人教版高数选修2第5讲:抛物线的标准方程与性质(教师版)
- 格式:docx
- 大小:1.28 MB
- 文档页数:9
高中数学选修2 抛物线教案一、教学内容本节课选自高中数学选修2第三章《圆锥曲线与方程》中的抛物线部分。
具体内容包括:抛物线的定义、标准方程、图形及性质;抛物线焦点、准线、对称轴等相关概念;抛物线在实际问题中的应用。
二、教学目标1. 理解并掌握抛物线的定义、标准方程及图形性质。
2. 学会利用抛物线的性质解决实际问题。
3. 培养学生的几何想象能力和逻辑思维能力。
三、教学难点与重点重点:抛物线的定义、标准方程及图形性质。
难点:抛物线焦点、准线、对称轴等概念的理解及其应用。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔、直尺、圆规。
2. 学具:练习本、铅笔、直尺、圆规。
五、教学过程1. 实践情景引入(5分钟)利用多媒体展示生活中的抛物线实例,如篮球投篮、卫星通信等,引导学生发现抛物线的特点。
2. 知识讲解(10分钟)(1)抛物线的定义:平面上到一个定点(焦点)的距离等于到一条直线(准线)的距离的点的轨迹。
(2)抛物线的标准方程:y^2=2px、x^2=2py。
(3)抛物线的图形性质:开口方向、对称轴、顶点、焦点、准线等。
3. 例题讲解(15分钟)(1)求解抛物线y^2=8x的焦点和准线。
(2)已知抛物线x^2=12y,求顶点坐标、对称轴及焦点坐标。
4. 随堂练习(5分钟)(1)求抛物线y^2=4x的焦点和准线。
(2)已知抛物线x^2=6y,求顶点坐标、对称轴及焦点坐标。
5. 课堂小结(5分钟)六、板书设计1. 定义:平面上到一个定点(焦点)的距离等于到一条直线(准线)的距离的点的轨迹。
2. 标准方程:y^2=2px、x^2=2py。
3. 图形性质:开口方向、对称轴、顶点、焦点、准线。
4. 例题及解答。
七、作业设计1. 作业题目:(1)求抛物线x^2=16y的焦点和准线。
(2)已知抛物线y^2=10x,求顶点坐标、对称轴及焦点坐标。
2. 答案:八、课后反思及拓展延伸本节课通过实践情景引入、例题讲解、随堂练习等方式,使学生掌握了抛物线的定义、标准方程、图形性质等基本概念。
抛物线的标准方程与性质____________________________________________________________________________________________________________________________________________________________________1. 了解抛物线的实际背景,了解抛物线在刻画现实世界和解决实际问题中的作用;2. 掌握抛物线的定义、几何图形、标准方程及简单几何性质.1.抛物线的定义(1)平面内与一个定点F 和一条定直线l (F ∉l )的距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.(2)其数学表达式:|MF |=d (其中d 为点M 到准线的距离). 2.抛物线的标准方程与几何性质类型一 抛物线的定义及应用例1:过点(0,-2)的直线与抛物线y 2=8x 交于A 、B 两点,若线段AB 中点的横坐标为2,则|AB|等于( )A .217B .17C .215D .15【解析】设直线方程为y =kx -2,A(x 1,y 1)、B(x 2,y 2).由⎩⎪⎨⎪⎧y =kx -2,y 2=8x ,得k 2x 2-4(k +2)x +4=0.∵直线与抛物线交于A 、B 两点, ∴Δ=16(k +2)2-16k 2>0,即k>-1. 又x 1+x 22=2k +2k2=2,∴k =2或k =-1(舍去). ∴|AB|=1+k 2|x 1-x 2|=1+22·x 1+x 22-4x 1x 2=542-4=215.【答案】C练习1:已知点P 是抛物线y 2=2x 上的一个动点,则点P 到点(0,2)的距离与点P 到该抛物线准线的距离之和的最小值为( )A.172B .3C. 5D.92【答案】A练习2:F 是抛物线y 2=2x 的焦点,A ,B 是抛物线上的两点,|AF |+|BF |=6,则线段AB 的中点到y 轴的距离为________.【答案】52类型二 抛物线的标准方程和几何性质例2:已知抛物线C :y 2=4x 的焦点为F ,直线y =2x -4与C 交于A ,B 两点,则cos ∠AFB =( )A .45B .35C .-35D .-45【解析】由⎩⎪⎨⎪⎧y 2=4x ,y =2x -4得x 2-5x +4=0,∴x =1或x =4.不妨设A(4,4),B(1,-2),则|FA →|=5,|FB →|=2,FA →·FB →=(3,4)·(0,-2)=-8,∴cos ∠AFB =FA →·FB →|FA →|·|FB →|=-85×2=-45.故选D .【答案】D练习1:已知点A (-2,3)在抛物线C :y 2=2px 的准线上,记C 的焦点为F ,则直线AF 的斜率为( )A .-43B .-1C .-34D .-12【答案】C练习2:(2014·湖南卷)如图,正方形ABCD 和正方形DEFG 的边长分别为a ,b (a <b ),原点O 为AD 的中点,抛物线y 2=2px (p >0)经过C ,F 两点,则ba=________.【答案】1类型三 抛物线焦点弦的性质例3:已知直线y =k(x +2)(k>0)与抛物线C :y 2=8x 相交于A 、B 两点,F 为C 的焦点.若|FA|=2|FB|,则k 等于( )A .13B .23C .23D .223【解析】设A(x 1,y 1),B(x 2,y 2),易知x 1>0,x 2>0,由⎩⎪⎨⎪⎧y =k x +2y 2=8x 得k 2x 2+(4k 2-8)x +4k 2=0,∴x 1x 2=4,① 根据抛物线的定义得,|FA|=x 1+p2=x 1+2,|FB|=x 2+2,∵|FA|=2|FB|,∴x 1=2x 2+2,② 由①②得x 2=1,∴B(1,22),代入y =k(x +2)得k =223,选D .