不同的点A 、B ,线段AB 的中点为P ,若直线OP 的斜率为1-,求△OAB 的面积.3、直线与双曲线【例18】在双曲线1222=-y x 上,是否存在被点)1,1(M 平分的弦?如果存在,求弦所在的直线方程;如不存在,请说明理由.这里16240∆=-<,故方程(2)无实根,也就是所求直线不合条件. 所以不存在符合题设条件的直线.【例19】已知双曲线2213y x -=,曲线上存在关于直线:4l y kx =+对称的两点,求k 的范围. 【难度】★★ 【答案】3113(,)(,0)(0,)(,)3223-∞--+∞U U U 【解析】当0k =时,不满足条件设1122(,),(,)A x y B x y 及其中点坐标为00(,)x y ,则22112222113113x y x y ⎧-=⎪⎪⎨⎪-=⎪⎩:相减2121212113y y x x x x y y ++⋅=--即 0031x k y -=,又004y kx =+所以001,3x y k =-= )1(13:kx k y l AB +-=-∴⎪⎪⎩⎪⎪⎨⎧=--+-=13131222y x k x k y 联立03)13()13(2)13(22222=----+-⇒k x k k x k 0]3)13)[(13(4)]13(2[22222>+--+-=∆kk k k Θ 2211043k k ⇒<<>或),33()21,0()0,21()33,(+∞---∞∈∴Y Y Y k【例20】已知中心在原点的双曲线C 的右焦点为,右顶点为.(1)求双曲线C 的方程(2)若直线与双曲线恒有两个不同的交点A 和B 且2OA OB ⋅>u u u r u u u r (其中为原点),求k 的取值范围. 【难度】★★【答案】(1);(2) 【解析】(1)设双曲线方程为,由已知得,再由,得()2,0(3,0:2=+l y kx O 2213-=x y 33(1,),133⎛⎫-- ⎪ ⎪⎝⎭U 22221-=x y a b3,2==a c 2222+=a b 21=b【巩固训练】1.直线1:+=kx y m 和双曲线122=-y x 的左支交于B A ,两点,直线过点)0,2(-P 和线段AB 的中点M ,求在y 轴上的截距b 的取值范围.l l2.已知双曲线方程x y 22421-= (1)过点)1,1(M 的直线交双曲线于B A ,两点,若M 为AB 的中点,求直线AB 的方程;(2)是否存在直线l ,使点N 112,⎛⎝⎫⎭⎪为直线l 被双曲线截得的弦的中点,若存在求出直线l 的方程,若不存在说明理由.(1)根据条件确定椭圆双曲线的标准方程.在解这类问题时,常常先明确椭圆的焦点是在哪一条坐标轴上,选择相应的标准方程,根据题意,利用待定系数法确定相关系数;或者利用定义法求得方程.(2)灵活运用定义解决有关问题,当某点在已知椭圆上时,不仅意味着点的坐标满足椭圆的方程,而且该点到两个焦点的距离和等于椭圆的长轴长,所以在处理与焦点相关的长度问题时多想想定义.(3)在处理与圆锥曲线相关的最值问题时通常化归成求函数最值.(4)在处理弦长问题时注意应用弦长公式.(5)点差法解决与中点相关的问题.(6)注意“设而不求”在解析几何中的应用:不需解方程只需通过韦达定理中根与系数的关系解决问题,在此,要注意韦达定理之前首先要保证有解,要考虑判别式大于零.(7)在处理与椭圆双曲线性质相关的综合问题时,不仅常常应用数形结合法、方程思想,而且还常用到消元思想、类比思想.1.已知方程22132x yk k+=+-表示椭圆,则k的取值范围是.【难度】★【答案】113,,222⎛⎫⎛⎫---⎪ ⎪⎝⎭⎝⎭U课后练习反思总结2.经过点(2,3)-且与椭圆229436x y +=有公共焦点的椭圆方程为 . 3.已知21,F F 是双曲线1222=-y x 的左、右焦点,P 、Q 为右支上的两点,直线PQ 过2F ,且倾斜角为α,则PQ QF PF -+11的值为 . 4.已知(0,3)A -、(0,3)B 两点,若动点P 满足||||6PA PB +=,则点P 的轨迹为( ). A .焦点在x 轴上的椭圆 B .