场效应管及其基本电路74881
- 格式:pptx
- 大小:1.39 MB
- 文档页数:78
场效应管的原理和基础知识基本概念场效应管是⼀种受电场控制地半导体器件(普通三极管地⼯作是受电流控制地器件).场效应管应具有⾼输⼊阻抗,较好地热稳定性、抗辐射性和较低地噪声.对夹断电压适中地场效应管,可以找到⼀个⼏乎不受温度影响地零温度系数⼯作点,利⽤这⼀特性,可使电路地温度稳定性达到最佳状态.电⼦电路中常⽤场效应管作放⼤电路地缓冲级、模拟开关和恒流源电路.场效应管按结构可分为结型场效应管(缩写为)和绝缘栅场效应管(缩写为),从导电⽅式看,场效应管分为型沟道型与型沟道型.绝缘栅型场效应管有增强型和耗尽型两种,⽽只有耗尽型.⼀、基本结构场效应管是利⽤改变电场来控制半导体材料地导电特性,不是像三极管那样⽤电流控制结地电流.因此,场效应管可以⼯作在极⾼地频率和较⼤地功率.此外,场效应管地制作⼯艺简单,是集成电路地基本单元.场效应管有结型和绝缘栅型两种主要类型.每种类型地场效应管都有栅极、源极和漏极三个⼯作电极,同时,每种类型地场效应管都有沟道和沟道两种导电结构.绝缘栅型场效应管⼜叫做管.根据在外加电压时是否存在导电沟道,绝缘栅场效应管⼜可分为上增强型和耗尽型.增强型管在外加电压时不存在导电沟道,⽽耗尽型地氧化绝缘层中加⼊了⼤量地正离⼦,即使在时也存在导电沟道.沟道绝缘栅型为栅极为源极为漏极衬底结型场效应管地结构与绝缘栅场效应管地结构基本相同,主要地区别在于栅极与通道半导体之间没有绝缘.沟道和沟道结型从场效应管地基本结构可以看出,⽆论是绝缘栅型还是结型,场效应管都是两个背靠背地结.电流通路不是由结形成地,⽽是依靠漏极和源极之间半导体地导电状态来决定地.⼆、电路符号基本参数场效应管地主要技术参数,可分为直流参数和交流参数两⼤类.⼀、夹断电压和开启电压⼀般是对结型管⽽⾔,当栅源之间地反向电压增加到⼀定数以后,不管漏源电压⼤⼩都不存在漏电流.这个使开始为零地电压叫作管⼦地夹断电压⼀般是对管⽽⾔,表⽰开始出现时地栅源电压值.对沟道增强型、沟道耗尽型为正值,对沟道耗尽型、沟道增强型为负值.⼆、饱和漏电流当⽽⾜够⼤时,漏电流地饱和值,就是管⼦地饱和漏电流,常⽤符号表⽰.三、栅极电流当栅极加上⼀定地反向电压时,会有极⼩地栅极电流,⽤符号表⽰.对结型场效应管在之间;对于⽽⾔⼀般⼩于安.正是由于栅极电流极⼩,所以场效应管具有极⾼地阻抗.四、通导电阻五、截⽌漏电流六、跨导七、漏源动态电阻基本特性⼀、转移特性和输出特性⼯程应⽤中最常⽤地是共源极电路地输⼊和输出关系曲线,场效应管地共源极连接是把源极作为公共端、栅极作为输⼊端、漏极作为输出端.由于共源极场效应管地输⼊电流⼏乎为零,因此,其输⼊曲线反映地是栅极电压与漏极电流地关系,叫做转移特性.反映间电压与之间关系地叫做输出曲线.场效应管共源极电路转移特性曲线和输出特性曲线场效应管输出特性有可变电阻(也叫夹断区)、放⼤(也叫恒流区)、截⽌区和击穿区四个⼯作区.这与三极管地饱和、截⽌、放⼤和击穿相似.⼆、截⽌与电阻导通特性场效应管间不导通状态叫做截⽌,此时接近,场效应管没有电流传导地能⼒,相当于开关断开.产⽣截⽌现象地原因,是此时场效应管没有形成导电沟道.场效应管输出特性曲线中与之间呈线性关系地区域叫做电阻区,⼆者之间地关系可近似为其中为导通电阻,⼀般都很⼩.在电阻区,场效应管地之间近似为⼀个不变电阻.⽆论是在电阻区还是截⽌区,场效应管地电流控制能⼒很微弱,这是在应⽤设计中必须⼗分注意地问题.