【答案】D练习1:过抛物线y 2=2px(p>0)的焦点F 作倾斜角为45°的直线交抛物线于A 、B 两点,若线段AB 的长为8,则p =________.【解析】直线y =x -p 2,故⎩⎪⎨⎪⎧y =x -p 2y 2=2px ,∴x 2-3px +p24=0,|AB|=8=x 1+x 2+p ,∴4p =8,p =2. 【答案】2类型四 直线与抛物线的位置关系 例4:如图所示,O 为坐标原点,过点P(2,0),且斜率为k 的直线l 交抛物线y 2=2x 于M(x 1,y 1),N(x 2,y 2)两点.(1)写出直线l 的方程; (2)求x 1x 2与y 1y 2的值; (3)求证:OM ⊥ON.【解析】(1)直线l 的方程为y =k(x -2)(k ≠0).①(2)由①及y 2=2x ,消去y 可得 k 2x 2-2(2k 2+1)x +4k 2=0.②点M ,N 的横坐标x 1与x 2是②的两个根, 由韦达定理,得x 1x 2=4k2k2=4.由y 21=2x 1,y 22=2x 2,得(y 1y 2)2=4x 1x 2=4×4=16, 由图可知y 1y 2<0,所以y 1y 2=-4.(3)证明:设OM ,ON 的斜率分别为k 1,k 2, 则k 1=y 1x 1,k 2=y 2x 2.由(2)知,y 1y 2=-4,x 1x 2=4, ∴k 1k 2=y 1y 2x 1x 2=-1.∴OM ⊥ON.【答案】(1)直线l 的方程为y =k(x -2)(k ≠0).①(2)由①及y 2=2x ,消去y 可得 k 2x 2-2(2k 2+1)x +4k 2=0.②点M ,N 的横坐标x 1与x 2是②的两个根, 由韦达定理,得x 1x 2=4k2k2=4.由y 21=2x 1,y 22=2x 2,得(y 1y 2)2=4x 1x 2=4×4=16, 由图可知y 1y 2<0,所以y 1y 2=-4.(3)证明:设OM ,ON 的斜率分别为k 1,k 2, 则k 1=y 1x 1,k 2=y 2x 2.由(2)知,y 1y 2=-4,x 1x 2=4, ∴k 1k 2=y 1y 2x 1x 2=-1.∴OM ⊥ON.练习1【2015高考四川,理10】设直线l 与抛物线24y x =相交于A ,B 两点,与圆()()22250x y r r -+=>相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是( )A.()13, B .()14, C .()23, D .()24,【答案】D练习2:抛物线C :x 2=8y 与直线y =2x -2相交于A ,B 两点,点P 是抛物线C 上异于A ,B 的一点,若直线PA ,PB 分别与直线y =2相交于点Q ,R ,O 为坐标原点,则OP →·OQ →=________.【答案】201.【2015高考天津,理6】已知双曲线()222210,0x y a b a b-=>> 的一条渐近线过点(,且双曲线的一个焦点在抛物线2y = 的准线上,则双曲线的方程为( )A.2212128x y -= B.2212821x y -= C.22134x y -= D.22143x y -= 【答案】D2.【2015高考浙江,理5】如图,设抛物线24y x =的焦点为F ,不经过焦点的直线上有三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在y 轴上,则BCF ∆与ACF ∆的面积之比是( )A.11BF AF -- B.2211BF AF -- C.11BF AF ++ D.2211BF AF ++【答案】A.3.(2014·辽宁卷)已知点A (-2,3)在抛物线C :y 2=2px 的准线上,过点A 的直线与C 在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为( )A.12B.23C.34D.43【答案】D4.【2015高考上海,理5】抛物线22y px =(0p >)上的动点Q 到焦点的距离的最小值为1,则p =_________【答案】p=25.(2014·广东卷)曲线y =e-5x+2在点(0,3)处的切线方程为________.【答案】y =-5x +36.已知一条曲线C 在y 轴右边,C 上每一点到点F(1,0)的距离减去它到y 轴距离的差都是1. (1)求曲线C 的方程;(2)是否存在正数m ,对于过点M(m,0)且与曲线C 有两个交点A 、B 的任一直线,都有FA →·FB →<0?若存在,求出m 的取值范围;若不存在,请说明理由.【答案】(1)由已知得:曲线C 上的点到点F(1,0)与到x =-1的距离相等,∴曲线C 是以F(1,0)为焦点的抛物线,设y 2=2px(p>0),∵p 2=1,∴p =2,∴方程为:y 2=4x(x>0). (2)假设存在M(m,0)(m>0). 当直线l 斜率不存在时,l :x =m , 设交点A(m,2m),B(m ,-2m),FA →=(m -1,2m),FB →=(m -1,-2m), ∴FA →·FB →=m 2-6m +1<0, ∴3-22<m<3+2 2.当直线l 斜率存在时,l :y =k(x -m)(k ≠0),设A(x 1,y 1),B(x 2,y 2),⎩⎪⎨⎪⎧y 2=4xy =k x -m∴ky 2-4y -4km =0,∴Δ=16+16k 2m>0恒成立, y 1+y 2=4k,y 1y 2=-4m ,又y 21+y 22=(y 1+y 2)2-2y 1y 2=16k 2+8m ,∵FA →·FB →=(y 214-1)·(y 224-1)+y 1y 2=y 1y 2216-14(y 21+y 22)+y 1y 2+12 =m 2-14(16k 2+8m)-4m +12=m 2-6m +1-4k2<0,即:4k 2>m 2-6m +1对∀k ≠0恒成立,又4k 2>0,∴m 2-6m +1<0恒成立, ∴3-22<m<3+22,综上,m 的取值范围是:3-22<m<3+2 2._________________________________________________________________________________ _________________________________________________________________________________基础巩固(1)1.