焦点在y 轴上的椭圆 C .x 轴上的线段D .y 轴上的线段【难度】★★ 【答案】D5.椭圆221164x y +=上的点到直线20x y +=的最大距离是 . 6.如果过椭圆2249144x y +=内的点(3,2)P 的弦恰好以P 为中点,那么这条弦所在直线的方程为 .8.若椭圆1252222=-+m y m x 上至少存在一点P ,使得它与两焦点连线互相垂直,则正实数m 的 取值范围为____________.9.设点P 到点)0,1(-M ,)0,1(-N 距离之差为m 2,到x 轴、y 轴距离之比为2,求m 的取值范围.10.已知定点)0,(a A 和椭圆8222=+y x 上的动点),(y x P .(1)若2=a 且223||=PA ,计算点P 的坐标; (2)若30<<a 且||PA 的最小值为1,求实数a 的值.11.经过双曲线)0>,0>(1=2222b a b y a x -上任一点M ,作平行于两渐近线的直线,与渐近线交于Q P ,两点,则平行四边形OPMQ 的面积S 为定值,ab S 21=.。
双曲线中的定点、定值问题1.如图,在平面直角坐标系中,F 1,F 2分别为等轴双曲线Γ:x 2a 2-y 2b2=1a >0,b >0 的左、右焦点,若点A 为双曲线右支上一点,且|AF 1|-|AF 2|=42,直线AF 2交双曲线于B 点,点D 为线段F 1O 的中点,延长AD ,BD ,分别与双曲线Γ交于P ,Q 两点.(1)若A (x 1,y 1),B (x 2,y 2),求证:x 1y 2-x 2y 1=4y 2-y 1 ;(2)若直线AB ,PQ 的斜率都存在,且依次设为k 1,k 2,试判断k 2k 1是否为定值,如果是,请求出k 2k 1的值;如果不是,请说明理由.2.已知在△ABC 中,B -2,0 ,C 2,0 ,动点A 满足AB =23,∠BAC>90°,AC 的垂直平分线交直线AB 于点P .(1)求点P 的轨迹E 的方程;(2)直线x =m m >3 交x 轴于D ,与曲线E 在第一象限的交点为Q ,过点D 的直线l 与曲线E 交于M ,N 两点,与直线x =3m交于点K ,记QM ,QN ,QK 的斜率分别为k 1,k 2,k 3,①求证:k 1+k 2k 3是定值.②若直线l 的斜率为1,问是否存在m 的值,使k 1+k 2+k 3=6?若存在,求出所有满足条件的m 的值,若不存在,请说明理由.3.已知双曲线C:x2a2-y2b2=1(a>0,b>0)的离心率是52,实轴长是8.(1)求双曲线C的方程;(2)过点P(0,3)的直线l与双曲线C的右支交于不同的两点A和B,若直线l 上存在不同于点P的点D满足|PA|⋅|DB|=|PB|⋅|DA|成立,证明:点D的纵坐标为定值,并求出该定值.4.已知双曲线C:x2a2-y2b2=1a>0,b>0的左顶点为A-2,0,右焦点为F,点B在C上.当BF⊥AF时AF=BF.不垂直于x轴的直线与双曲线同一支交于P,Q两点.(1)求双曲线C的标准方程;(2)直线PQ过点F,在x轴上是否存在点N,使得x轴平分∠PNQ?若存在,求出点的N的坐标;若不存在,说明理由.5.已知双曲线Γ:x2a2-y2=1(a>0)的左、右焦点分别为F1(-c,0),F2(c,0),点P x0,y0是Γ右支上一点,若I为△PF1F2的内心,且S△IPF1=S△IPF2+ 32S△IF1F2.(1)求Γ的方程;(2)点A是Γ在第一象限的渐近线上的一点,且AF2⊥x轴,Γ在点P处的切线l与直线AF2相交于点M,与直线x=32相交于点N.证明:无论点P怎么变动,总有NF2=32MF2 .6.已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 ,四点M 14,23 ,M 23,2 ,M 3-2,-33 ,M 42,33中恰有三点在C 上.(1)求C 的方程;(2)过点3,0 的直线l 交C 于P ,Q 两点,过点P 作直线x =1的垂线,垂足为A .证明:直线AQ 过定点.7.设双曲线C:x2a2-y2b2=1(a,b>0)的右顶点为A,虚轴长为2,两准线间的距离为26 3.