1000MW高压加热器介绍
- 格式:ppt
- 大小:3.84 MB
- 文档页数:36
1000MW 二次再热超超临界机组设备说明书汽机分册国电泰州发电厂2014年3月- 1 -前言本书主要介绍泰州二期工程1000 MW二次再热超超临界发电机组汽机设备及其系统的基本原理、结构、规范、功能及维护项目等,供泰州电厂管理、运行、检修人员操作、维护培训使用。
本书编写主要依据各设备制造厂的说明书和技术协议、华东电力设计院设计图及相应的电力行业的法规和标准,同时参照各兄弟单位的培训教材,在此表示感谢。
由于目前我厂二期工程设备安装也未结束,制造厂提供的资料尚不齐全,时间也比较仓促,最终现场设备、系统可能会与本培训教材有所偏差,实际运行须以现场设备、集控运行规程为准。
同时限于编者的水平,缺点和错误在所难免,敬请读者批评、指正。
编者2014年4月- 2 -本丛书各分册由以下人员执行主编:《汽机分册》张世伟《锅炉分册》李冬《电气分册》张岩山《化学分册》《灰硫分册》《仪控分册》任斌- 3 -目录第1章概述 ··············································································· - 1 -1.1工程背景: (1)1.2主要设计创新及难点 (2)1.3系统概述: (3)1.4设计优化: (4)1.5主辅系统设备规范: (6)1.6汽机典型工况及性能指标 (40)1.7汽轮机设计运行条件 (51)1.8汽轮机大修间隔的规范 (51)第2章主汽轮机本体结构 ··························································· - 53 -2.1汽轮机本体特点: (53)2.2汽轮机进汽部分: (61)2.3汽缸组件 (71)2.4轴承与轴承座: (99)2.5轴系 (119)2.6盘车装置 (119)2.7滑销系统 (125)第3章主机润滑油系统 ····························································· - 128 -3.1主机润滑油系统: (128)3.2DEH液压伺服系统 (145)3.3EH油系统 (153)3.4DEH控制系统 (163)3.5汽轮机保护系统 (171)第4章给水泵汽轮机 ································································ - 182 -4.1概述: (182)4.2给水泵汽轮机的热力系统 (183)4.3给水泵汽轮机的结构特点 (205)4.4设备技术规范 (218)4.5给水泵汽轮机运行说明 (223)4.6给水泵汽轮机运行与维护 (229)4.7盘车说明 (234)第5章蒸汽系统及其设备 ·························································· - 239 -5.1主、再热蒸汽系统及旁路系统 (239)5.2抽汽系统 (275)5.3轴封系统 (300)5.4辅助系统 (306)- 4 -5.5汽轮机疏放水系统 (310)第6章水系统及其设备 ····························································· - 314 -6.1凝结水系统 (314)6.2给水系统 (348)6.3循环水系统 (368)6.4开式水系统 (404)6.5闭式水系统 (410)第7章发电机辅助系统及设备 ···················································· - 426 -7.1发电机氢气系统: (426)7.2发电机密封油系统: (449)7.3定冷水系统 (469)第8章辅助系统 ...................................................................... - 477 -8.1抽真空系统 .. (477)第9章汽轮机的运行 ································································ - 491 -9.1概述 (491)9.2启动方式说明 (491)9.3一次调频 (496)9.4机组启动前的要求 (498)9.5机组启动前准备 (501)9.6机组冷态启动的汽机冲转 (506)9.7机组升负荷 (513)9.8机组主要运行参数监视 (515)9.9机组运行限制工况 (525)9.10机组的停运及保养 (527)9.11汽轮机的正常运行维护 (532)第10章汽轮机调试 ··································································· - 535 -10.1概述 (535)10.2概述·········································································错误!未定义书签。
目录第1章绪论 (1)1.1 热力系统简介 (1)1.2 本设计热力系统简介 (3)第2章基本热力系统确定 (5)2.1 锅炉选型 (6)2.2 汽轮机型号确定 (7)2.3 原则性热力系统计算原始资料以及数据选取 (8)2.4 全面性热力系统计算 (8)第3章主蒸汽系统确定 (18)3.1 主蒸汽系统的选择 (18)3.2 主蒸汽系统设计时应注意的问题 (20)3.3 本设计主蒸汽系统选择 (20)第4章给水系统确定 (22)4.1 给水系统概述 (22)4.2 给水泵的选型 (22)4.3 本设计选型 (25)第5章凝结系统确定 (27)5.1 凝结系统概述 (27)5.2 凝结水系统组成 (27)5.3 凝汽器结构与系统 (30)5.4 抽汽设备确定 (30)5.5 凝结水泵确定 (30)第6章.回热加热系统确定 (32)6.1 回热加热器型式 (32)6.2 本设计回热加热系统确定 (37)第7章.旁路系统的确定 (39)7.1 旁路系统的型式及作用 (39)7.2 本设计采用的旁路系统 (42)第8章.辅助热力系统确定 (43)8.1 工质损失简介 (43)8.2 补充水引入系统 (43)8.3 本设计补充水系统确定 (44)8.4 轴封系统 (44)第9章.疏放水系统确定 (45)9.1 疏放水系统简介 (45)9.2 本设计疏放水系统的确定 (45)参考文献 (47)致谢 (48)第1章绪论1.1热力系统简介发电厂的原则性热力系统就是以规定的符号表明工质在完成某种热力循环时所必须流经的各种热力设备之间的系统图。
原则性热力系统具有以下特点:(1)只表示工质流过时状态参数发生变化的各种必须的热力设备,同类型同参数的设备再图上只表示1个;(2)仅表明设备之间的主要联系,备用设备、管路和附属机构都不画出;(3)除额定工况时所必须的附件(如定压运行除氧器进气管上的调节阀)外,一般附件均不表示。
上汽1000MW汽轮机介绍
上汽1000MW汽轮机介绍
汽轮机概述
上汽1000MW汽轮机是一种大型的汽轮机系统,用于发电厂的发电操作。
它由上汽公司设计和制造,并且已经在许多国内外发电厂中得到广泛应用。
技术特点
上汽1000MW汽轮机具有以下技术特点:
1. 高效率:采用先进的热力循环技术和优化的设计,使汽轮机的发电效率达到最高水平。
2. 大功率:1000MW的发电功率使得汽轮机能够满足大型发电厂的需求,为国家电网稳定供电做出重要贡献。
3. 灵活性:汽轮机系统采用模块化设计,能够根据发电厂的需求进行灵活调整和扩展。
4. 高可靠性:采用先进的材料和制造工艺,保证汽轮机的可靠性和长期稳定运行。
主要组成部分
上汽1000MW汽轮机主要由以下组成部分构成:
1. 热力系统:包括锅炉、蒸汽加热器和蒸汽再加热器等设备,用于产生高温高压的蒸汽供给汽轮机。
2. 汽轮机组:包括高压汽轮机、中压汽轮机和低压汽轮机等部分,负责将蒸汽能量转化为机械能驱动发电机运转。
3. 发电机:将汽轮机传递过来的机械能转化为电能输出,供给国家电网。
4. 辅助系统:包括冷却水系统、燃气系统和除尘系统等,用于保证汽轮机系统的正常运行和安全性。
应用领域