抛物线x 2=12y 的焦点坐标为( )A.⎝ ⎛⎭⎪⎫12,0 B.⎝ ⎛⎭⎪⎫0,12 C.⎝ ⎛⎭⎪⎫18,0 D.⎝ ⎛⎭⎪⎫0,18【答案】D2.已知抛物线y 2=2px (p >0)的准线与曲线x 2+y 2-4x -5=0相切,则p 的值为( ) A .2 B .1C.12D.14【答案】A3.点M (5,3)到抛物线y =ax 2的准线的距离为6,那么抛物线的方程是( ) A .y =12x 2B .y =12x 2或y =-36x 2C .y =-36x 2D .y =112x 2或y =-136x2【答案】D4.已知抛物线y 2=2px (p >0)的焦点F 与双曲线x 24-y 25=1的右焦点重合,抛物线的准线与x 轴的交点为K ,点A 在抛物线上且|AK |=2|AF |,则A 点的横坐标为( )A .2 2B .3C .2 3D .4【答案】B5.已知P 是抛物线y 2=2x 上动点,A ⎝ ⎛⎭⎪⎫72,4,若点P 到y 轴的距离为d 1,点P 到点A 的距离为d 2,则d 1+d 2的最小值是( )A .4 B.92C .5D.112【答案】B6.(2014·新课标全国卷Ⅰ] 已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点.若FP →=4FQ →,则|QF |=( )A.72 B .3C.52D .2【答案】B7.(2014·新课标全国卷Ⅱ] 设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为( )A.334B.938C.6332 D.94【答案】D能力提升(2)8.若抛物线y 2=2px (p >0)的准线经过双曲线x 2-y 2=1的左顶点,则p =________. 【答案】29.已知一条过点P (2,1)的直线与抛物线y 2=2x 交于A ,B 两点,且P 是弦AB 的中点,则直线AB 的方程为________.【答案】x-y-1=010.已知抛物线y 2=2px (p >0)的焦点为F ,△ABC 的顶点都在抛物线上,且满足FA →+FB →+FC →=0,则1k AB +1k BC +1k CA=________.【答案】011.(2014·湖南卷)如图14,正方形ABCD 和正方形DEFG 的边长分别为a ,b (a <b ),原点O 为AD 的中点,抛物线y 2=2px (p >0)经过C ,F 两点,则ba=________.图14【答案】12.已知动点P(x ,y)(y ≥0)到定点F(0,1)的距离和它到直线y =-1的距离相等,记点P 的轨迹为曲线C.(1)求曲线C 的方程;(2)设圆M 过点A(0,2),且圆心M(a ,b)在曲线C 上,若圆M 与x 轴的交点分别为E(x 1,0)、G(x 2,0),求线段EG 的长度.【答案】(1)依题意知,曲线C 是以F(0,1)为焦点,y =-1为准线的抛物线. ∵焦点到准线的距离p =2, ∴曲线C 方程是x 2=4y.(2)∵圆M ∴其方程为(x -a)2+(y -b)2=a 2+(b -2)2令y=0得:x2-2ax+4b-4=0.则x1+x2=2a,x1·x2=4b-4.∴(x1-x2)2=(x1+x2)2-4x1·x2=(2a)2-4(4b-4)=4a2-16b+16.又∵点M(a,b)在抛物线x2=4y上,∴a2=4b,∴(x1-x2)2=16,即|x1-x2|=4.∴线段EG的长度是4.课程顾问签字: 教学主管签字:。
抛物线的方程及性质知识集结知识元抛物线的定义知识讲解1.抛物线的定义【概念】抛物线是指平面内到一个定点和一条定直线l距离相等的点的轨迹.他有许多表示方法,比如参数表示,标准方程表示等等.它在几何光学和力学中有重要的用处.抛物线也是圆锥曲线的一种,即圆锥面与平行于某条母线的平面相截而得的曲线.抛物线在合适的坐标变换下,也可看成二次函数图象.【标准方程】①y2=2px,当p>0时,为右开口的抛物线;当p<0时,为左开口抛物线;②x2=2py,当p>0时,为开口向上的抛物线,当p<0时,为开口向下的抛物线.【性质】我们以y2=2px(p>0)为例:①焦点为(,0);②准线方程为:x=﹣;③离心率为e=1.④通径为2p(过焦点并垂直于x轴的弦);⑤抛物线上的点到准线和到焦点的距离相等.【实例解析】例1:点P是抛物线y2=x上的动点,点Q的坐标为(3,0),则|PQ|的最小值为解:∵点P是抛物线y2=x上的动点,∴设P(x,),∵点Q的坐标为(3,0),∴|PQ|===,∴当x=,即P()时,|PQ|取最小值.故答案为:.这个例题其实是一个求最值的问题,一般的解题思路就是把他转化为求一个未知数的最值,需要注意的是一定要明确这个未知数的定义域,后面的工作就是求函数的最值了.例2:已知点P是抛物线y2=4x上的一个动点,点P到点(0,3)的距离与点P到该抛物线的准线的距离之和的最小值是.解:如图所示,设此抛物线的焦点为F(1,0),准线l:x=﹣1.过点P作PM⊥l,垂足为M.则|PM|=|PF|.设Q(0,3),因此当F、P、Q三点共线时,|PF|+|PQ|取得最小值.∴(|PF|+|PQ|)min=|QF|==.即|PM|+|PQ|的最小值为.故答案为:.这是个经典的例题,解题的关键是用到了抛物线的定义:到准线的距离等于到焦点的距离,然后再根据几何里面的两点之间线段最短的特征求出p点.这个题很有参考价值,我希望看了这个例题的同学能把这个题记下了,并拓展到椭圆和双曲线上面去.