(1)求双曲线C的方程;(2)设动直线l与双曲线C交于P,Q两点,已知AP⊥AQ,设点A到动直线l 的距离为d,求d的最大值.8.已知双曲线C:x2a2-y2b2=1a>0,b>0的一条渐近线斜率为22,且双曲线C经过点M2,1.(1)求双曲线C的方程;(2)斜率为-12的直线l与双曲线C交于异于M的不同两点A、B,直线MA、MB的斜率分别为k1、k2,若k1+k2=1,求直线l的方程.9.已知双曲线C:x2a2-y2b2=1(a>0,b>0)的虚轴长为4,且经过点5 4,3 2.(1)求双曲线C的标准方程;(2)双曲线C的左、右顶点分别为A1,A2,过左顶点A1作实轴的垂线交一条渐近线l:y=-ba x于点T,过T作直线分别交双曲线左、右两支于P,Q两点,直线A2P,A2Q分别交l于M,N两点.证明:四边形A1MA2N为平行四边形.10.在平面直角坐标系xOy 中,已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左右焦点分别为F 1(-c ,0),F 2(c ,0),离心率为e ,且点(e ,3),(2,b )都在双曲线C 上.(1)求双曲线C 的标准方程;(2)若A ,B 是双曲线C 上位于x 轴上方的两点,且AF 1⎳BF 2.证明:1AF 1+1BF 2为定值.11.已知双曲线C:x2a2-y2b2=1 (a>0,b>0)的虚轴长为4,直线2x-y=0为双曲线C的一条渐近线.(1)求双曲线C的标准方程;(2)记双曲线C的左、右顶点分别为A,B,过点T(2,0)的直线l交双曲线C于点M,N(点M在第一象限),记直线MA斜率为k1,直线NB斜率为k2,求证:k1k2为定值.12.在平面直角坐标系xOy 中,已知双曲线C :x 2a 2-y 2b2=1(a 、b 为正常数)的右顶点为A ,直线l 与双曲线C 交于P 、Q 两点,且P 、Q 均不是双曲线的顶点,M 为PQ 的中点.(1)设直线PQ 与直线OM 的斜率分别为k 1、k 2,求k 1·k 2的值;(2)若AM PQ=12,试探究直线l 是否过定点?若过定点,求出该定点坐标;否则,说明理由.13.已知双曲线C :x 24-y 25=1的左、右顶点分别为A ,B ,过右焦点F 的直线l 与双曲线C 的右支交于P ,Q 两点(点P 在x 轴上方).(1)若PF =3FQ ,求直线l 的方程;(2)设直线AP ,BQ 的斜率分别为k 1,k 2,证明:k1k 2为定值.14.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,双曲线C 的右顶点A 在圆O :x 2+y 2=2上,且AF 1 ⋅AF 2=-2.(1)求双曲线C 的标准方程;(2)动直线l 与双曲线C 恰有1个公共点,且与双曲线C 的两条渐近线分别交于点M 、N ,问△OMN (O 为坐标原点)的面积是否为定值?若为定值,求出该定值;若不为定值,试说明理由.15.平面直角坐标系xOy 中,点F 1(-3,0),F 2(3,0),点M 满足MF1- MF 2 =±2,点M 的轨迹为曲线C .(1)求曲线C 的方程;(2)已知A (1,0),过点A 的直线AP ,AQ 与曲线C 分别交于点P 和Q (点P 和Q 都异于点A ),若满足AP ⊥AQ ,求证:直线PQ 过定点.16.已知M ,N 为椭圆C 1:x 2a 2+y 2=1a >0 和双曲线C 2:x 2a2-y 2=1的公共顶点,e 1,e 2分别为C 1和C 2的离心率.(1)若e 1e 2=154.(ⅰ)求C 2的渐近线方程;(ⅱ)过点G 4,0 的直线l 交C 2的右支于A ,B 两点,直线MA ,MB 与直线x =1相交于A 1,B 1两点,记A ,B ,A 1,B 1的坐标分别为x 1,y 1 ,x 2,y 2 ,x 3,y 3 ,x 4,y 4 ,求证:1y 1+1y 2=1y 3+1y 4;(2)从C 2上的动点P x 0,y 0 x 0≠±a 引C 1的两条切线,经过两个切点的直线与C 2的两条渐近线围成三角形的面积为S ,试判断S 是否为定值?