上汽1000MW汽轮机广泛应用于大型发电厂,主要用于发电厂的基础电力供应。
它具有高效率、大功率和灵活性的优势,在电力行业中发挥着重要作用。
上汽1000MW汽轮机是一种高效、大功率的汽轮机系统,具有灵活性和高可靠性。
它在电力行业中得到广泛应用,为国家电网的稳定供电做出了重要贡献。
加热器端差————————————————————————————————作者 :————————————————————————————————日期:?一、加热器端差(一 ) 加热器端差的定义表面式加热器的端差 , 有时也称为上端差(出口端差),若不特别注明, 平时都是指加热器汽侧出口疏水温度( 饱和温度)与水侧出口温度之差。
图 3-1 所示 , 加热蒸汽以过热状态 1进入加热器筒体 , 放热过程中温度下降、冷凝至汽侧压力P′j下对应的饱和状态 2 ,以疏水温度 t sj走开加热器,而给水或凝结水则以温度为t wj+1的状态点 a 进入加热器水侧 , 吸热升温后以温度为 t wj的状态点 b 走开。
由于金属管壁传热热阻的存在及结构部署的原因, 一般的表面式回热加热器的 t wj比tsj要小,平时用θ=t sj-twj代表加热器的端差。
显然 , 端差θ越小,热经济性就越好。
我们可以从两个方面来理解: 一方面 , 若是加热器出口水温 t wj不变,端差减小意味着 t sj不需要原来的那样高,回热抽汽压力可以降低一些,回热抽汽做功比 X r增加,热经济性变好 ; 另一方面 , 若是加热蒸汽压力不变,tsj 不变,端差θ减小意味着出口水温t wj高升 ,其结果是减小了压力较高的回热抽汽做功比,而增加了压力较低的回热抽汽做功比, 热经济性获取改进。
比方一台大型机组全部高压加热器的端差降低1 ℃,机组热耗率即可降低约0 .06% 。
加热器端差终归如何选择?从图3 -1 可看出 , 随着换热面积 A 的增加,θ是减小的 ,它们有以下关系式中 A ——金属换热面积,m 2 ;t ——水出、入口的温度差,℃;K ——传热系数, kJ/( m2·h·℃ );G——水的流量 ,kg /h;c p——水的定压比热容,kJ / (kg·℃) 。
因此 , 减小端差θ是以付出金属耗量和投资为代价的。
1000MW火力发电机组热机系统节能优化分析摘要节能降耗是工业企业的永恒主题,火力发电厂降低厂用电率、降低发电成本、提高上网电价竞争力的根本在于合理选定系统和选择辅机设备,将节能的总体思想贯彻到电厂的整个设计和运营过程中。
本文根据工程特点,针对百万机组就热机专业设备选型结果,从节能角度论述了各设备模块推荐方案的节能效益。
关键词火力发电机;节能降耗;火力发电厂国电浙能宁东发电有限公司2×1000MW国产超超临界燃煤机组,为世界首台百万间接空冷机组,为贯彻落实项目的节能具体要求,在以经济适用、系统简单、备用减少、安全可靠、高效环保、以人为本为指导思想的同时,突出节能降耗的整体设计原则,设计过程中对热力系统优化、设备选择进行了大量的深入研究工作。
对机组以后的长期高效环保运行意义重大。
1 主机选择近年来,随着国民经济的高速发展,国内大部分地区出现了用电负荷的紧张局面,大力发展电力建设迫在眉睫,同时,由于世界能源价格的日益高涨及SOx ﹑NOx﹑CO2排放对人类及环境的损害与破坏不断加重,持续提高清洁能源发电的比例及大力发展超超临界火电机组成为我国电力管理部门及发电企业面临的重要课题。
超超临界技术是国际上成熟、先进的发电技术,在机组的可靠性、可用率、热机动性、机组寿命等方面已经可以和亚临界机组媲美,并有着广泛的商业运行经验。
2 汽轮机组机组回热级数选型1000MW直接空冷机组采用的就是七级回热抽气,主要是因为考虑八级回热比七级回热的热耗值节省不多;八级回热抽气可能存在高背压下条件下疏水不畅和大直径抽气管难以布置等问题;增加一个低压加热器及相关管道系统,可能会得不偿失。
按热力循环可知,给水温度越高,则热效率越高,但给水温度提高不可避免出现以下问题:(1)给水温度的提高,使排烟温度升高,锅炉效率降低,或需增大锅炉尾部受热面,使锅炉投资增加;(2)由于回热使得锅炉的蒸发量和汽轮机高压端的通流量都要增加,而汽轮机的低压端的通流量和蒸汽流量相应减少,因而不同程度地影响锅炉、汽轮机以及各相关辅助系统的投资、折旧费和厂用电。
