酶解法制备壳寡糖的初步研究
- 格式:pdf
- 大小:388.44 KB
- 文档页数:3
壳寡糖反应条件(一)壳寡糖反应条件什么是壳寡糖反应条件?壳寡糖反应是一种常用的糖类化学反应,它能够将壳寡糖转化为较低聚合度的壳寡糖或单糖。
在进行壳寡糖反应时,需要一定的反应条件。
壳寡糖反应的基本条件壳寡糖反应的成功进行需要满足以下基本条件:•温度:反应温度一般在40-60摄氏度之间,过高的温度可能会导致反应产物的降解。
•pH值:反应溶液的pH值范围一般在4-7之间,过高或过低的pH 值都可能影响反应的进行。
•催化剂:壳寡糖反应一般需要适当的酶类或酶类模拟物作为催化剂,以加速反应速度和提高转化率。
•时间:反应时间一般在数小时至数天之间,具体的反应时间需要根据反应的具体要求来确定。
•底物浓度:适当的底物浓度可以提高反应的效率,但过高的浓度可能会导致产物的降解。
常见的壳寡糖反应条件酶催化壳寡糖反应条件•温度:一般在50摄氏度左右。
•pH值:通常在6-7之间。
•催化剂:常用的催化剂有壳聚糖酶、壳寡糖酶等。
•时间:反应时间可以根据具体要求在数小时至数天之间。
化学催化壳寡糖反应条件•温度:一般在40-50摄氏度之间。
•pH值:在4-7之间。
•催化剂:常用的催化剂有醋酸银、亚砜等。
•时间:反应时间根据反应速率调整,一般在数小时至数天之间。
生物催化壳寡糖反应条件•温度:一般在30-40摄氏度之间。
•pH值:常用的pH范围为5-6之间。
•催化剂:一些具有特定催化作用的微生物。
•时间:根据具体反应要求,反应时间在数小时至数天之间。
总结壳寡糖反应是一种常用的糖类化学反应,在进行壳寡糖反应时,需要注意反应的基本条件,包括温度、pH值、催化剂、时间和底物浓度等。
不同类型的壳寡糖反应有不同的反应条件,需要根据具体要求进行调整。
希望本文能够为您对壳寡糖反应条件的了解提供帮助。
微生物壳聚糖酶的研究进展及应用现状几丁质(chitin)又名甲壳素、甲壳质,是N-乙酰-D-葡萄糖胺以β-1,4-糖苷键相连而成,是地球上仅次于纤维素的第二大类天然高分子化合物。
壳聚糖(chitosan)为几丁质脱乙酰化后的产物,是一种阳离子型多糖,也是目前唯一的商品化碱性多糖。
壳聚糖是一种高分子阳离子絮凝剂,由于具有无毒、可被生物降解、良好的生物容性和成膜性等优良特性,在医药卫生、农业等方面得到广泛的应用。
如可作为离子交换剂,毛发固定剂、保湿剂和柔软剂,药物缓释剂、增溶剂,饲料添加剂,种子处理剂等。
但是壳聚糖的分子量大,水溶性较差,在人体内不易吸收,使其应用受到限制。
而壳聚糖的降解产物壳寡聚糖(Chitooligosaccharides)不仅具有水溶性好、易吸收等优点,近年来更是发现,低分子量壳寡聚糖(如五糖、六糖)具有抗肿瘤、抗菌、免疫激活及保湿吸湿等特点,使其在医药领域有着广泛的应用前景。
壳寡糖的制备大多数是以虾、蟹等为原料,经过脱乙酰基等处理得到壳聚糖,再进一步水解得到壳寡糖。
目前,由壳聚糖制备壳寡糖主要有两种水解方法:酸解法和酶解法。
酸解法一般是用盐酸部分水解壳聚糖,用甲醇除去水解液中产生的大量单糖,经加Dowex离子交换树脂分离得到壳寡糖。
酸水解法的缺点是反应产物单糖较多,而壳寡糖含量低,反应条件苛刻,工艺烦琐,同时这一工艺由于产生大量废弃酸液,易给环境造成污染。
酶解法是指采用酶制剂在较温和的条件下降解壳聚糖。
一般分为两类:非专一性水解酶和专一性水解酶。
非专一性酶工艺,是利用如脂肪酶、溶菌酶等壳聚糖非专一性水解酶,降解壳聚糖。
但降解程度有限,而且产物复杂,不易分离,酶量使用大。
专一性水解酶是利用以壳聚糖为专一性底物的壳聚糖酶,专一性水解壳聚糖,该反应条件温和,可通过反应时间控制水解产物,为大规模生产壳寡糖提供了可能,是一种较为理想的壳寡糖制备方法。
壳聚糖酶(Chitosanase,EC.3.2.1.132)是催化壳聚糖降解的专一性酶。