若是,请求出该定值;若不是,请说明理由.17.已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的右焦点为F 2,0 ,O 为坐标原点,点A ,B 分别在C 的两条渐近线上,点F 在线段AB 上,且OA ⊥AB ,OA +OB =3AB .(1)求双曲线C 的方程;(2)过点F 作直线l 交C 于P ,Q 两点,问;在x 轴上是否存在定点M ,使MP 2+MQ 2-PQ 2为定值?若存在,求出定点M 的坐标及这个定值;若不存在,说明理由.18.在平面直角坐标系xOy中,已知A1,A2两点的坐标分别是(-3,0),(3,0),直线A1B,A2B相交于点B,且它们的斜率之积为13.(1)求点B的轨迹方程;(2)记点B的轨迹为曲线C,M,N,P,Q是曲线C上的点,若直线MN,PQ均过曲线C的右焦点F且互相垂直,线段MN的中点为R,线段PQ的中点为T. 是否存在点G,使直线RT恒过点G,若存在,求出点G的坐标,若不存在,说明理由.19.已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的离心率为2,C 的右焦点F 与点M 0,2 的连线与C 的一条渐近线垂直.(1)求C 的标准方程.(2)经过点M 且斜率不为零的直线l 与C 的两支分别交于点A ,B .①若O 为坐标原点,求OA ⋅OB的取值范围;②若D 是点B 关于y 轴的对称点,证明:直线AD 过定点.20.已知双曲线C:x2a2-y2b2=1a>0,b>0的左、右焦点分别为F1、F2,离心率为32,A为C的左顶点,且AF1⋅AF2=-5.(1)求C的方程;(2)若动直线l与C恰有1个公共点,且与C的两条渐近线分别交于点M、N.求证:点M与点N的横坐标之积为定值.21.已知双曲线C:x2a2-y2b2=1a>0,b>0的左,右焦点分别为F1-6,0,F26,0.且该双曲线过点P22,2.(1)求C的方程;(2)如图.过双曲线左支内一点T t,0作两条互相垂直的直线分别与双曲线相交于点A,B和点C,D.当直线AB,CD均不平行于坐标轴时,直线AC,BD分别与直线x=t相交于P.Q两点,证明:P,Q两点关于x轴对称.22.已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左右顶点分别为A -1,0 ,B 1,0 ,两条准线之间的距离为1.(1)求双曲线C 的标准方程;(2)若点P 为右准线上一点,直线PA 与C 交于A ,M ,直线PB 与C 交于B ,N ,求点B 到直线MN 的距离的最大值.23.设双曲线C :x 2-y 22=1,点A ,B 为双曲线的左、右顶点,点P 为双曲线上异于顶点的一点,设直线PA ,PB 的斜率分别为k PA ,k PB .(1)证明:k PA ⋅k PB =2;(2)若过点Q t ,0 作不与x 轴重合的直线l 与双曲线C 交于不同两点M ,N ,设直线AM ,BN 的斜率分别为k 1,k 2.是否存在常数t 使k 1=-12k 2?若存在,求出t 的值,若不存在,请说明理由.24.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,右顶点D 到一条渐近线的距离为32.(1)求双曲线C 的方程;(2)若直线l 与双曲线C 交于A ,B 两点,且OA ⋅OB=0,O 为坐标原点,点O 到直线l 的距离是否为定值?若是,求出这个定值;若不是,请说明理由.25.在平面直角坐标系xOy中,设双曲线C:x2a2-y2b2=1a>0,b>0的右准线x=55与其两条渐近线的交点分别为A、B,且tan∠AOB=-43.(1)求双曲线C的方程;(2)设动直线l与双曲线C相交于点M、N,若OM⊥ON,求证:存在定圆与直线l相切,并求该定圆的方程.26.已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的两条渐近线互相垂直,且过点D 2,1 .