浅析百万机组高加运行对经济性的影响摘要:本文针对百万机组高压加热器运行情况,对机组经济性的影响进行浅析,文章采用变工况法对高加解列与高加运行经济性下降导致给水温度下降对机组经济性的影响,并与等效热降的方法进行了比较。
以实际应用为例,给出了不同计算及比较结果。
希望给同类型机组相关人员提供借鉴。
关键词:百万机组、高加、经济性一、百万机组高压加热器设备介绍抽汽回热系统是原则性热力系统最基本的组成部分。
现代电厂机组利用给水回热循环,将蒸汽从汽轮机中抽出并在给水加热器中凝结放热。
抽汽中的大部分热量(包括凝结热)传递至经过加热器的给水,使进入锅炉省煤器给水的最终温度比没有给水加热器的纯凝汽循环中获得的要高得多,减少了锅炉对能量的要求,提高了总的循环效率。
虽然与纯冷凝式汽轮机中同样的主蒸汽流量相比,它的输出功率要小(这是因为有一部分蒸汽并没有在汽轮机中做功完全,牺牲了一部分出力,用来加热给水、凝结水),但是整个锅炉汽机的联合热力循环性能的改进显得更为重要。
目前从百万机组火电厂的给水回热循环蒸汽热量的利用方面来看, 采用汽轮机抽汽在加热器中对给水加热,减少了凝汽器中的热损失, 从而使蒸汽的热量得到充分的利用, 提高了循环的热效率。
从给水加热的过程来看, 利用汽轮机抽汽对给水加热时, 换热温差要比用锅炉烟气加热时小得多, 因而减少了给水加热过程的不可逆性, 也就减少了冷源损失, 提高了循环的效率。
某厂1000MW 汽轮机有八段非调节抽汽,一、二、三段抽汽分别向三级高压加热器供汽,每级高加由两个50%容量的高压加热器组成。
四段抽汽供汽动给泵、除氧器和辅助蒸汽联箱。
五、六、七、八段抽汽供四台低压加热器。
高加为双列三级高压加热器,加热器型式为卧式。
高压加热器疏水在正常运行时采用逐级串联疏水方式,最后一级疏至除氧器。
每台高压加热器均设有危急疏水管道,经疏水立管接至凝汽器。
每列高压加热器水侧分别设有大旁路,在高加停用或高加水侧泄漏时使用。
国电投协鑫滨海电厂2×1000MW机组工程#1机1号高加人孔门检修“三措一案”编制:初审:审核:批准:二零一八年一月一、系统或设备技术规范高压加热器系统由三只高加和一只蒸汽冷却器组成:HP1,HP2,HP3和HP3Bis。
在给水进入锅炉前,主给水从除氧器水箱经给水泵进入高加,高压加热器通过从汽轮机抽汽对给水进行再加热。
在正常工作时高加的疏水去除氧器,危急情况下疏水去凝汽器。
每套机组所配高压加热器系统包括:HP1高加、HP2高加、HP3高加和HP3Bis 各一台,按照汽轮机热平衡工况,受热面布置如下:HP1、HP2和HP3高压加热器受热面均包括:过热段、凝结段和疏水冷却段三部分;本次检修的HP2高加人孔门属于水室部分,需要对汽侧及水侧进行隔离。
设备参数结构特性二、组织机构及职责检修总负责人:检修总负责人职责:负责检修作业的全面协调。
检修技术组:组长:组员:检修技术组职责:1、落实检修材料、备件情况,全面监督检修质量。
2、监督检修项目的执行情况,认真、详实地记录各项检查数据。
3、监督检修进度计划的实施。
4、执行检修标准化管理。
5、组织好检修总结的编制、汇总及上报。
检修安全监督组:组长:组员:检修安全监督组职责:1、对检修现场的安全工作进行全面管理和监督。
2、负责现场的安全组织和管理。
3、负责现场的文明施工监督和考核。
4、对检修现场的作业环境进行作业前的安全评估。
5、检查现场的人员精神状态,不符合要求禁止进行作业。
6、对检修中发生的不安全情况和习惯性违章进行监督和考核。
7、处理检修过程中发生的安全保卫事件。
检修施工组:组长:检修施工组职责:1、作业人员精神状态良好,劳保用品正确佩戴。
2、检修工器具检验合格、准备齐全。
3、领取合格的备品备件,并妥善保管。
4、作业成员遵守相关安全规程、检修规程,严格执行检修作业方案;确认安全、技术措施是否完善并执行到位。
5、检修现场隔离到位,现场物品定置化摆放,检修过程做到三不落地,作业完毕后做到“工完、料净、场地清”。