【考点分析】抛物线是初中高中阶段重要的一个知识点,高中主要是增加了焦点、准线还有定义,这也提示我们这将是它的一个重点,所以在学习的时候要多多理会它的含义,并能够灵活运用.例题精讲抛物线的定义例1.'已知动圆过定点F(2,0),且与直线x=-2相切,求动圆圆心C的轨迹.'例2.'平面内哪些点到直线l:x=-2和到点P(2,0)距离之比小于1.'例3.'点M到点F(3,0)的距离等于它到直线x=-3的距离,点M运动的轨迹是什么图形?你能写出它的方程吗?能画出草图吗?'抛物线的标准方程知识讲解1.抛物线的标准方程【知识点的认识】抛物线的标准方程的四种种形式:(1)y 2=2px ,焦点在x 轴上,焦点坐标为F(,0),(p 可为正负)(2)x 2=2py ,焦点在y 轴上,焦点坐标为F (0,),(p 可为正负)四种形式相同点:形状、大小相同;四种形式不同点:位置不同;焦点坐标不同.下面以两种形式做简单的介绍:标准方程y 2=2px (p >0),焦点在x 轴上x 2=2py (p >0),焦点在y 轴上图形顶点(0,0)(0,0)对称轴x 轴焦点在x 轴长上y 轴焦点在y 轴长上焦点(,0)(0,)焦距无无离心率e =1e =1准线x =﹣y =﹣例题精讲抛物线的标准方程例1.'已知Q(1,1)是抛物线x2=2py(p>0)上一点,过抛物线焦点F作一条直线l与抛物线交于不同两点A,B.在点A处作抛物线的切线l1,在点B处作抛物线的切线l2,直线l1、l2交于P 点.(Ⅰ)求p的值及焦点F的坐标;(Ⅱ)求证PA⊥PB.'例2.'根据下列条件求抛物线的标准方程:(1)已知抛物线的焦点坐标是F(0,-2);(2)焦点在x轴负半轴上,焦点到准线的距离是5。
一、教课目的(一)知识教育点使学生掌握抛物线的定义、抛物线的标准方程及其推导过程.(二)能力训练点要修业生进一步娴熟掌握分析几何的基本思想方法,提升剖析、对照、归纳、转变等方面的能力.(三)学科浸透点经过一个简单实验引入抛物线的定义,能够对学生进行理论根源于实践的辩证唯心主义思想教育.二、教材剖析1.要点:抛物线的定义和标准方程.(解决方法:经过一个简单实验与椭圆、双曲线的定义对比较引入抛物线的定义;经过一些例题加深对标准方程的认识. )2.难点:抛物线的标准方程的推导.(解决方法:由三种成立坐标系的方法中选出一种最正确方法,防止了硬性规定坐标系. )3.疑点:抛物线的定义中需要加上“定点 F 不在定直线 l 上”的限制.(解决方法:向学生加以说明.)三、活动设计发问、回首、实验、解说、演板、归纳表格.四、教课过程(一)导出课题我们已学习了圆、椭圆、双曲线三种圆锥曲线.今日我们将学习第四种圆锥曲线——抛物线,以及它的定义和标准方程.课题是“抛物线及其标准方程”.请大家思虑两个问题:问题 1:同学们对抛物线已有了哪些认识?在物理中,抛物线被以为是抛射物体的运转轨道;在数学中,抛物线是二次函数的图象?问题 2:在二次函数中研究的抛物线有什么特色?在二次函数中研究的抛物线,它的对称轴是平行于y 轴、张口向上或张口向下两种情况.指引学生进一步思虑:假如抛物线的对称轴不平行于y 轴,那么就不可以作为二次函数的图象来研究了.今日,我们打破函数研究中这个限制,从更一般意义上来研究抛物线.(二)抛物线的定义1.回首平面内与一个定点 F 的距离和一条定直线 l 的距离的比是常数 e 的轨迹,当 0 <e<1 时是椭圆,当 e>1 时是双曲线,那么当 e=1 时,它又是什么曲线?2.简单实验如图 2-29 ,把一根直尺固定在绘图板内直线l 的地点上,一块三角板的一条直角边紧靠直尺的边沿;把一条绳索的一端固定于三角板另一条直角边上的点 A,截取绳索的长等于 A 到直线 l 的距离 AC,并且把绳索另一端固定在图板上的一点F;用一支铅笔扣着绳索,紧靠着三角板的这条直角边把绳索绷紧,而后使三角板紧靠着直尺左右滑动,这样铅笔就描出一条曲线,这条曲线叫做抛物线.频频演示后,请同学们来归纳抛物线的定义,教师总结.3.定义这样,能够把抛物线的定义归纳成:平面内与必定点 F 和一条定直线 l 的距离相等的点的轨迹叫做抛物线 ( 定点 F 不在定直线 l 上 ) .定点 F 叫做抛物线的焦点,定直线 l 叫做抛物线的准线.(三)抛物线的标准方程设定点 F 到定直线 l 的距离为 p(p 为已知数且大于 0) .下边,我们来求抛物线的方程.如何选择直角坐标系,才能使所得的方程取较简单的形式呢?让学生谈论一下,教师巡视,启迪指导,最后简单小结成立直角坐标系的几种方案:方案 1:( 由第一组同学达成,请一优等生演板.)以 l 为 y 轴,过点 F 与直线 l 垂直的直线为 x 轴成立直角坐标系 ( 图 2-30).设定点F(p,0),动点M的坐标为(x,y),过M作MD⊥y轴于D,抛物线的会合为: p={M||MF|=|MD|} .化简后得: y2=2px-p 2(p >0) .方案 2:( 由第二组同学达成,请一优等生演板)以定点 F 为原点,平行 l 的直线为 y 轴成立直角坐标系 ( 图 2-31) .设动点 M 的坐标为 (x , y) ,且设直线 l 的方程为 x=-p ,定点 F(0 , 0) ,过 M作 MD⊥l 于 D,抛物线的会合为:p={M||MF|=|MD|}.化简得: y2=2px+p2(p >0) .方案 3:( 由第三、四组同学达成,请一优等生演板.)取过焦点 F 且垂直于准线 l 的直线为 x 轴, x 轴与 l 交于 K,以线段 KF的垂直均分线为 y 轴,成立直角坐标系 ( 图 2-32) .抛物线上的点M(x,y) 到 l 的距离为 d,抛物线是会合p={M||MF|=d} .化简后得: y2=2px(p > 0) .比较所得的各个方程,应当选择哪些方程作为抛物线的标准方程呢?指引学生剖析出:方案 3 中得出的方程作为抛物线的标准方程.这是因为这个方程不单拥有较简的形式,而方程中的系数有明确的几何意义:一次项系数是焦点到准线距离的 2 倍.