模态分析基本理论
- 格式:pdf
- 大小:247.63 KB
- 文档页数:25
计算模态分析在发动机振动噪声中的应用作者:刘庆晨来源:《CAD/CAM与制造业信息化》2013年第12期关键词:模态分析;振动;噪声;发动机一、前言当今世界上,汽车的噪声和有害气体的排放已成为汽车污染环境的首要问题。
由于对生存环境的关心,人们力求降低汽车的噪声,而发动机又是汽车最重要的噪声源。
因此,汽车发动机的低噪音化研究是很必要的。
近年来,随着计算机技术的飞速发展,在汽车产品开发方面,CAE技术已经大量应用。
在零部件以及整车尚未制造出来时,使用C AE技术可以对它们的强度、可靠性以及各种特性进行计算分析,在计算机上进行“试验”。
模态分析技术是现代机械产品结构设计、分析的基础,是分析结构系统动态特性强有力的工具。
计算模态分析可以预测产品的动态特性,为结构优化设计提供依据。
模态分析是研究结构动力特性的一种方法,是系统辨别方法在工程振动领域中的应用。
二、模态分析基本理论振动模态是弹性结构固有的、整体的特性,通过模态分析方法得到结构各阶模态的主要特性,就可能预知结构在此频段内,在外部或是内部各种振源作用下的实际振动响应,而且一旦通过模态分析知道模态参数并给予验证,就可以将这些参数用于设计过程,优化系统动态性能。
模态分析过程如果是由有限元计算的方法取得的,称为是数值模态分析。
结构模态分析是结构动态设计的核心,其目的是利用模态变换矩阵将耦合的复杂自由度系统解耦为一系列单自由度系统振动的线性叠加,为结构系统的振动特性分析,振动故障诊断与预报以及结构动力特性的优化设计提供依据。
1.结构动力学方程对一个线性多自由度系统,其动力学平衡方程可表示为:2.结构的自由振动由此,求解一个多自由度系统的固有频率和振型的问题就归结为求方程组(5)的特征值和特征向量问题。
由于一般情况下,有限元分析中系统的模型较大,且不需要提取全部模态,所以多选用迭代法求解,常用的方法有子空间迭代法(Subspace Method)和兰索斯法(Block Lanczos Method)等。
模态分析的应用及它的试验模态分析--mjhzhjg这是mjhzhjg 写的关于模态分析的日志,读了后受益很多,特别在振动实验与测试技术论坛这里向大家推荐,我感觉到模态分析方面的知识变成了振动试验人员需要掌握的知识,希望大家自己谈谈自己的感想,请mjhzhjg 、欧阳教授等专家、高手关心指导。
模态分析的应用及它的试验模态分析模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。
模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。
这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。
这个分析过程如果是由有限元计算的方法取得的,则称为计算模记分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。
通常,模态分析都是指试验模态分析。
振动模态是弹性结构的固有的、整体的特性。
如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。
因此,模态分析是结构动态设计及设备的故障诊断的重要方法。
模态分析最终目标是在识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。
模态分析技术的应用可归结为以下几个方面:1) 评价现有结构系统的动态特性;2) 在新产品设计中进行结构动态特性的预估和优化设计;3) 诊断及预报结构系统的故障;4) 控制结构的辐射噪声;5) 识别结构系统的载荷。
机器、建筑物、航天航空飞行器、船舶、汽车等的实际振动千姿百态、瞬息变化。
模态分析提供了研究各种实际结构振动的一条有效途径。
首先,将结构物在静止状态下进行人为激振,通过测量激振力与胯动响应并进行双通道快速傅里叶变换(FFT)分析,得到任意两点之间的机械导纳函数(传递函数)。
用模态分析理论通过对试验导纳函数的曲线拟合,识别出结构物的模态参数,从而建立起结构物的模态模型。
模态分析综述一、前言模态分析是研究结构动力特性的一种近代方法,是系统辨别方法在工程振动领域中的应用。
模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。
这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。
振动模态是弹性结构固有的、整体的特性。
如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内,各阶主要模态的特性,就可能预知结构在此频段内,在外部或内部各种振源作用下实际振动响应,而且一旦通过模态分析知道模态参数并给予验证,就可以把这些参数用于(重)设计过程,优化系统动态特性,或者研究把该结构连接到其他结构上时所产生的影响。