在设计模拟信号电路时,⼀定要使电路⼯作在场效应管地放⼤区,避免进⼊电阻区和截⽌区.在设计开关电路时,要使电路能很快地在电阻和截⽌状态之间转换,避免进⼊放⼤区.使⽤场效应管时,应当注意以下⼏个问题:()为了防⽌栅极击穿,要求⼀切测试仪器、电路本⾝、电烙铁都必须良好接地.焊接时,⽤⼩功率烙铁迅速焊接,或拔去电源⽤余热焊接,并应先焊源极,后焊栅极.()场效应管输送阻抗较⾼,故在不使⽤时,必须将引出线短路,以防感应电势将栅极击穿则不可短路.()要求⾼输⼊阻抗地线路,须采取防潮措施,以免使输⼊阻抗显著降低.()场效应管栅极有地可加正压或负压,⽽常⽤地结型场效应管因是沟道耗尽型,栅极只能加负压.()场效应管地漏极和源极通常制成对称地,除源极和衬底制造时连在⼀起地管⼦外,漏极和源极可互换使⽤.。
什么是场效应管场效应管(Field Effect Transistor,简称FET)是一种用于电子设备中的半导体器件。
场效应管利用静电场控制电流流动,其工作原理与晶体管相似。
本文将介绍场效应管的定义、工作原理、类型以及应用领域。
定义:场效应管是一种三极管,由栅极(Gate)、源极(Source)和漏极(Drain)组成。
其中,栅极是控制电流的电极,源极是电流进入管子的电极,漏极是电流从管子流出的电极。
工作原理:场效应管的工作原理基于氧化物半导体场效应。
在FET内部,栅极和基底之间存在一层绝缘氧化物。
当栅极上施加电压时,电压在绝缘氧化物上产生电场,控制了栅极和基底之间的电流。
根据电压的极性和大小,场效应管可以分为两种类型:1. N沟道型场效应管(N-channel FET):N沟道型FET的基底为P型半导体,漏极和源极之间存在一个N型的沟道。
当栅极电压为正值时,电场将吸引阳极中电子,导致电子从源极流向漏极,形成电流。
2. P沟道型场效应管(P-channel FET):P沟道型FET的基底为N型半导体,漏极和源极之间存在一个P型的沟道。
当栅极电压为负值时,电场将吸引阴极中的空穴,导致空穴从源极流向漏极,形成电流。
应用领域:场效应管在电子设备中有广泛的应用,包括:1. 放大器:场效应管可以作为放大器,放大小信号电压或电流,用于音频放大、射频放大等应用。
2. 开关:场效应管可以作为开关,控制电流的通断。
例如,在数字逻辑电路中,场效应管可用于构建数字逻辑门电路。
3. 电源稳定器:场效应管可用于构建电源稳定器,保持电源输出的稳定性,用于电子设备的供电。
4. 数模转换器:场效应管可以将模拟信号转换为数字信号,用于模数转换器中的采样和保持电路。
总结:场效应管是一种重要的半导体器件,通过控制电场实现电流控制。
它具有放大器、开关、电源稳定器等多种应用,广泛用于电子设备和电路中。
了解场效应管的工作原理和应用,有助于理解电子技术中的基本原理和电路设计。
场效应管详解一、场效应管的基本概念场效应管(Field-Effect Transistor,简称FET)是一种三极管,由栅极、漏极和源极三个电极组成。
栅极与漏极之间通过电场控制漏极和源极之间的电流。
二、场效应管的工作原理场效应管的工作原理基于电场控制电流的效应。
当栅极施加一定电压时,在栅极和漏极之间形成了一个电场,这个电场控制着漏极和源极之间的电流。
通过调节栅极电压,可以改变漏极和源极之间的电流,实现对电流的控制。
三、场效应管的分类根据不同的控制机构,场效应管可以分为三种类型:MOSFET(金属-氧化物-半导体场效应管)、JFET(结型场效应管)和IGBT(绝缘栅双极型晶体管)。