(1)求双曲线C 的方程;(2)设P 为双曲线的左顶点,直线l 过坐标原点且斜率不为0,l 与双曲线C 交于A ,B 两点,直线m 过x 轴上一点Q (异于点P ),且与直线l 的倾斜角互补,m 与直线PA ,PB 分别交于M ,N (M ,N 不在坐标轴上)两点,若直线OM ,ON 的斜率之积为定值,求点Q 的坐标.27.已知双曲线C的渐近线方程为y=±33x,且过点P(3,2).(1)求C的方程;(2)设Q(1,0),直线x=t(t∈R)不经过P点且与C相交于A,B两点,若直线BQ与C交于另一点D,求证:直线AD过定点.28.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)经过点P (-2,1),且C 的右顶点到一条渐近线的距离为63.(1)求双曲线C 的方程;(2)过点P 分别作两条直线l 1,l 2与C 交于A ,B 两点(A ,B 两点均不与点P 重合),设直线l 1,l 2的斜率分别为k 1,k 2.若k 1+k 2=1,试问直线AB 是否经过定点?若经过定点,求出定点坐标;若不经过定点,请说明理由.29.在平面直角坐标系xOy 中,已知点F 1-17,0 、F 217,0 ,MF 1 -MF2 =2,点M 的轨迹为C .(1)求C 的方程;(2)设点T 在直线x =12上,过T 的两条直线分别交C 于A 、B 两点和P ,Q 两点,且TA ⋅TB =TP ⋅TQ ,求直线AB 的斜率与直线PQ 的斜率之和.30.如图,已知双曲线C :x 23-y 2=1,过P 1,1 向双曲线C 作两条切线,切点分别为A x 1,y 1 ,B x 2,y 2 ,且x 1<0,x 2>0.(1)证明:直线PA 的方程为x 1x3-y 1y =1.(2)设F 为双曲线C 的左焦点,证明:∠AFP +∠BFP =π.。
圆锥曲线是指在二维平面上满足一定条件的曲线,其中包括双曲线和抛物线等。
当圆锥曲线是双曲线或抛物线时,可以利用其函数的性质解决最值问题。
对于双曲线y=a/x,在x>0时,它的最小值为y=a/xmin,最大值为y=a/xmax。
对于抛物线y=ax^2,在a>0时,它的最小值为y=0,最大值为y=+∞。
对于其他类型的圆锥曲线,最值问题的解决方法需要根据其具体函数形式进行分析。
对于一般的圆锥曲线,解决最值问题需要利用微积分知识。
对于函数y=f(x)在区间[a,b]上的最值问题,可以通过对函数在该区间内求导,然后求函数在该区间内的极值点。
求导之后,求函数在该区间内的极值点,即对导数为0的点进行分析。
通过二分法或牛顿迭代等方法来求导数为0的点的值,对导数为0的点进行分析,即可求得圆锥曲线在该区间内的最值点。
需要注意的是,在求解过程中需要证明该点是极值点,而非局部极值点。
双曲线教学设计共3篇双曲线课程讲解下面是整理的双曲线教学设计共3篇双曲线课程讲解,以供参考。
双曲线教学设计共1双曲线及其标准方程教学设计一.教学目标: 1.知识目标:掌握双曲线的定义并会推导其方程.2.能力目标:能根据已知条件,选择恰当的形式的双曲线方程解题;加深对类比,化简,分类讨论的思想的理解与运用.3.情感目标:利用教学内容促进学生对量变,质变规律的理解和对学生进行爱国主义教育.二.教学重点与难点分析: 本节的教学重点是准确理解双曲线的定义.本节的教学难点是选择恰当的双曲线方程解题.三.教学方法和学习方法的设计: 教法:1.在教学目标的指导下,采用”信息环境下情境性问题解决”教学模式实施教学.这种方法是以问题为中心,以学生主动探索数学知识和强化创新意识为主要特征的探究型教学方式.在探索过程中经历”提出问题———分析问题———分组讨论———提炼总结———深化反思”五个不同的教学环节.在整个教学过程中,教师利用问题引路,学生独立思考和分组讨论,从而自己解决问题.2.通过课件和动画展示数学知识的发生﹑发展过程;帮助学生理解抽象的数学概念;借助信息技术实现数学思维的“再现”.学法:在教师的组织,点拨,引导作用下,通过学生积极思考,大胆想象,总结规律,自己不能解决的问题通过小组讨论解决,充分发挥他们的主体作用,让学生置身于提出问题﹑思考问题﹑解决问题的动态过程中.