上汽1000MW超超临界汽轮机汽封及门杆漏汽改造摘要:汽轮机汽封及门杆漏汽是汽轮机结构造成的一种漏汽损失,其泄漏量及漏汽的回收,不仅关系汽轮机的经济运行,也关系机组的安全运行。
本文详细介绍某电厂上汽1000MW超超临界汽轮机轴封及门杆漏汽改造,有效的解决了机组运行过程中轴封母管压力频繁波动、阀门门杆密封外漏影响现场环境、阀门门杆密封内漏影响机组背压的问题,具有借鉴及推广意义。
关键词:超超临界汽轮机、门杆漏汽、中压联通管、机组背压1 前言某电厂2×1000 MW超超临界间接空冷燃煤项目,汽轮机为上海汽轮机厂提供,型号为NJK1000-28/600/620(上汽厂内型号C192),汽轮机不设调节级,采用全周进汽、滑压运行的方式(30%至满负荷)。
配置两个高压主汽联合汽阀、两个中压主汽联合汽阀及一个补汽阀。
高压主汽联合汽阀位于高压缸两侧,在水平位置与高压缸用螺栓连接;两个中压主汽联合汽阀位于中压缸两侧,在水平中心位置与中压缸用法兰连接。
高压主汽阀、中压主汽阀阀壳内均装有永久滤网以过滤蒸汽中杂质。
补汽阀悬吊于高压缸下,双进、双出、四通,分别从左、右高压主汽阀、高压调节汽阀之间抽汽,补入高压缸第5级后,在高压调节汽阀完全开启后,控制额外蒸汽进入高压缸以使汽轮机在额定功率外再增加一部分输出功率,用于响应机组一次调频。
2 汽封系统简介轴封系统为自密封系统,其压力和温度是自动控制的,为满足机组在低负荷下轴端密封的需要,另从辅汽联箱引接一路汽源,经过减温减压装置后,送至轴封控制站前。
因机组在高负荷下形成自密封,轴封控制站不再向轴封母管供给密封蒸汽,轴封控制站前蒸汽温度逐渐降低。
若机组在高负荷下突然甩负荷,汽轮机不具备形成自密封条件,为防止轴封控制站前冷蒸汽进入轴封母管,导致汽轮机转子抱死,在轴封控制站前设置一电加热装置。
正常运行时,电加热装置能自动控制轴封控制站前蒸汽温度保持在280~320℃。
轴封系统还设有溢流泄压装置,可以保证汽轮机高负荷下,高压轴封漏汽量较大时,仍维持轴封母管压力在3.5KPa附近:。
1000MW机组给水泵汽轮机介绍1.前言给水泵是电站锅炉给水系统的主要部件之一,它把除氧器水箱中的凝结水加压后通过各级加热器再进入锅炉,其出口的给水压力应为锅炉出口压力加上锅炉、管道和各高压加热器的阻力。
由于管道及各高压加热器的阻力随流量而变,故给水泵的出口压力和流量应随机组负荷而变化。
随着机组逐步向高参数、大容量发展,给水泵的功耗也相应增加。
给水泵在电站辅机设备中占有重要地位,其安全可靠的运行,直接影响着整个电站设备的安全可靠运行。
因此,用户对小汽轮机的可靠性要求很高。
另外,对大型机组给水系统采用汽动泵,不仅可以降低电厂用电率,而且可以提高整个电站系统的经济性。
在20世纪80年代东方汽轮机有限责任公司从西屋公司引进了给水泵汽轮机的设计和制造技术,该机组具有八十年代中期世界水平,用它们来驱动30万/60万机组的给水泵,不仅具有良好的经济性,而且具有很高的安全可靠性。
之后,东方汽轮机有限责任公司又相继与日立公司合作,共同开发了用于亚临界、超临界600MW等级的驱动锅炉给水泵汽轮机。
东方在引进与合作的过程中学习借鉴世界各大汽轮机制造公司的先进技术的同时,还开发了与30万等级机组配套的2×50%的给水泵小汽轮机D3.6A机型。
目前东方已拥有满足不同要求的从300MW至1000MW等级的驱动锅炉给水泵汽轮机系列。
以下就我公司最近开发设计并即将投运的1000MW等级汽轮机主机配套的锅炉给水泵汽轮机的特点作一简要介绍。
2.设计参数的确定为满足主机变负荷运行时给水流量、压力和锅炉匹配的要求,给水泵必须变负荷运行。
而给水泵变负荷运行是改变给水泵汽轮机的运行转速,使给水流量满足主机不同负荷下的流量要求。
因此,小机的出力和转速运行范围必须满足给水泵的要求。
超超临界1000MW给水泵汽轮机是我公司为超超临界1000MW汽轮机配套而新开发的一种新型给水泵汽轮机,该机既能适应我公司1000MW汽轮机中压排汽1.05Mpa(THA)的进汽要求,也能适应上汽、哈汽1000MW汽轮机中压排汽0.83Mpa(THA)的要求该给水泵汽轮机在额定工况下提供1000MW等级汽轮机给水循环的50%负荷,最大工况下可提供大机给水循环的60%负荷。