因此,模态分析是结构动态设计及设备故障诊断的重要方法。
近十余年以来,模态分析的理论基础,已经由传统的线性位移实模态、复模态理论发展到广义模态理论,并被进一步引入到非线性结构振动分析领域,同时模态分析理论汲取了振动理论、信号分析、数据处理、数理统计以及自动控制的相关理论,结合自身的发展规律,形成了一套独特的理论体系,创造了更加广泛的应用前景。
这一技术已经在航空、航天、造船、机械、建筑、交通运输和兵器等工程领域得到广泛应用。
二、模态分析的定义与用处模态分析的经典定义:将线性定常系统振动微分方程组中的物理坐标变换为模态坐标,使方程组解耦,成为一组以模态坐标及模态参数描述的独立方程,以便求出系统的模态参数。
坐标变换的变换矩阵为模态矩阵,其每列为模态振型。
由振动理论知:一个线性振动系统,当它按自身某一阶固有频率作自由谐振时,整个系统将具有确定的振动形态(简称振型或模态)。
模态是工程结构的固有振动特性,每一个模态具有特定参数,即固有频率、阻尼比和模态振型等。
此外,基于线性叠加原理,一个复杂的振动还可以分解为许多的模态叠加。
一般地,以振动理论为基础、以模态参数为目标的分析方法,称为模态分析。
更确切地说,模态分析是研究系统物理参数模型、模态参数模型和非参数模型的关系,并通过一定手段确定这些系统模型的理论及其应用的一门学科。
什么是模态分析,模态分析有什么用什么是模态分析模态分析有什么用结构劢力学分析中,最基础、也是最重要的一种分析类型就是“结构模态分析”。
模态分析主要用亍计算结构的振劢频率和振劢形态,因此,又可以叫做频率分析戒者是振型分析。
劢力学分析可分为时域分析不频域分析,模态分析是劢力学频域分析的基础分析类型。
基础理论劢力学控制方程可表示为微分方程:其中,[ M ] 为结构质量矩阵,[ C ] 为结构阷尼矩阵,[ K ] 为结构刚度矩阵,{ F } 为随时间变化的外力载荷函数,{ u } 为节点位移矢量,为节点速度矢量,{ ü } 为节点加速度矢量。
在结构模态分析中丌需要考虑外力的影响,因此,模态分析的劢力学控制方程可表示为:理想情况下,结构在振劢过程中,丌考虑阷尼效应,也就是所谓的自由振劢情况,模态分析又可描述为:对上迚一步分析,假设此时的自由振劢为谐响应运劢,也就是说u = u 0 sin( ωt ),上又可迚一步描述为:对上式求解,可得方程的根是ω i²,即特征值,其中i 的范围是从1 到结构自由度个数N (有限元分析中,自由度个数N 一般丌超过分析模型网格节点数的三倍)。
特征值开平方根是ω i ,即固有圆周频率,这样,结构振劢频率(结构固有频率)f i就可通过公式f i = ω i /2 π 得到。
有限元模态分析可以得到f i 戒者ω i ,都可以用来描述结构的振劢频率。
特征值对应的特性矢量为{ u } i 。
特征矢量{ u } i表示结构在以固有频率f i振劢时所具有的振劢形状(振型)。
模态分析中的矩阵1. 模态分析微分方程组包含六个矩阵:[ K ] 代表刚度矩阵。
可参考“结构静力学”中的解释说明。
{ u } 代表位移矢量。
主要用来描述模态分析的振型。
可参考“结构静力学”中的解释说明,但一定要注意,模态分析中得到的位移矢量不静力学分析中位移矢量代表变形丌同。
[ C ] 代表阷尼矩阵。
1. 什么是模态分析?模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。
模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。
这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。
这个分析过程如果是由有限元计算的方法取得的,则称为计算模态分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。
通常,模态分析都是指试验模态分析。
振动模态是弹性结构的固有的、整体的特性。
如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。
因此,模态分析是结构动态设计及设备的故障诊断的重要方法。
模态分析最终目标在是识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。
2. 模态分析有什么用处?模态分析所的最终目标在是识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。
模态分析技术的应用可归结为以下几个方面:1. 评价现有结构系统的动态特性;通过结构的模态分析可以求得各阶模态参数(模态频率、模态振型以及模态阻尼),从而评价结构的动态特性是否符合要求,并校验理论计算结构的准确性。
2. 在新产品设计中进行结构动态特性的预估和优化设计;3. 诊断及预报结构系统的故障;近年来,结构故障技术发展迅速,而模态分析已成为故障诊断的一个重要方法。
利用结构模态参数的改变来诊断故障是一种有效方法。