壳聚糖的降解及其应用研究介绍壳聚糖是一种天然高分子聚合物,具有许多独特的性质和广泛的应用潜力。
本文将探讨壳聚糖的降解机制以及其在不同领域的应用研究。
壳聚糖的降解机制1. 酶降解壳聚糖可以通过酶的作用被降解。
在生物体内,壳聚糖酶是一种特殊的酶,能够将壳聚糖分解为较小的单元,如壳寡糖和壳二糖。
这种酶降解的过程是高度特异性的,壳聚糖酶只能降解壳聚糖,而对其他多糖类物质无作用。
2. 酸降解除了酶降解外,壳聚糖还可以通过酸的作用被降解。
在酸性条件下,壳聚糖分子中的酸性基团会与酸反应,导致壳聚糖链断裂,从而实现降解的目的。
酸降解是一种常见的壳聚糖降解方法,可以通过调节酸性条件的强弱和时间来控制壳聚糖的降解速度。
3. 热降解壳聚糖在高温条件下也可以发生降解。
热降解是一种非常快速的降解方式,可以在短时间内将壳聚糖分解为低分子量的物质。
热降解的温度和时间可以通过调节加热条件来控制,从而实现对壳聚糖降解速度的控制。
壳聚糖的应用研究1. 医药领域(1) 药物传递系统壳聚糖具有良好的生物相容性和生物可降解性,因此在药物传递系统中得到广泛应用。
通过将药物包裹在壳聚糖纳米粒子中,可以增加药物的稳定性和生物利用度,从而提高药物的疗效。
(2) 创伤敷料壳聚糖具有良好的吸水性和抗菌性能,因此被广泛应用于创伤敷料的制备中。
壳聚糖敷料能够吸收伤口渗出液,促进伤口愈合,并具有抗菌作用,可以预防伤口感染。
2. 环境保护领域(1) 水处理剂壳聚糖具有良好的吸附性能,可以用作水处理剂去除水中的重金属离子和有机污染物。
壳聚糖的阳离子性能使其能够与阴离子污染物形成络合物,从而实现水中污染物的去除。
(2) 土壤修复剂壳聚糖可以用作土壤修复剂,帮助修复受到重金属污染的土壤。
壳聚糖能够与土壤中的重金属形成络合物,减少重金属的毒性,同时还能增强土壤的保水性和肥力。
3. 食品工业(1) 保鲜剂壳聚糖具有良好的抗菌性能和膜形成能力,可以用作食品保鲜剂。
将壳聚糖膜覆盖在食品表面,可以有效阻隔氧气和水分的进入,延长食品的保鲜期。
多糖中寡糖的制备
多糖是一种具有很多健康益处的生物大分子,但是它们在某些情况下可能会带来不利影响。
为了解决这个问题,研究人员开始探索多糖中某些具有益处的分子的制备方法。
其中一种方法是制备寡糖。
寡糖是指由2-10个单糖分子组成的低分子量碳水化合物。
与多糖相比,寡糖分子更小,更容易被人体吸收和利用。
此外,寡糖的生物活性也更高。
寡糖的制备方法有很多种,包括化学方法、酶法和微生物发酵等。
其中,酶法制备寡糖是目前最为常用的方法。
这种方法利用特定的酶催化多糖分子的水解反应,将多糖分子分解成寡糖分子。
除了酶法,化学方法也可以用来制备寡糖。
这种方法利用化学试剂将多糖分子部分水解成寡糖分子。
但是,化学方法会产生一些副产物,可能会对人体造成危害。
因此,化学方法一般只在实验室中使用。
微生物发酵也可以用来制备寡糖。
这种方法利用微生物的代谢活动将多糖分子部分水解成寡糖分子。
但是,这种方法需要选用适合生长的微生物,并且发酵过程需要一定的时间和条件控制。
综上所述,酶法是制备寡糖的最优选择。
它具有高效、纯净、无副作用等优点,并且可以在大规模生产中得到应用。
未来,随着对多糖和寡糖的研究不断深入,制备高品质寡糖的方法也将不断发展和完善。
- 1 -。
寡糖研究新进展寡糖(oligosaccharides) ,亦称低聚糖,由2~9个单糖单元经苷键结合而成。
根据结合的单糖个数,可分为双糖、三糖、四糖直至九糖,分子式为(C6H10O5 ) n , n = 2~9。
许多寡糖及其糖缀合物因独特的结构而成为重要的生命物质,如乳果糖、大豆低聚糖、异麦芽糖等不仅以其缀合物起作用,而且其本身具有重要的生理功能,可作为促双歧杆菌生长因子,有拮抗机体过氧化损伤及降脂作用。