因为焦点和准线在座标系下的不一样散布状况,抛物线的标准方程有四种情况( 列表如下) :将上表画在小黑板上,解说时出示小黑板,并讲清为何会出现四种不一样的情况,四种情况中 P>0;并指出图形的地点特色和方程的形式应联合起来记忆.即:当对称轴为 x 轴时,方程等号右端为± 2px,相应地左端为 y2;当对称轴为 y 轴时,方程等号的右端为± 2py,相应地左端为 x2.同时注意:当焦点在正半轴上时,取正号;当焦点在负半轴上时,取负号.(四)四种标准方程的应用例题: (1) 已知抛物线的标准方程是y2=6x,求它的焦点坐标和准线方程;(2)已知抛物线的焦点坐标是 F(0 , -2) ,求它的标准方程.方程是 x2=-8y .练习:依据以下所给条件,写出抛物线的标准方程:(1)焦点是 F(3 ,0) ;(3)焦点到准线的距离是 2.由三名学生演板,教师予以校正.答案是: (1)y 2=12x;(2)y 2=-x ;(3)y 2=4x,y2=-4x ,x2=4y,x2=-4y .这时,教师小结一下:因为抛物线的标准方程有四种形式,且每一种形式中都只含一个系数 p,所以只需给出确立 p 的一个条件,就能够求出抛物线的标准方程.当抛物线的焦点坐标或准线方程给定此后,它的标准方程就独一确立了;若抛物线的焦点坐标或准线方程没有给定,则所求的标准方程就会有多解.(五)小结本次课主要介绍了抛物线的定义,推导出抛物线的四种标准方程形式,并加以运用.五、部署作业到准线的距离是多少?点M的横坐标是多少?2.求以下抛物线的焦点坐标和准线方程:(1)x 2=2y;(2)4x2+3y=0;(3)2y 2+5x=0;(4)y2-6x=0.3.依据以下条件,求抛物线的方程,并描点画出图形:(1)极点在原点,对称轴是 x 轴,并且极点与焦点的距离等于 6;(2)极点在原点,对称轴是 y 轴,并经过点 p(-6 ,-3) .4.求焦点在直线3x-4y-12=0 上的抛物线的标准方程.作业答案:3.(1)y2=24x,y2=-2x(2)x 2=-12y(图略)4.分别令x=0,y=0得两个焦点F1(0,-3),F2(4,0),进而可得抛物线方程为 x2=-12y 或 y2=16x六、板书设计一、教课目的(一)知识教课点使学生理解并掌握抛物线的几何性质,并能从抛物线的标准方程出发,推导这些性质.(二)能力训练点从抛物线的标准方程出发,推导抛物线的性质,进而培育学生剖析、归纳、推理等能力.(三)学科浸透点使学生进一步掌握利用方程研究曲线性质的基本方法,加深对直角坐标系中曲线方程的关系观点的理解,这样才能解决抛物线中的弦、最值等问题.二、教材剖析1.要点:抛物线的几何性质及初步运用.(解决方法:指引学生类比椭圆、双曲线的几何性质得出.)2.难点:抛物线的几何性质的应用.(解决方法:经过几个典型例题的解说,使学生掌握几何性质的应用.) 3.疑点:抛物线的焦半径和焦点弦长公式.(解决方法:指引学生证明并加以记忆.)三、活动设计发问、填表、解说、演板、口答.四、教课过程(一)复习1.抛物线的定义是什么?请一起学回答.应为:“平面内与一个定点 F 和一条定直线 l 的距离相等的点的轨迹叫做抛物线.”2.抛物线的标准方程是什么?再请一起学回答.应为:抛物线的标准方程是y2=2px (p > 0) ,y2=-2px(p >0) ,x2=2py(p >0) 和 x2=-2py(p >0) .下边我们类比椭圆、双曲线的几何性质,从抛物线的标准方程y2=2px(p > 0) 出发来研究它的几何性质.(二)几何性质如何由抛物线的标准方程确立它的几何性质?以y2=2px(p >0) 为例,用小黑板给出下表,请学生对照、研究和填写.填写完成后,再向学生提出问题:和椭圆、双曲线的几何性质对比,抛物线的几何性质有什么特色?学生和教师共同小结:(1)抛物线只位于半个坐标平面内,固然它也能够无穷延长,但是没有渐近线.(2)抛物线只有一条对称轴,这条对称轴垂直于抛物线的准线或与极点和焦点的连线重合,抛物线没有中心.(3)抛物线只有一个极点,它是焦点和焦点在准线上射影的中点.(4)抛物线的离心率要联系椭圆、双曲线的第二定义,并和抛物线的定义作比较.其结果是应规定抛物线的离心率为 1.注意:这样不单引入了抛物线离心率的观点,并且把圆锥曲线作为点的轨迹一致起来了.(三)应用举例为了加深对抛物线的几何性质的认识,掌握描点法绘图的基本方法,给出以下例1.例 1 已知抛物线对于 x 轴对称,它的极点在座标原点,并且经过点解:因为抛物线对于x 轴对称,它的极点在座标原点,并且经过点程是 y2=4x.后一部分由学生演板,检查一放学生对用描点法绘图的基本方法掌握状况.第一象限内的几个点的坐标,得:(2)描点作图描点画出抛物线在第一象限内的一部分,再利用对称性,就能够画出抛物线的另一部分( 如图 2-33) .例 2已知抛物线的极点在原点,对称轴是x 轴,抛物线上的点 M(-3 ,m)到焦点的距离等于 5,求抛物线的方程和 m的值.解法一:由焦半径关系,设抛物线方程为y =-2px(p >0) ,则准线方2因为抛物线上的点M(-3, m)到焦点的距离 |MF| 与到准线的距离得 p=4.所以,所求抛物线方程为y2=-8x .又点 M(-3 ,m)在此抛物线上,故m2=-8(-3) .解法二:由题设列两个方程,可求得p 和 m.由学生演板.由题意在抛物线上且 |MF|=5 ,故本例小结:(1)解法一运用了抛物线的重要性质:抛物线上任一点到焦点的距离 ( 即此点的焦半径 ) 等于此点到准线的距离.可得焦半径公式:设 P(x 0,这个性质在解决很多相关焦点的弦的问题中常常用到,所以一定娴熟掌握.(2)由焦半径不难得出焦点弦长公式:设 AB是过抛物线焦点的一条弦 ( 焦点弦 ) ,若 A(x 1,y1) 、B(x 2,y2) 则有 |AB|=x 1+x2+p.特别地:当 AB⊥x 轴,抛物线的通径 |AB|=2p( 详见课本习题 ) .例 3 过抛物线 y2=2px(p >0) 的焦点 F 的一条直线与这抛物线订交于 A、B 两点,且 A(x 1,y1) 、B(x 2,y2)( 图 2-34) .证明:(1) 当AB与x轴不垂直时,设AB方程为:此方程的两根y1、y2分别是 A、 B 两点的纵坐标,则有y1y2=-p 2.