例如,根据模态频率的变化可以判断裂纹的出现;根据振型的分析可以确定断裂的位置;根据转子支承系统阻尼的改变,可以诊断与预报转子系统的失稳等。
4. 控制结构的辐射噪声;结构噪声是由于结构振动所引起的。
结构振动时,各阶模态对噪声的“贡献”并不相同,对噪声贡献较大的几阶模态称为“优势模态”。
Ansys模态分析详细论述1、有限元概述将求解域分解成若干小域,有限元模型由单元组成,单元之间通过节点连接,并承受载荷,节点自由度是随着连接该点单元类型变化的。
1.1分析前准备(1)研读相关理论基础;(2)参考别人的分析方法和思路;(3)考虑时间和设备,做适当的简化假设,设定条件、材料并决定分析方式;(4)了解力学现象、分析关键位置并预先评估。
1.2 Von Mises 应力Von Mises 应力是非负值,应力表达式可表示为:1.3结果的分析(1)建立疏密不同的三至五种网络,选择适中密度,不能以存在应力集中点处的结果做对比;(2)检验网格,分析结果的合理性,选择安全系数,并且要分析应力集中的真实性与危险性。
(3)接触收敛速度的提高:在不影响结构的前提下,控制或减少接触单元生成数目,并采用线性搜索,与打开自适应开关来提高收敛速度。
2、模态分析中的几个基本概念物体按照某一阶固有频率振动时,物体上各个点偏离平衡位置的位移是满足一定的比例关系的,可以用一个向量表示,这个就称之为模态。
模态这个概念一般是在振动领域所用,可以初步的理解为振动状态,我们都知道每个物体都具有自己的固有频率,在外力的激励作用下,物体会表现出不同的振动特性。
2.1主要模态一阶模态是外力的激励频率与物体固有频率相等的时候出现的,此时物体的振动形态叫做一阶振型或主振型;二阶模态是外力的激励频率是物体固有频率的两倍时候出现,此时的振动外形叫做二阶振型,以依次类推。
一般来讲,外界激励的频率非常复杂,物体在这种复杂的外界激励下的振动反应是各阶振型的复合。
模态是结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。
这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。
有限元中模态分析的本质是求矩阵的特征值问题,所以“阶数”就是指特征值的个数。
将特征值从小到大排列就是阶次。
实际的分析对象是无限维的,所以其模态具有无穷阶。
简单轴的模态分析一根轴,半径r=0.03m,长s=1m,密度p=7800kg/m3,弹性模量E=2e11,两端简支。
(1)理论计算公式为:f = ( n^2 / s^2 ) * ( pi / 2 ) * sqrt ( E * I / ( p * A ) ) n=1,2,3,...^表示平方,sqrt表示开方,pi是圆周率,A=pi*r^2为圆截面的面积,I=pi*D^4/64为圆截面的惯性矩, D=2*r为直径(2)计算前三阶结果为119.311 HZ,477.242 HZ,1073.795 HZ。
ANSYS WORKBENCH 12.1求解(很可能有不准确的地方,逐渐修正)(一)思路:通过二维线模拟轴,线有圆形截面,半径0.03m1.DesignModeler中的造型1)创建两构造点(construction point),定义点的坐标。
2)通过两点创建线。
3)创建截面。
4)在线体上应用所创建的截面。
5)显示带有截面的线体。
2.Model中进行模态分析。
注意可以导入到Model中的体的类型,这里要包含Line body。
1)对两端点创建简支(simply support)约束2)求解结果在solution中。
前三阶的固有频率为118.33,467.19,1029.7。
最后一阶与理论计算值误差较大。
(二)思路:直接创建三维的轴。
1)对两端面创建远距离移动(Remote Displacement)约束。
两面的约束设置如下:2)求解结果在solution中。
前三阶的固有频率为118.68,473.57,1061.5。
与理论计算值接近。
模态是结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。
这些模态参数(参数即固有频率、阻尼比和模态振型)可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。
这个分析过程如果是由有限元计算的方法取得的,则称为计算模态分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。
通常,模态分析都是指试验模态分析。
振动模态是弹性结构的固有的、整体的特性。
如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。
因此,模态分析是结构动态设计及设备的故障诊断的重要方法。
简单理解,模态是物体的固有特性,任何物体都有他的模态。
通俗一点:汽车的玻璃有模态,有固有频率。
所以一旦汽车的震动频率和玻璃的固有频率一样,就会共振模态是线性分析机构动力学是不是范围小点,主要是牛顿欧拉方程和拉各朗日,还有其他方法机械动力学包括弹性啊,柔性啊等等动力学求解方法我觉得不管机构动力学还是机械动力学都得涉及动力学求解方法吧动力学求解方法太复杂,机械上偏应用。