目前,我国功能性寡糖的研发尚处于起始阶段,对一些功能显著、市场前景好、附加值高的寡糖产品的研发相对滞后。
人们对寡糖在食品、医药及农业方面的开发寄予厚望。
1 寡糖的分类寡糖类组分多以游离状态存在于植物体和果实中。
构成寡糖的单糖主要是葡萄糖、果糖、半乳糖、木糖、阿拉伯糖等五碳糖和六碳糖。
根据寡糖的单糖组成可分为同寡糖和杂寡糖,前者由同类单糖组成,后者由不同单糖组成;根据分子中是否存在游离的半缩醛羟基,还可分为还原性寡糖和非还原性寡糖,前者为糖基2糖基2糖的形式,后者为糖基2糖基2糖苷的形式;根据生物学功能可分为普通寡糖和功能性寡糖,前者可被机体消化吸收,产生能量,如蔗糖、麦芽糖、海藻糖、环糊精、麦芽寡糖等,后者具有特殊的生理学功能但不被肠道吸收。
还有一类寡糖是在侧链上修饰不同的化学基团,如胺基、羟基、硫酸基等,此类产物有糖醛酸、胺基糖、脱氧糖等。
2 寡糖的提取与制备目前主要有从天然产物直接提取、酶催化合成或酶解天然多糖、酸水解天然多糖和化学合成等4种途径。
2. 1 天然产物直接提取从天然原料中提取未衍生化的寡糖产品十分困难。
目前适用此法的寡糖有棉籽糖(从甜菜提取) 、大豆寡糖(从大豆乳清提取) 、黑曲霉寡糖(从菌体提取)等。
近年此法不断取得进展。
武卫红用不同体积的75 %乙醇室温提取鲜地黄中的总寡糖。
Kotiguda等用70 %乙醇室温浸泡菜豆, 130 r/min摇床提取13 h,用薄层色谱和纸色谱在提取液中检测到筋骨草糖(六糖) 。
壳寡糖生产工艺壳寡糖是一种由藻类、真菌和细菌发酵产生的复杂多糖,具有良好的生理活性和生物功能。
壳寡糖具有抗菌、抗病毒、抗肿瘤、抗氧化、降血脂等多种药理活性,因此在医药、食品、农业、化妆品等领域具有广泛的应用前景。
下面将介绍一种常用的壳寡糖生产工艺。
壳寡糖的生产工艺主要分为发酵和提取两个步骤。
第一步是藻类、真菌或细菌的发酵。
首先,需要选择优良的壳寡糖菌种,比如海藻菌、真菌菌种等。
这些菌种在发酵过程中能够产生壳寡糖。
接着,将选好的菌种接种到含有适宜培养基的发酵罐中,培养条件包括温度、pH值、光照等。
在培养过程中,菌种会不断繁殖,并分泌出壳寡糖。
第二步是壳寡糖的提取。
提取壳寡糖的方法有很多种,常用的包括酸提法、碱提法和酶法。
其中,酸提法是传统的提取方式,通过酸性条件将发酵液中的壳寡糖转化为溶液形式,然后经过滤、浓缩等工艺步骤得到壳寡糖产品。
碱提法是近年来发展起来的一种新方法,它通过碱处理将壳寡糖从固体沉淀物中释放出来,然后经过离心、洗涤等步骤得到壳寡糖。
酶法是一种比较新颖的提取方式,通过加入特定的酶,使壳寡糖在较低温度下得以提取,从而减少能耗和损失。
值得注意的是,壳寡糖的提取工艺需要进行冻干处理,以保持壳寡糖的活性。
冻干是将提取得到的壳寡糖溶液在低温下进行冷冻,然后在真空中加热,将水分从溶液中去除,最终得到冻干粉末。
这种冻干粉末不仅方便保存和运输,而且能够保持壳寡糖的生物活性和稳定性。
总之,壳寡糖的生产工艺主要包括发酵和提取两个步骤。
发酵是通过藻类、真菌或细菌菌种在适宜培养条件下分泌壳寡糖。
提取则是通过酸提法、碱提法或酶法将壳寡糖从发酵液中提取出来,并通过冻干处理得到冻干粉末。
壳寡糖生产工艺的不断改进和创新,将进一步提高壳寡糖的生产效率和纯度,为其在各个领域的应用开辟更广阔的发展空间。
壳聚糖生产工艺壳聚糖是一种由壳类动物外壳和真菌组成的聚糖,具有广泛的应用价值。
壳聚糖的生产工艺主要包括原料准备、壳聚糖提取、壳聚糖纯化和产品制备四个步骤。
首先是原料准备。
壳聚糖的原料主要是海洋生物废壳和农产品废弃物,如虾壳、蟹壳、贝壳等。
这些废壳经过清洗、去除有机物和杂质的处理,然后破碎成粉末状,以便后续的提取工艺。
接下来是壳聚糖的提取。
提取壳聚糖的主要方法是酸碱法和酶解法。
其中,酸碱法是将粉末状的废壳与稀盐酸进行反应,使壳聚糖溶解在溶液中,然后通过酸碱中和、离心、过滤等步骤将壳聚糖分离出来。