或 y1=-p ,y2=p,故 y1y2=-p 2.综合上述有y1y2=-p 2又∵ A (x 1,y1) 、B(x 2,y2) 是抛物线上的两点,本例小结:(1)波及直线与圆锥曲线订交时,常把直线与圆锥曲线方程联立,消去一个变量,获得对于另一变量的一元二次方程,而后用韦达定理求解,这是解决这种问题的一种常用方法.(2)本例命题 1 是课本习题中结论,要修业生记忆.(四)练习1.过抛物线y2=4x的焦点作直线交抛物线于A(x1,y1)、B(x2,y2)两点,若x1+x2=6,求 |AB| 的值.由学生练习后口答.由焦半径公式得:|AB|=x 1+x2+p=82.证明:与抛物线的轴平行的直线和抛物线只有一个交点.请一起学演板,其余同学练习,教师巡视.证明:可设抛物线方程故抛物线 y2=2px 与平行于其轴的直线只有一个交点.(五)全课小结1.抛物线的几何性质;2.抛物线的应用.五、部署作业1.在抛物线y2=12x 上,乞降焦点的距离等于9 的点的坐标.2.有一正三角形的两个极点在抛物线y2=2px上,另一极点在原点,求这个三角形的边长.3.图2-35是抛物线拱桥的表示图,当水面在l 时,拱顶高水面2m,水面宽4m,水降落 11m后,水面宽多少?4.求证:以抛物线的焦点弦为直径的圆,必与抛物线的准线相切.作业答案:3.成立直角坐标系,设拱桥的抛物线方程为x2=-2py ,可得抛物线4.由抛物线的定义不难证明六、板书设计你曾落的泪,最都会成阳光,照亮脚下的路。
高级美容师及资深顾问选拔方案高级美容师及资深顾问选拔方案一:为什么选拔高级美容师及资深顾问香之奁美容有限责任公司为了提升各分院主管、院长及美容师的专业技能和服务水平,本公司,高度重视人才的发现和使用,抓紧培养选拔大批的优秀年轻高级美容技师及资深顾问,是为了更好的保证美容行业的路线的连续性和美容行业久安的根本大计,公司做到要培养发展潜力的员工,放手使用、热情帮助、为美容师们提供广阔的平台锻炼成长创造的条件。
激励香之奁员工的工作积极性、奖励先进,树立公司的典范,体现优秀员工的风采,创建优秀的企业文化,特评选一批高级美容师和美容顾问。
为本公司储备人才,顺利扩展店面二:高级美容师的好处 1:工作职位晋升一个级别。
2:薪资有所上涨。
3:部分提成参加小组的业绩总提成。
4:公司管理层举行的会议可以参加,逐渐学习管理。
5:可以参与部分管理。
三:选拔时间 201X年9月----201X年10月为选拔期期间请参与选拔的精英们,在岗时间多练习业务水平,及手法技能,沟通技巧等,为晋级做好充分的准备。
四:选拔原则公开公平和透明化五:参赛要求(基本标准) 1:企业精神:要拥有主人翁精神、团队精神、责任感、服务精神、自信精神、谦虚精神。
2:团队精神:团队协作意识,相互交流、同心协力、密切配合、乐于助人、随机应变的智慧水平。
3:责任感:言而有信、勇于承担责任、做事情不推诿、不拖拉、不抱怨、抱着空杯心态学习、不找借口、坚守承诺 4:服务意识:热情、积极、创新、体贴、细致、微笑、不挑剔、服务始终如一、善始善终、感性、感恩。
5:学习意识:上进、融会贯通、重复学习、合理使用、不断加强、善于总结及感悟、了解 6:工作面貌:淡妆上岗、服装得体、颜色搭配舒服(头发的颜色)、饰品秀气、个人注意卫生、杜绝身上有异味、口臭、服装不整洁。
7:电话服务:声音甜美柔和、礼貌用语的运用、拒绝口误、说话速度较快、于顾客电话争执、有耐心、挂机的礼貌用语要用上。
《抛物线及其标准方程》教案(公开课《抛物线及其标准方程》教案(公开课)一、教学内容本节课的内容选自高中数学教材选修22第三章第一节,主要讲述抛物线的定义及其标准方程。
具体内容包括:1. 抛物线的定义及其简单性质;2. 抛物线的标准方程推导;3. 抛物线标准方程的应用。
二、教学目标1. 理解抛物线的定义,掌握抛物线的简单性质;2. 学会推导抛物线的标准方程,并能应用于实际问题;3. 培养学生的空间想象能力和逻辑思维能力。
三、教学难点与重点重点:抛物线的定义、标准方程及其应用。
难点:抛物线标准方程的推导过程,以及在实际问题中的应用。
四、教具与学具准备1. 教具:多媒体教学设备、投影仪、黑板、粉笔;2. 学具:直尺、圆规、练习本。
五、教学过程1. 实践情景引入利用多媒体展示实际生活中的抛物线实例,如抛物线运动轨迹、拱桥等,引导学生观察并思考抛物线的特点。
2. 抛物线的定义及性质(2)讲解抛物线的性质,如对称性、顶点等。
3. 抛物线标准方程的推导(1)教师引导学生通过实际例题,推导出抛物线的标准方程;(2)讲解抛物线标准方程的推导过程,强调理解推导方法。
4. 例题讲解选取典型例题,讲解抛物线标准方程的应用,引导学生学会解决实际问题。
5. 随堂练习设计具有代表性的练习题,让学生巩固所学知识,及时发现问题并解答。
6. 小结六、板书设计1. 抛物线的定义;2. 抛物线的性质;3. 抛物线标准方程的推导过程;4. 典型例题及解题步骤。
七、作业设计1. 作业题目:(1)已知抛物线y^2=8x的焦点为F(2,0),求该抛物线的准线方程;(2)已知抛物线y=2x^2的焦点为F(0,1/8),求该抛物线的标准方程。
2. 答案:(1)准线方程:x=2;(2)标准方程:x^2=1/8y。
八、课后反思及拓展延伸1. 反思:本节课学生对抛物线的定义和性质掌握较好,但在推导抛物线标准方程时,部分学生存在困难。
在今后的教学中,应加强此类问题的讲解和练习。