四.媒体选择:多媒体课件.39五.教学过程设计: 探索问题一: 定圆圆O1内含于定圆圆O2,当圆M与圆O2内切而与圆O1外切时, 圆M的圆心M的轨迹是什么曲线? 学生: 是椭圆.教师: 面内与两个定点F1,F2的距离的和等于常数(大于F1F2)的点的轨迹叫做椭圆.若将“距离之和”改为“距离之———差”.那将会出现什么情况呢? 探索问题二: 设圆O1,圆O2外离,其半径分别为r1,r2.动圆圆M与圆O1内切而与圆O2外切,求动圆M的圆心M的轨迹又是什么曲线? 分析: 设动圆M半径为r,有O2M?O1M??r2?rr?r1??r1?r2 教师: 谁能画出点M的轨迹?(没反应)困难在哪里呢? 学生: 动圆M有无数个,画起来困难.所以点M的轨迹画不出来! (课件演示) 教师:原来点M的轨迹是一条开口向左的,向外伸展的不封闭的一条曲线,这是单曲线吗?:是否还有其他情况? 学生:如果圆M与圆O1外切而与圆O2内切情况会怎样? 此时, O1M?O2M??r1?rr?r2??r1?r2.大概是开口向右的一条曲线吧.课件演示.教师:我们把上述两条曲线称为双曲线(演示课件).请给出双曲线的定义.学生:平面内与两个定点的距离的差的绝对值是常数的点的轨迹.教师:好.请看——(课件演示)当圆O1与圆O2外切时,虽然MO1?MO2?r1?r2?O1O2,但点在线段O1O2的两侧,是两条射线.动点M必定满足一个什么样的特定条件? 40学生:应在前面的叙述中,在”常数”后加上附加条件”小于O1O2”.教师:如果这个常数为0呢?这时点的轨迹是什么? 学生:平面内与两个定点O1,O2的距离的差的绝对值是0的点的轨迹是线段O1O2的垂直平分线.所以这个常数不能为0.教师:这就完整了.称O1,O2为双曲线的焦点.它与椭圆定义比较又有和联系呢? 学生:在椭圆定义中,由三角形两边之和大于第三边的要求,而双曲线的定义中应满足三角形的两边之差的绝对值小于第三边的要求.教师:如此复杂的曲线和平面几何中最简单的结论紧密联系,这充分反映了事物间的和谐的本质属性.问题延伸: 教师:利用平面直角坐标系,我们可以求出该曲线方程,这就是数形结合的思想.问题是如何建立平面直角坐标系? 学生:以O1,O2所在的直线为x轴,线段O1O2的中垂线为y轴,建立直角坐标系.教师:为什么不以O1或O2为原点建立直角坐标系呢? 学生:那样的话, O1与O2就不能关于y轴对称,从前面我们学习的椭圆方程的推导过程中知道,所得的方程较繁.教师:对.请同学们自行推导双曲线方程.(学生推演,教师归纳).教师:同学们都能得出方程?c2?a2?x2?a2y2??c2?a2?a2.仿照推导椭圆方程的方法.可x2y2令c?a?b.则得焦点在x轴上的双曲线方程: 2?2?1.类似地,当焦点在y轴上ab222时,(或者说以O1O2所在的直线为y轴.线段O1O2的中垂线为x轴建立直角坐标系).双曲线的方程是———y2x2 学生: 2?2?1ab 41教师:它们都是双曲线的标准方程.焦点在二次项系数为正的字母所表示的轴上.思考问题一: 例1.(1)已知双曲线两个焦点的坐标为F1??5,0?,F2?5,0?,双曲线上一点P到F1,F2的距离的差的绝对值等于6,求双曲线的标准方程.(2)已知双曲线的中心是坐标原点,焦点在y轴上,焦距为12,且经过点P?2,?5?,求双曲线的方程.(3).求过点A2,43和B?2,?4的双曲线标准方程.(第(1),(2)小题为课本的例习题.) (请三位同学板演,再请三位同学讲评.第(1),(2)小题略.第3小题不少学生仍分焦点在x,y轴的情况求解.过程较繁.) 学生:第(3)题他解对了,但比较繁.我认为只要设mx2?ny2?1.然后把两点坐标分别代入,1得到两个二元一次方程组成的方程组,解得m?1, n??,表明它是双曲线,同时表示不6存在过这两点的椭圆.教师:对!讲得有道理.求中心在原点的椭圆.双曲线标准方程,只需两个独立变量.这是它们的本质属性.理解这一点,解题运算量就小多了.教师:上述图形的变化过程反映了事物在一定范围内由量的积累引起质的变化情况.它包括了目前我们所学的几种曲线.