MOSFET是最常见的一种场效应管。
四、场效应管的特点和优势1. 高输入阻抗:场效应管的栅极是绝缘层,因此栅极和源极之间的电流极小,使得场效应管具有很高的输入阻抗。
2. 低噪声:由于高输入阻抗的特性,场效应管的噪声很低。
3. 低功耗:场效应管的控制电流很小,从而使得其功耗较低。
4. 快速开关速度:场效应管的开关速度较快,适合高频应用。
五、场效应管的应用领域场效应管广泛应用于各种电子设备中,包括放大器、开关电路、调节电路、振荡器等。
在电子行业中,场效应管已经成为一种重要的电子元件。
六、场效应管的优化和发展随着科技的不断进步,场效应管也在不断优化和发展。
目前,一些新型的场效应管已经出现,如高电压场效应管、功率场效应管等,以满足不同领域对场效应管的需求。
场效应管作为一种重要的电子元件,具有较高的输入阻抗、低噪声、低功耗和快速开关速度等特点,广泛应用于各种电子设备中。
随着科技的不断发展,场效应管的优化和发展也在不断进行,使其能更好地满足不同领域的需求。
场效应管的研究和应用将继续推动电子技术的发展,为人们的生活带来更多便利和创新。
电路中的场效应管有哪些种类和应用场效应管(Field-Effect Transistor,简称FET)是一种常见的电子元件,广泛应用于各种电路中。
它基于电场效应来实现电流的控制和放大,具有高输入阻抗、低功耗和高频特性等优点。
本文将介绍电路中的场效应管的种类和应用。
一、场效应管的种类1. MOSFET(金属氧化物半导体场效应管)MOSFET是最常见的场效应管种类之一,由金属氧化物半导体材料构成。
根据结构和工作模式的不同,MOSFET可分为两种类型:增强型MOSFET和耗损型MOSFET。
增强型MOSFET(Enhancement Mode MOSFET)通常处于截止状态,需要施加正向电压来打开通道。
它的主要特点是输入电阻高,适用于放大和开关电路。
耗损型MOSFET(Depletion Mode MOSFET)则相反,通常处于导通状态,需要施加负向电压来截止通道。
它具有低输入电阻和高输出电阻的特点,适用于特定的应用场景。
2. JFET(结型场效应管)JFET使用p-n结构构成,分为N沟道型JFET和P沟道型JFET两种。
N沟道型JFET的导电沟道为N型,需要施加负向电压来控制电流。
它的主要特点是低噪声、高输入阻抗和高放大倍数,常用于高频放大器和低噪声电路。
P沟道型JFET则相反,导电沟道为P型,需要施加正向电压来控制电流,适用于某些特殊的电路设计。
二、场效应管的应用1. 放大器场效应管有很好的放大特性,常用于放大信号。
通过调整输入电压,可以控制输出电流的变化,实现对信号的放大。
2. 开关由于场效应管的高输入阻抗和快速开关速度,可以用作开关元件,广泛应用于电源管理、逆变器和驱动电路等领域。
它的开关速度快,能够有效控制高频信号和脉冲信号。
3. 模拟开关场效应管还可以用作模拟开关,根据输入电压的变化,实现对模拟信号的切换和控制。
比如在音频信号中的应用,可以实现信号的选择、切换和调节。
4. 逻辑门场效应管可以组合成各种逻辑门电路,实现数字电路中的逻辑运算。
场效应管的基础知识场效应晶体管(Field Effect Transistor缩写(FET))简称场效应管。