抛物线的标准方程与性质1.抛物线的定义(1)平面内与一个定点F 和一条定直线l (F ∉l )的距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.(2)其数学表达式:|MF |=d (其中d 为点M 到准线的距离). 2.抛物线的标准方程与几何性质类型一 抛物线的定义及应用例1:过点(0,-2)的直线与抛物线y 2=8x 交于A 、B 两点,若线段AB 中点的横坐标为2,则|AB|等于( )A .217B .17C .215D .15【解析】设直线方程为y =kx -2,A(x 1,y 1)、B(x 2,y 2).由⎩⎪⎨⎪⎧y =kx -2,y 2=8x ,得k 2x 2-4(k +2)x +4=0.∵直线与抛物线交于A 、B 两点, ∴Δ=16(k +2)2-16k 2>0,即k>-1. 又x 1+x 22=2k +2k2=2,∴k =2或k =-1(舍去). ∴|AB|=1+k 2|x 1-x 2|=1+22·x 1+x 22-4x 1x 2=542-4=215.【答案】C练习1:已知点P 是抛物线y 2=2x 上的一个动点,则点P 到点(0,2)的距离与点P 到该抛物线准线的距离之和的最小值为( )A.172B .3C. 5D.92【答案】A练习2:F 是抛物线y 2=2x 的焦点,A ,B 是抛物线上的两点,|AF |+|BF |=6,则线段AB 的中点到y 轴的距离为________.【答案】52类型二 抛物线的标准方程和几何性质例2:已知抛物线C :y 2=4x 的焦点为F ,直线y =2x -4与C 交于A ,B 两点,则cos ∠AFB =( )A .45B .35C .-35D .-45【解析】由⎩⎪⎨⎪⎧y 2=4x ,y =2x -4得x 2-5x +4=0,∴x =1或x =4.不妨设A(4,4),B(1,-2),则|FA →|=5,|FB →|=2,FA →·FB →=(3,4)·(0,-2)=-8,∴cos ∠AFB =FA →·FB →|FA →|·|FB →|=-85×2=-45.故选D .【答案】D练习1:已知点A (-2,3)在抛物线C :y 2=2px 的准线上,记C 的焦点为F ,则直线AF 的斜率为( )A .-43B .-1C .-34D .-12【答案】C练习2:(2014·湖南卷)如图,正方形ABCD 和正方形DEFG 的边长分别为a ,b (a <b ),原点O 为AD 的中点,抛物线y 2=2px (p >0)经过C ,F 两点,则b a=________.【答案】1类型三 抛物线焦点弦的性质例3:已知直线y =k(x +2)(k>0)与抛物线C :y 2=8x 相交于A 、B 两点,F 为C 的焦点.若|FA|=2|FB|,则k 等于( )A .13B .23C .23D .223【解析】设A(x 1,y 1),B(x 2,y 2),易知x 1>0,x 2>0,由⎩⎪⎨⎪⎧y =k x +2y 2=8x得k 2x 2+(4k 2-8)x +4k 2=0,∴x 1x 2=4,① 根据抛物线的定义得,|FA|=x 1+p2=x 1+2,|FB|=x 2+2,∵|FA|=2|FB|,∴x 1=2x 2+2,② 由①②得x 2=1,∴B(1,22),代入y =k(x +2)得k =223,选D .【答案】D练习1:过抛物线y 2=2px(p>0)的焦点F 作倾斜角为45°的直线交抛物线于A 、B 两点,若线段AB 的长为8,则p =________.【解析】直线y =x -p 2,故⎩⎪⎨⎪⎧y =x -p 2y 2=2px ,∴x 2-3px +p24=0,|AB|=8=x 1+x 2+p ,∴4p =8,p =2. 【答案】2类型四 直线与抛物线的位置关系例4:如图所示,O 为坐标原点,过点P(2,0),且斜率为k 的直线l 交抛物线y 2=2x 于M(x 1,y 1),N(x 2,y 2)两点. (1)写出直线l 的方程; (2)求x 1x 2与y 1y 2的值; (3)求证:OM ⊥ON.【解析】(1)直线l 的方程为y =k(x -2)(k ≠0).① (2)由①及y 2=2x ,消去y 可得 k 2x 2-2(2k 2+1)x +4k 2=0.②点M ,N 的横坐标x 1与x 2是②的两个根, 由韦达定理,得x 1x 2=4k2k2=4.由y 21=2x 1,y 22=2x 2,得(y 1y 2)2=4x 1x 2=4×4=16, 由图可知y 1y 2<0,所以y 1y 2=-4.(3)证明:设OM ,ON 的斜率分别为k 1,k 2, 则k 1=y 1x 1,k 2=y 2x 2.由(2)知,y 1y 2=-4,x 1x 2=4, ∴k 1k 2=y 1y 2x 1x 2=-1.∴OM ⊥ON. 【答案】(1)直线l 的方程为y =k(x -2)(k ≠0).① (2)由①及y 2=2x ,消去y 可得 k 2x 2-2(2k 2+1)x +4k 2=0.②点M ,N 的横坐标x 1与x 2是②的两个根, 由韦达定理,得x 1x 2=4k2k2=4.由y 21=2x 1,y 22=2x 2,得(y 1y 2)2=4x 1x 2=4×4=16, 由图可知y 1y 2<0,所以y 1y 2=-4.(3)证明:设OM ,ON 的斜率分别为k 1,k 2, 则k 1=y 1x 1,k 2=y 2x 2.由(2)知,y 1y 2=-4,x 1x 2=4, ∴k 1k 2=y 1y 2x 1x 2=-1.∴OM ⊥ON.练习1设直线l 与抛物线24y x =相交于A ,B 两点,与圆()()22250x y r r -+=>相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是( )A.()13, B .()14, C .()23, D .()24,【答案】D练习2:抛物线C :x 2=8y 与直线y =2x -2相交于A ,B 两点,点P 是抛物线C 上异于A ,B 的一点,若直线PA ,PB 分别与直线y =2相交于点Q ,R ,O 为坐标原点,则OP →·OQ →=________. 【答案】201.已知双曲线()222210,0x y a b a b-=>> 的一条渐近线过点(,且双曲线的一个焦点在抛物线2y = 的准线上,则双曲线的方程为( )A.2212128x y -= B.2212821x y -= C.22134x y -= D.22143x y -= 【答案】D2.