现在让我们来了解双曲线在军事上的一些应用.思考问题二:一炮弹在某处爆炸,在A处听到爆炸声的时间比在B处晚2s.(1)爆炸点应在什么样的曲线上? (2)已知A,B两地相距800m,并且此时声速为340ms,求曲线的方程.(3)要想确定爆炸点的准确位置.应采取什么措施? (学生分组讨论.教师巡视指导.把学生解答用投影仪展示.) 学生(1)由声速及A,B两处听到爆炸声的时间差为2s,可知A,B两处与爆炸点的距离的42差为PA?PB?680?800,因此爆炸点应该位于以A,B为焦点的双曲线上.因为爆炸点离A处比离B处更远,所以爆炸点应在靠近B处的一支上.(2)如图,建立直角坐标系xoy,使A,B两点在x轴上,并且点O与线段AB中点重合.设爆炸点P的坐标为?x,y?.则PA?PB?340?2?680 ?AB 即2a?680,a?340.又AB?800 所以2c?800,c?400b2?c2?a2?因为PA?PB?680?0 所以x?0.x2y2所求双曲线方程为??1(x?0)(3).利用两个不同的观测点侧得同一炮弹爆炸声的时间差,可以确定爆炸点所在的双曲线的方程但不能确定爆炸点的准确位置.如果再增设一个观测点C,利用B, C (或A, C)两处侧得的爆炸声的时间差,可以求出另一个双曲线的方程.解这两个方程组成的方程组,就可以确定爆炸点的准确位置.变式一:若将“在A处听到爆炸声的时间比在B 处晚2s”改为“在A处听到爆炸声的时间比在B处晚40s”那么爆炸点P应在什么样的曲线上? 17变式二:若将“A,B两地相距800m”改为“A,B两地相距600m” 那么爆炸点P应在什么样的曲线上? 变式三:假若在A,B两处同时听到爆炸声, 那么爆炸点P又在怎样的曲线上呢? 六.小结: 1.双曲线的定义,关键词是绝对值的差小于F1F2.432.求双曲线方程要注意选择方程的形式,以简化计算.3.主要思想方法有类比思想及特殊与一般量变与质变的辨证关系.七.教学效果: 这节课充分发挥了多媒体教学的优势,教学设计充分体现”主导----主体”现代教学思想,彻底地改变了传统教学过程汇总学生被动接受知识的状态,学生能够自主探索获取知识,愿意学习也学会学习;学生主动参与的意识提高了.通过多媒体教学,教师把学生引上探索问题之路,调动了每一个学生学习的主动性和创造性,体现了学生的主体地位,有利于学生潜能的开发和创造性思维的培养.44双曲线教学设计共2双曲线及其标准方程一、学习目标:【知识与技能】:1、通过教学,使学生熟记双曲线的定义及其标准方程,并理解这一定义及其标准方程的探索推导过程.2、理解并熟记双曲线的焦点位置与两类标准方程之间的对应关系.【过程与方法】: 通过“实验观察”、“思考探究”与“合作交流”等一系列数学活动,培养学生观察、类比、分析、概括的能力以及逻辑思维的能力,使学生学会数学思考与推理,学会反思与感悟,形成良好的数学观.【情感、态度与价值观】: 通过实例的引入和剖析,让学生再一次感受到数学来源于实践又反作用于实践;生活中处处有数学.二、学情分析:1、在学生已学习椭圆的定义及其标准方程和掌握“曲线的方程”与“方程的曲线”的概念之后,学习双曲线定义及其标准方程,符合学生的认知规律,学生有能力学好本节内容;2、由于学生数学运算能力不强,分析问题、解决问题的能力,逻辑推理能力,思维能力都比较弱,所以在设计的时候往往要多作铺垫,扫清他们学习上的障碍,保护他们学习的积极性,增强学习的主动性.三、重点难点:教学重点:双曲线的定义、标准方程教学难点:双曲线定义中关于绝对值,2a三、教学过程:【导入】1、以平面截圆锥为模型,让学生认识双曲线,认识圆锥曲线;2、观察生活中的双曲线;【设计意图:让学生对圆锥曲线整体有所把握,体会数学来源于生活.】探究一活动1:类比椭圆的学习,思考:研究双曲线,应该研究什么?怎么研究?从而掌握本节课的主线:实验、双曲线的定义、建系、求双曲线的标准方程;活动二:数学实验:(1)取一条拉链,拉开它的一部分,(2)在拉链拉开的两边上各取一点,分别固定在点F1,F2 上,(3)把笔尖放在拉头点M处,随着拉链逐渐拉开或者闭拢,笔尖所经过的点就画出一条曲线。