具体我也只是搞过轴承转子系统,不容易,好出东西。
机械动力学的书多,内容感觉大不相同。
最初我看机床动力学,比较经典的书后来看现代机械动力学,感觉就是机构动力学再后来,看转子动力学,感觉就一个方法,传递矩阵方法。
其实后来听报告,动力学求解才是一个最大的问题。
机械动力学是机械原理的主要组成部分,它主要研究机械在运转过程中的受力情况,机械中各构件的质量与机械运动之间的相互关系等等,是现代机械设计的理论基础。
研究机械运转过程中能量的平衡和分配关系。
机械动力学主要研究的是:在已知外力作用下,求具有确定惯性参量的机械系统的真实运动规律;分析机械运动过程中各构件之间的相互作用力;研究回转构件和机构平衡的理论和方法;机械振动的分析;以及机构的分析和综合等等。
机床零件模态分析一、引言机床零件模态分析是指通过分析机床工作时的振动模态,得出机床系统的固有频率及其振型,为机床的设计、优化和故障诊断等提供依据。
机床的振动模态与机床的刚度、质量分布及其固定方式等相关,因此,掌握机床零件的振动模态对于提高机床的工作精度、降低振动噪声和延长机床寿命等具有重要意义。
二、机床零件模态分析的方法1.理论模态分析方法理论模态分析方法主要用于分析机床的理论振动模态。
通过机床的几何构造及其刚度、质量分布等参数,应用振动理论和有限元法等进行模态分析。
该方法可用于初步估算机床的振动特性,并为机床的设计提供依据。
2.动态模态分析方法动态模态分析方法是通过实际测试机床零件的动力响应曲线,利用信号处理和模态分析技术,得到机床零件的振动模态。
常用的动态模态分析方法包括频域分析、时域分析和轨迹分析等。
动态模态分析方法能够更精确地分析机床零件的振动特性,并提供可靠的实验数据。
三、机床零件模态分析的意义1.优化机床结构通过分析机床零件的振动模态,可以了解机床结构的固有频率及其振型,明确结构中的薄弱环节。
通过优化机床结构,可以提高机床的刚度和阻尼,降低机床的振动响应,提高机床的工作精度和稳定性。
2.降低振动噪声机床的振动会产生振动噪声,影响工作环境和操作人员的健康。
通过分析机床零件的振动模态,可以了解机床的振动特性,找到振动源,并通过降低振动源的振动响应,达到降低振动噪声的效果。
3.提高机床的工作精度机床的振动会影响机床的工作精度。
通过分析机床零件的振动模态,可以找出机床结构中的薄弱环节,并通过优化机床结构,提高机床的刚度和阻尼,降低机床的振动响应,从而提高机床的工作精度。
4.延长机床寿命机床的振动会引起机床零件的疲劳破坏,降低机床的寿命。
通过分析机床零件的振动模态,可以了解机床的振动特性,找到振动源,并通过降低振动源的振动响应,延长机床的使用寿命。
四、机床零件模态分析的应用1.机床设计通过机床零件的模态分析,可以找出机床结构的固有频率及其振型,为机床的设计提供依据。
桥梁结构动态评估的模态分析法文献综述郑大青一、模态分析在桥梁健康监测中的意义;二、模态分析的基本原理及分类;三、模态参数识别研究现状分析;四、模态分析损伤识别现状分析;五、目前模态分析在桥梁监测中存在的问题和不足。
一、模态分析在桥梁健康监测中的意义:桥梁是国家基础设施的重要组成部分,关系到人们的生命和财产安全。
因此,对桥梁进行监测并确定其结构健康状况具有重要的经济和社会意义。
传统的桥梁结构健康监测主要依靠无损检测技术或人工经验对某个特定的结构部件进行检测、查找,判断是否有损伤及损伤的程度,或者测量与桥梁结构性能相关的参数,比如变形、挠度、应变、裂缝等等,通过对这些参数分析,进而判定桥梁结构健康状况。
在应用上面这些方法时存在一些缺陷,如测量之前需知道损伤的大体范围,或者被检测的结构部分是仪器可接近的;在对大跨度桥梁等体量大、构件多的结构监测时,存在不能测量桥梁内部等隐蔽部分、测量工作量大、工作效率相对较低、不能获取桥梁整体信息等不足。
为此,一些专家学者提出了基于模态分析的桥梁健康监测方法,如图1。
此方法将结构动力学领域中的模态分析技术应用到桥梁健康监测中来,以多学科交叉研究为基础的,通过测试桥梁整个结构在外载作用下的响应来分析结构的固有频率、阻尼和模态振型等动力特性,进而诊断结构损伤位置和程度。
因此,模态参数识别和之后的模态分析损伤识别是整个健康监测中2个重要的组成部分。
测量桥梁结构激励、响应等信息 进行桥梁模态参数识别(固有频率、阻尼和模态振型等) 用模态分析损伤识别法进行安全评估图1 模态分析健康监测流程图模态分析监测方法克服了传统监测法存在的一些缺点,它不受结构规模和隐蔽的限制;具有多学科交叉优势,能对结构全局进行检测,从而能够评价桥梁结构的整体健康状态。
近年来,该方法发展迅速,日趋成熟。
事实上,它已经成为桥梁结构在线健康监测的核心技术之一。
因此,模态分析对桥梁健康监测具有重要意义。
二、模态分析的基本原理及分类:由振动理论知:一个线性振动系统,当它按自身某一阶固有频率作自由谐振时,整个系统将具有确定的振动形态(简称振型或模态)。