一般的晶体管是由两种极性的载流子,即多数载流子和反极性的少数载流子参与导电,因此称为双极型晶体管,而FET仅是由多数载流子参与导电,它与双极型相反,也称为单极型晶体管。
它属于电压控制型半导体器件,具有输入电阻高(108~109Ω)、噪声小、功耗低、动态范围大、易于集成、没有二次击穿现象、安全工作区域宽等优点,现已成为双极型晶体管和功率晶体管的强大竞争者。
一、场效应管的分类场效应管分结型、绝缘栅型两大类。
结型场效应管(JFET)因有两个PN结而得名,绝缘栅型场效应管(JGFET)则因栅极与其它电极完全绝缘而得名。
目前在绝缘栅型场效应管中,应用最为广泛的是MOS场效应管,简称MOS管(即金属-氧化物-半导体场效应管MOSFET);此外还有PMOS、NMOS和VMOS功率场效应管,以及最近刚问世的πMOS场效应管、VMOS功率模块等。
按沟道半导体材料的不同,结型和绝缘栅型各分沟道和P沟道两种。
若按导电方式来划分,场效应管又可分成耗尽型与增强型。
结型场效应管均为耗尽型,绝缘栅型场效应管既有耗尽型的,也有增强型的。
二、场效应三极管的型号命名方法现行有两种命名方法:第一种命名方法与双极型三极管相同,第三位字母J代表结型场效应管,O代表绝缘栅场效应管。
第二位字母代表材料,D是P型硅,反型层是N沟道;C是N型硅P沟道。
例如,3DJ6D是结型N沟道场效应三极管,3DO6C 是绝缘栅型N沟道场效应三极管。
第二种命名方法是CS××#,CS代表场效应管,××以数字代表型号的序号,#用字母代表同一型号中的不同规格。
例如CS14A、CS45G等。
三、场效应管的参数场效应管的参数很多,包括直流参数、交流参数和极限参数,但一般使用时关注以下主要参数:1、I DSS—饱和漏源电流。
是指结型或耗尽型绝缘栅场效应管中,栅极电压U GS=0时的漏源电流。
场效应管h桥电路
【实用版】
目录
1.场效应管的基本概念
2.H 桥电路的结构和工作原理
3.场效应管 H 桥电路的特点和应用
正文
一、场效应管的基本概念
场效应管(Field Effect Transistor,简称 FET)是一种半导体器件,是基于半导体材料的电子运动方式而设计的。
场效应管是三种主要的晶体管之一,另外两种是双极晶体管和绝缘栅双极晶体管。
场效应管具有高输入电阻、低噪声和低功耗等特点,在电路设计中有着广泛的应用。
二、H 桥电路的结构和工作原理
H 桥电路,又称为双差分对电路,是一种常用的功率放大电路。
它由两个互补的差分对组成,可以实现直流电机的正反转控制。
H 桥电路的结构包括四个开关元件,通常由场效应管或晶体管构成。
H 桥电路的工作原理如下:
1.当输入信号加在 A、B 两点时,Q1 和 Q4 导通,Q2 和 Q3 截止。
此时,电流从电源正极经过 Q1、电机、Q4 流回电源负极,电机正转。
2.当输入信号加在 A、B 两点相反时,Q1 和 Q4 截止,Q2 和 Q3 导通。
此时,电流从电源正极经过 Q2、电机、Q3 流回电源负极,电机反转。
3.当输入信号从 A、B 两点移除时,Q1 和 Q4 截止,Q2 和 Q3 截止。
此时,电机无电流流过,停止转动。
三、场效应管 H 桥电路的特点和应用
采用场效应管作为开关元件的 H 桥电路具有以下特点:
1.场效应管具有较高的输入电阻,可以降低电路的干扰。
2.场效应管的功耗较低,可以提高电路的效率。
3.场效应管具有较大的信号传输能力,可以实现较大功率的控制。
场效应管的工作原理详解场效应管(Field Effect Transistor,FET)是一种常用的半导体器件,具有广泛的应用领域,如放大器、开关、逆变等。