酶解法是利用壳聚糖酶将废壳中的壳聚糖水解为可溶解于水的壳寡糖,再通过膜过滤、浓缩、冷冻干燥等步骤获得壳聚糖。
然后是壳聚糖的纯化。
壳聚糖提取出来后,通常会含有一定的杂质,如蛋白质、脂质等。
为了提高壳聚糖的纯度,需要进行纯化处理。
常用的纯化方法有沉淀法、离子交换法和超滤法。
沉淀法是将提取得到的壳聚糖溶液与醇类进行混合,在醇的作用下,壳聚糖形成沉淀,然后通过离心、洗涤等步骤将沉淀分离出来。
离子交换法是利用具有特定功能团的离子交换树脂,通过溶液中不同离子的吸附和解吸,将壳聚糖从溶液中分离出来。
超滤法是利用分子筛原理,通过不同孔径的膜将溶液中的大分子杂质和壳聚糖分离开。
最后是产品制备。
壳聚糖可以根据需求进行不同形式的产品制备,如片剂、凝胶、膜等。
片剂的制备是将壳聚糖溶解在适当的溶剂中,加入助溶剂、增粘剂等辅助原料,经过混合、挤压、切割等步骤制成固体片剂。
凝胶的制备是将壳聚糖溶解在水中,并在适当的条件下进行交联反应,形成具有凝胶状的产物。
膜的制备是将壳聚糖溶解在溶剂中,加入适量的增稠剂和交联剂,经过溶液待定、膜液脱水、膜涂覆、干燥等步骤形成薄膜。
以上就是壳聚糖的生产工艺,通过原料准备、壳聚糖提取、壳聚糖纯化和产品制备四个步骤,可以将海洋废壳和农产品废弃物等废料转化为有价值的壳聚糖产品,具有较高的环境和经济效益。
壳寡糖的功能研究及应用好嘞,今天咱们聊聊壳寡糖。
听起来高大上吧,其实它就是一种小小的糖分子,但可别小看它哦。
它在咱们的生活中可大有作为。
壳寡糖最初是从甲壳类动物的壳中提取出来的,比如虾和蟹。
说到这,大家可能会想,虾皮不是用来做汤的吗?可它的壳也有很多潜力呢!就像你家那台旧电视,表面看起来不咋地,但里面的科技可是一流的。
壳寡糖到底有什么功能呢?它的抗菌效果那是杠杠的。
咱们常说“细菌无处不在”,可壳寡糖恰恰是个“小勇士”,能有效对抗很多坏细菌。
它就像那种超级英雄,出场时总能一举击败坏蛋。
研究表明,壳寡糖能抑制一些致病菌的生长,让咱们的肚子更舒坦,免受肠胃问题的困扰。
这可是“保胃大作战”哦,谁不想吃得安心呢?再说,它对免疫系统的好处也是显而易见的。
我们总说“身体是革命的本钱”,而壳寡糖就是那种能帮助咱们增强体质的“法宝”。
有些研究发现,壳寡糖能促进免疫细胞的活性,像是在给免疫系统打了强心针。
这样一来,感冒发烧之类的小病小痛就能离咱们远远的。
想想看,冬天再也不用担心流感来了,真是太赞了!壳寡糖在肠道健康方面的表现也是一绝。
它就像是肠道里的“小清道夫”,帮助清理那些不必要的东西,促进肠道菌群的平衡。
我们常说“肠道是第二大脑”,那么壳寡糖就是让这个“第二大脑”更聪明的好帮手。
调理好肠道,咱们的情绪、免疫力都能跟着提升,真是一举多得啊。
再往深了说,壳寡糖还有助于降低血糖和血脂。
对于那些糖尿病患者来说,简直是个福音!它可以减缓糖分的吸收,帮助稳定血糖。
就像是在帮你把那种甜得发腻的糖果收回来,让你不会一不小心就吃得过多,真是个贴心的小伙伴。
降低血脂这事儿,也是在为心脏健康保驾护航。
咱们常说“心脏是生命的发动机”,所以壳寡糖的作用可见一斑。
再说说它的应用,壳寡糖不仅仅是在保健品中能看到,甚至在食品和化妆品中也开始大显身手。
你有没有发现,现在很多食品包装上都会写“添加壳寡糖”,这不是随便说说的,而是为了增加食物的营养价值。
壳聚糖酶制剂制备工艺及其在壳寡糖生产中的应用摘要:利用紫外诱变产壳聚糖酶菌种,选择高产菌株进行发酵培养,同时改变发酵条件对产酶条件进行优化。
结果表明:紫外照射5分钟诱变致死率为87.29%,这是最佳诱变剂量。
最适发酵条件为:氮源为(NH4)2SO4,碳源为可溶性淀粉,发酵装液量为容器的35%,发酵最适温度为36摄氏度。