如图,设抛物线24y x =的焦点为F ,不经过焦点的直线上有三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在y 轴上,则BCF ∆与ACF ∆的面积之比是( )A.11BF AF -- B.2211BF AF -- C.11BF AF ++ D.2211BF AF ++【答案】A.3.已知点A (-2,3)在抛物线C :y 2=2px 的准线上,过点A 的直线与C 在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为( ) A.12 B.23 C.34 D.43【答案】D4.抛物线22y px =(0p >)上的动点Q 到焦点的距离的最小值为1,则p =_________【答案】p=2 5.曲线y =e-5x+2在点(0,3)处的切线方程为________.【答案】y =-5x +36.已知一条曲线C 在y 轴右边,C 上每一点到点F(1,0)的距离减去它到y 轴距离的差都是1. (1)求曲线C 的方程;(2)是否存在正数m ,对于过点M(m,0)且与曲线C 有两个交点A 、B 的任一直线,都有FA →·FB →<0?若存在,求出m 的取值范围;若不存在,请说明理由.【答案】(1)由已知得:曲线C 上的点到点F(1,0)与到x =-1的距离相等,∴曲线C 是以F(1,0)为焦点的抛物线, 设y 2=2px(p>0),∵p 2=1,∴p =2,∴方程为:y 2=4x(x>0). (2)假设存在M(m,0)(m>0). 当直线l 斜率不存在时,l :x =m , 设交点A(m,2m),B(m ,-2m),FA →=(m -1,2m),FB →=(m -1,-2m), ∴FA →·FB →=m 2-6m +1<0, ∴3-22<m<3+2 2.当直线l 斜率存在时,l :y =k(x -m)(k ≠0),设A(x 1,y 1),B(x 2,y 2),⎩⎪⎨⎪⎧y 2=4x y =k x -m∴ky 2-4y -4km =0,∴Δ=16+16k 2m>0恒成立, y 1+y 2=4k,y 1y 2=-4m ,又y 21+y 22=(y 1+y 2)2-2y 1y 2=16k 2+8m ,∵FA →·FB →=(y 214-1)·(y 224-1)+y 1y 2=y 1y 2216-14(y 21+y 22)+y 1y 2+12 =m 2-14(16k 2+8m)-4m +12=m 2-6m +1-4k2<0,即:4k 2>m 2-6m +1对∀k ≠0恒成立,又4k 2>0,∴m 2-6m +1<0恒成立, ∴3-22<m<3+22,综上,m 的取值范围是:3-22<m<3+2 2.基础巩固(1)1.抛物线x 2=12y 的焦点坐标为( )A.⎝ ⎛⎭⎪⎫12,0 B.⎝ ⎛⎭⎪⎫0,12 C.⎝ ⎛⎭⎪⎫18,0 D.⎝ ⎛⎭⎪⎫0,18 【答案】D2.已知抛物线y 2=2px (p >0)的准线与曲线x 2+y 2-4x -5=0相切,则p 的值为( ) A .2 B .1C.12D.14【答案】A3.点M (5,3)到抛物线y =ax 2的准线的距离为6,那么抛物线的方程是( ) A .y =12x 2B .y =12x 2或y =-36x 2C .y =-36x 2D .y =112x 2或y =-136x2【答案】D4.已知抛物线y 2=2px (p >0)的焦点F 与双曲线x 24-y 25=1的右焦点重合,抛物线的准线与x 轴的交点为K ,点A 在抛物线上且|AK |=2|AF |,则A 点的横坐标为( ) A .2 2 B .3C .2 3D .4【答案】B5.已知P 是抛物线y 2=2x 上动点,A ⎝ ⎛⎭⎪⎫72,4,若点P 到y 轴的距离为d 1,点P 到点A 的距离为d 2,则d 1+d 2的最小值是( ) A .4 B.92C .5D.112【答案】B6.已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点.若FP →=4FQ →,则|QF |=( ) A.72 B .3C.52D .2【答案】B7.设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为( ) A.334B.938C.6332 D.94【答案】D能力提升(2)8.若抛物线y 2=2px (p >0)的准线经过双曲线x 2-y 2=1的左顶点,则p =________. 【答案】29.已知一条过点P (2,1)的直线与抛物线y 2=2x 交于A ,B 两点,且P 是弦AB 的中点,则直线AB 的方程为________. 【答案】x-y-1=010.已知抛物线y 2=2px (p >0)的焦点为F ,△ABC 的顶点都在抛物线上,且满足FA →+FB →+FC →=0,则1k AB+1k BC +1k CA=________.【答案】011.如图14,正方形ABCD 和正方形DEFG 的边长分别为a ,b (a <b ),原点O 为AD 的中点,抛物线y 2=2px (p >0)经过C ,F 两点,则ba=________.图14【答案】12.已知动点P(x ,y)(y ≥0)到定点F(0,1)的距离和它到直线y =-1的距离相等,记点P 的轨迹为曲线C.(1)求曲线C 的方程;(2)设圆M 过点A(0,2),且圆心M(a ,b)在曲线C 上,若圆M 与x 轴的交点分别为E(x 1,0)、G(x 2,0),求线段EG 的长度.【答案】(1)依题意知,曲线C是以F(0,1)为焦点,y=-1为准线的抛物线.∵焦点到准线的距离p=2,∴曲线C方程是x2=4y.(2)∵圆M∴其方程为(x-a)2+(y-b)2=a2+(b-2)2令y=0得:x2-2ax+4b-4=0.则x1+x2=2a,x1·x2=4b-4.∴(x1-x2)2=(x1+x2)2-4x1·x2=(2a)2-4(4b-4)=4a2-16b+16.又∵点M(a,b)在抛物线x2=4y上,∴a2=4b,∴(x1-x2)2=16,即|x1-x2|=4.∴线段EG的长度是4.。