本文将详细介绍场效应管的工作原理。
一、场效应管的基本结构场效应管由栅极(Gate)、漏极(Drain)和源极(Source)三个部分组成。
其中栅极与源极之间的电压(Vgs)作用于栅极与源极之间的绝缘层,控制电流从漏极到源极的通断状态。
二、N沟道场效应管(N-Channel FET)1. 静态工作原理N沟道场效应管作为一种N型材料构成的器件,其栅极与源极之间的电压(Vgs)为负数时,使得栅极与沟道之间的电场均匀,形成一个浓度较高的N型沟道,使得漏极和源极之间的导通电阻减小。
当Vgs=0时,N沟道场效应管处于截止状态。
2. 动态工作原理当将正向电压(Vds)加到漏极和源极之间时,漏极端的电势较低,而源极端较高。
此时通过漏极和源极之间的电阻小,使得电流从漏极流向源极。
当电压Vds增大时,漏极电势继续下降,导致沟道中的电子浓度减小,电阻增加。
最终,当Vds达到一定值时,沟道中的电阻增大到一定程度,使得电流几乎不再增加,即处于饱和状态。
此时的电流为IDSS,对应的电压为Vp。
三、P沟道场效应管(P-Channel FET)1. 静态工作原理P沟道场效应管作为一种P型材料构成的器件,其栅极与源极之间的电压(Vgs)为正数时,使得栅极与沟道之间的电场均匀,形成一个浓度较高的P型沟道,使得漏极和源极之间的导通电阻减小。
当Vgs=0时,P沟道场效应管处于截止状态。
2. 动态工作原理当将负向电压(Vds)加到漏极和源极之间时,漏极端的电势较高,而源极端较低。
此时通过漏极和源极之间的电阻小,使得电流从源极流向漏极。
当电压Vds增大时,漏极电势继续上升,导致沟道中的空穴浓度减小,电阻增加。
最终,当Vds达到一定值时,沟道中的电阻增大到一定程度,使得电流几乎不再增加,即处于饱和状态。
1.4 场效应三极管前面介绍的半导体三极管称为双极型三极管(英文缩写为BJT),这是因为在这一类三极管中,参与导电的有两种极性的载流子:既有多数载流子又有少数载流子。
现在将要讨论另一种类型的三极管。
它们依靠一种极性的载流子(多数载流子)参与导电,所以称为单极型三极管。
又因为这种管子是利用电场效应来控制电流的,所以也称为场效应管。
场效应管分为两大类:一类称为结型场效应管,另一类称为绝缘栅场效应管。
1.4.1 结型场效应管本节主要介绍结型场效应管的结构、工作原理和特性曲线。
一、结构图1.4.1中示出了N沟道结型场效应管的结构示意图以及它在电路中的符号。
图1.4.1 N沟道结型场效应管的结构和符合(a)结构示意图 (b)符号在一块N型硅棒的两侧,利用合金法、扩散法或其他工艺做成掺杂程度比较高的P型区(用符号表示),则在型区和N型区的交界处将形成一个PN结,或称耗尽层。
将两侧的型区连接在一起,引出一个电极,称为栅极(G),再在N型硅棒的一端引出源极(S),另一端引出漏极(D),见图1.4.1(a)。
如果在漏极和源极之间加上一个正向电压,即漏极接电源正端,源极接电源负端,则因为N型半导体中存在多数载流子电子,因而可以导电。
这外场效应管的导电沟道是N型的,所以称为N沟道结型场效应管,其电路符号见图1.4.1(b)。
注意电路符号中,栅极上的箭头指向内部,即由区指向N区。
另—种结型场效应管的导电沟道是P型的,即在P型硅棒的两侧做成高掺杂的N型区(用符号表示),并连在一起引出栅极,然后从P型硅棒的两端分别引出源极和漏极,见图1.4.2(a)。