东方—日立1000MW超超临界汽轮机说明书(含调试及控制) 东方—日立1000MW超超临界汽轮机说明书(含调试及控制)一、前言1.1 引言本文档是关于东方—日立1000MW超超临界汽轮机的详细说明书,包括其设计、结构、工作原理、调试过程及控制系统等方面的内容。
该说明书旨在为使用者提供清晰、准确的信息,以确保汽轮机的正常运行和维护。
1.2 文档目的本文档的目的是提供东方—日立1000MW超超临界汽轮机的全面信息,包括使用前的准备、调试过程中的操作指导、控制系统的说明等内容。
通过本文档,使用者可以了解该汽轮机的工作原理,正确操作和维护汽轮机,以确保其安全、高效运行。
二、产品概述2.1 产品说明东方—日立1000MW超超临界汽轮机是一种高效、大功率的汽轮机设备,具有超超临界参数下的高温高压汽轮机技术。
该汽轮机拥有先进的设计和制造工艺,在能源转换领域具有广泛的应用。
2.2 产品特点- 高功率输出.1000MW超超临界参数下的汽轮机设计,满足大功率需求。
- 高效节能:采用先进的汽轮机技术,提高能源转换效率,降低能耗。
- 可靠稳定:具有可靠的结构设计和精确的控制系统,确保汽轮机的稳定运行。
- 易维护:提供完善的维护指南和维修手册,方便维护人员进行保养和维修。
三、产品结构3.1 主要组成部件东方—日立1000MW超超临界汽轮机主要由以下组成部件构成:- 汽轮机本体:包括高压缸、中压缸、低压缸等部分,用于驱动发电机发电。
- 蒸汽系统:包括给水加热器、锅炉、燃烧器等部分,提供汽轮机所需的高温高压蒸汽。
- 冷却系统:包括冷却塔、冷却水循环泵、冷却器等部分,用于冷却汽轮机和发电设备。
- 油路系统:包括润滑油泵、冷却器、滤清器等部分,提供润滑和冷却油液给汽轮机各部件。
- 控制系统:包括自动控制系统、保护系统、监控系统等部分,用于对汽轮机进行控制和监测。
3.2 组件功能说明每个组件的功能及作用如下:- 汽轮机本体:将蒸汽能量转化为机械能,驱动发电机发电。
1000MW单元机组全球首个100%容量BEST小汽轮机调试分析摘要:随着大容量火力发电机组的发展,其辅助系统的节能与调节制约着大容量发电机组的经济性,采取更经济的辅助系统成为大型发电厂设计时需要思考的问题。
本文就1000MW单元机组采用全球首个100%容量BEST小汽轮机调试过程进行分析,并结合实际机组的生产运行提出建设性意见,可以预见该类型的小汽轮机首次调试经验对后续双机回热系统的推广应用具有示范性意义。
关键字:BEST小汽轮机 1000MW单元机组火力发电厂调试0 前言某1000MW电厂单机组采用全球首个100%容量BEST小汽轮机(变转速抽背式给水泵汽轮机,Back pressure Extraction Steam Turbine,简称 BEST)取代传统小机带动的给水泵组,BEST 汽轮机是用双机回热系统(又称 EC系统, Echelon Cycle),额定功率约为40MW,为变转速、抽汽背压式汽轮机,该汽轮机用于驱动超超临界 1000MW汽轮发电机组100%容量的汽动给水泵,能够满足机组在额定出力下长期运行发电的需求。
1 BEST小机系统介绍BEST汽轮机组为单缸、双层缸、变转速、反动式、单流、抽汽背压式结构,采用全周进汽,无调节级,通流级数为18级压力级,进汽汽源为主汽轮机高压缸排汽。
BEST汽轮机双出轴,给水前置泵和主泵由BEST汽轮机同轴驱动(前置泵-减速箱-BEST汽轮机-给水泵),小机本体包含有3级抽汽,分别作为#3高压加热器、#4高压加热器及除氧器加热用汽源,小机排汽先经过排汽联箱再进入#6低压加热器;排汽联箱配置有背压高溢流管道,排汽联箱压力高时溢流至#7号低压加热器;当排汽联箱背压较低时,将主机中压缸中抽出一路汽作为补汽;若加热器均退出,排汽将通过旁路排至凝汽器【1】。
如图1所示。
2 BEST汽轮机控制策略锅炉给水系统中的汽动给水泵及前置泵均由BEST汽轮机驱动,随着机组负荷的变化,锅炉的蒸发量随之变化,给水流量需要跟随着改变。
1000MW机组高压抗燃油系统1、系统介绍随着机组的容量的增大、参数的提高,汽轮机的主汽门及调门均向大型化发展,迫切要求增大开启主汽门及调门的驱动力以及提高高压控制部件的动态灵敏性。