关键词:壳聚糖酶;壳寡糖;紫外诱变;优化Chitosanase Preparation Method and Its Application in The Production of ChitooligosaccharidesAbstract:Use of the UV mutagenesis production chitosanase strains, and select high-yielding strains for the fermentation, while changing the fermentation conditions to optimize the conditions for enzyme production. The results show that: the UV irradiated for 5 minutes mutagenesis lethality rate of 87.29%, which is the preferred mutagenesis dose. The optimal fermentation conditions were: nitrogen source (NH4)2SO4carbon source for soluble starch fermentation medium volume to 35% of the container, fermentation optimum temperature of 32 degrees Celsius.Key words: chitosanase; chitooligosaccharides; ultraviolet mutagenesis; optimization壳聚糖(chitosanase)是由D-氨基葡萄糖通过β-1,4糖苷键连接起来的生物多糖,可在酸性溶液中溶解,反应活性比甲壳素和纤维素都高[1]。
壳寡糖比色法色谱法质谱法电泳法引言功能性低聚糖是由2~10个相同或不同的单糖以糖苷键聚合而成,具有糖类某些共同的特性,但不会被胃酸等降解,不在小肠吸收直接到达大肠,具有促进人体双歧杆菌的增殖等生理功能,所以功能性低聚糖又被称为双歧因子。
壳寡糖(chitooligosaccharide,COS)又称低聚葡萄糖胺,低聚氨基葡萄糖等,是功能性低聚糖的一种,是壳聚糖降解后的产物,聚合度一般在2~10之间,是目前自然界中仅知的唯一的碱性寡糖,具有独特的生物活性,如抗菌抑菌;极强的吸湿保湿性;抑制肿瘤细胞(聚合度为6~8时活性最高);诱发植物的诱导抗病性等,使其在食品、医药、化妆品和农业等方面有广阔的发展前景。
不同分子量的壳寡糖,其生物活性差异很大。
近年来,壳寡糖的功能研究取得了长足的进步,同时也对壳寡糖的分析测定提出了挑战。
文章主要介绍了近10年内壳寡糖的分析测定方法的研究进展。
(一)壳寡糖的分析测定方法研究进展1.比色法在初步分析壳寡糖时多采用比色法。
邬建敏通过3,5-二硝基水杨酸(DNS)显色,确定了甲壳低聚糖平均聚合度及平均相对分子质量。
刘琳等利用分光光度法测定壳寡糖平均聚合度,此方法经凝胶渗透色谱验证,能较为准确地判断壳寡糖的平均聚合度。
虽然比色法技术简单,对设备要求不高,成本较低,但由于其准确性不高,因此有必要开发一种新的可准确测定壳寡糖的分析方法。
2.色谱法(1)薄层色谱法薄层色谱法是在纸层析法的基础上发展起来的,其分辨效率高,分离效果好,简便易行,重现性好,在同一块薄板上可同时分析多个样品。
孟显丽,陈国华等通过实验建立了薄层色谱(TLC)分析壳寡糖的条件即最佳的展开剂是乙酸乙酯∶乙醇∶水∶氨水= 5∶5∶4∶0.3,样品上行展距为8cm,采用浸渍法显色。
陈小娥,方旭波等通过系统研究,建立了壳低聚糖的薄层-比色分析法,展开剂为正丁醇∶水∶乙酸∶氨水=20∶10∶10∶2;展开温度为25℃,为壳低聚糖的生产和应用提供了一种经济、简便的分析方法。