这就是P沟道结型场效应管,其电路符号见图1.4.2(b)所示。
此处栅极上的箭头指向外侧,即由P区指向区。
图1.4.2 P沟道结型场效应管的结构和符号(a)结构示意图 (b)符号上述两种场效应管的工作原理是类似的,下面以N沟道结型场效应管为例,介绍它们的工作原理和特性曲线。
二、工作原理从结型场效应管的结构已经看出,在栅极和导电沟道之间存在一个PN结。
场效应管工作原理
场效应管是一种电子器件,也称为晶体管。
它通过控制外部电场来改变电子的导电性能。
场效应管由P型或N型半导体材
料制成,其工作原理基于金属氧化物半导体场效应。
当场效应管的栅极电压为零时,通道中没有电子流动,管子处于截止状态。
当栅极电压增加时,形成了一个负电场,这使得
N型半导体通道中的自由电子向栅极靠拢。
由于栅极和通道之间的绝缘层,电子无法直接通过栅极流过,而是聚集在通道的表面,形成一个电子气体。
这个电子气体在栅极电场影响下导电。
当栅极电压增加到一定程度时,栅极电场将吸引足够多的电子,使得N型半导体通道完全形成,这时场效应管处于饱和状态。
此时,电子在通道中畅通无阻地流动,形成了一个电流路径。
与此相反,当栅极电压减小到截止电压以下时,场效应管重新进入截止状态,电子无法通过通道,电流被阻断。
总之,通过控制栅极电压,场效应管可以实现电流的开关控制。
这种工作原理使得场效应管在集成电路中被广泛应用,如放大器、开关和逻辑门等。
场效应管百科名片场效应晶体管(Field Effect Transistor缩写(FET))简称场效应管。
由多数载流子参与导电,也称为单极型晶体管。
它属于电压控制型半导体器件。
具有输入电阻高(108~109Ω)、噪声小、功耗低、动态范围大、易于集成、没有二次击穿现象、安全工作区域宽等优点,现已成为双极型晶体管和功率晶体管的强大竞争者。
目录基本特点工作原理主要参数型号命名主要作用试验测试分类简介测量方法基本特点工作原理主要参数型号命名主要作用试验测试分类简介测量方法∙判断方法∙产品特性∙电气特性∙参数符号∙注意事项∙使用优势∙应用领域∙应用特点展开编辑本段基本特点场效应管属于电压控制元件,这一点类似于电子管的三极管,但它的构造与工作原理和电子管是截然不同的,与双极型晶体管相比,场效应晶体管具有如下特点:场效应管(1)场效应管是电压控制器件,它通过UGS来控制ID;(2)场效应管的输入端电流极小,因此它的输入电阻很大。
(3)它是利用多数载流子导电,因此它的温度稳定性较好;(4)它组成的放大电路的电压放大系数要小于三极管组成放大电路的电压放大系数;(5)场效应管的抗辐射能力强;(6)由于不存在杂乱运动的少子扩散引起的散粒噪声,所以噪声低。
编辑本段工作原理场效应管工作原理用一句话说,就是“漏极-源极间流经沟道的ID,用以门极与沟道间的pn结形成的反偏的门极电压控制ID”。
更正确地说,ID 流经通路的宽度,即沟道截面积,它是由pn结反偏的变化,产生耗尽层扩展变化控制的缘故。
在VGS=0的非饱和区域,表示的过渡层的扩展因为不很场效应管大,根据漏极-源极间所加VDS的电场,源极区域的某些电子被漏极拉去,即从漏极向源极有电流ID流动。
从门极向漏极扩展的过度层将沟道的一部分构成堵塞型,ID饱和。
将这种状态称为夹断。
这意味着过渡层将沟道的一部分阻挡,并不是电流被切断。
在过渡层由于没有电子、空穴的自由移动,在理想状态下几乎具有绝缘特性,通常电流也难流动。