如果发生液压油系统内漏外泄、油质不合格等情况,将会导致调节系统的运行不稳定,严重时还有可能造成对机组负荷或转速的影响、发生火灾等,这将影响到机组的安全经济运行。
所以,采用具有高品质、良好抗燃性能的液压油以及减小各液压部件间的动、静间隙等方法来保证整个机组的安全运行。
EH供油系统的功能是提供高压抗燃油,并由它来驱动伺服执行机构,该执行机构响应从DEH控制器来的电指令信号,以调节汽机各蒸汽阀开度。
本机组采用高压抗燃油是一种三芳基磷酸脂化学合成油,密度略大于水,它具有良好的抗燃性能和流体稳定性,明火试验不闪光温度高于538℃。
此种油略具有毒性,常温下粘度略大于汽机透平油。
本机组电液控制的供油系统由安装在座架上的不锈钢油箱、有关的管道、蓄压器、控制件、两台EH油泵、两台EH油循环泵、滤油器以及热交换器等组成。
一台EH油泵投运时,另一套即可作为备用,如果需要即可自动投入。
当汽轮机正常运行时,一台EH油泵足以满足系统所需的用油量,如果在控制系统调节时间较长时(如甩负荷)、部分蓄压器损坏等原因导致EH系统油压降低的情况下,第二套油泵(备用油泵)可以立即投入,以保证机组EH 油系统压力正常。
系统工作时由马达驱动高压柱塞泵,油泵将油箱中的抗燃油吸入,供出的抗燃油经过EH控制块、滤油器、逆止阀和安全溢流阀,进入高压集管和蓄能器,建立14±0.2MPa的压力油直接供给各执行机构以及高压遮断系统以及小汽机的执行机构,各执行机构的回油通过压力回油管先经过回油滤油器然后回至油箱。
安全溢流阀是防止EH系统油压过高而设置的,当油泵上的调压阀失灵等原因发生油系统超压时,溢流阀将动作以维持系统油压。
高压母管上的压力开关PSC4能对油压偏离正常值时提供报警信号并提供备用泵自动启动的开关信号,压力开关PSC1、 PSC2 、PSC3是送出遮断停机信号(三取二逻辑)。
1000MW机组FCB功能的实现金峰(上海外高桥第三发电有限责任公司,上海市海徐路1281号,200137)摘要:介绍了外高桥三电厂1000MW超超临界机组系统配置,RUNBACK、甩负荷试验,对比外高桥二电厂900MW机组调试过程中的问题,提出实现FCB的重要条件和要点,结合机组商业运行后情况,分析了FCB后参数变化情况,阐述电厂实现FCB功能的内在和外在意义。
关键词:1000MW;超超临界;RB;FCB;甩负荷;塔式炉Implementation of the FCB function in 1000MW unitJin Feng(Shanghai Waigaoqiao No.3 Power Generation Co. LTD,Shanghai Haixu load No. 1281,200137)Abstract: Introduced the unit system configuration, Runback and Load rejection for 1000MW super-super-critical power generation units in Waigaoqiao No.3 Power Plant. Pointed out the important conditions and key points of FCB according to the problems occurred during the commissioning of Waigaoqiao No. 2 Power Plant. Analysed the main parameters of actual FCB. Explanded the internal and external significance of FCB in thermal power plant.Key words:1000 MW, Super-super-critical, RB;FCB;Tower Boiler1. 引言据不完全统计,从1965年至今,有超过10个国家累计发生15起以上的因电网故障导致城市大面积停电事故,使工业生产、商业活动和交通运输陷入瘫痪,数百万甚至数千万居民生活受到严重影响,造成巨大经济损失。