电动力学第2章习题
- 格式:doc
- 大小:1.45 MB
- 文档页数:10
电动力学答案第一章 电磁现象的普遍规律1. 根据算符∇的微分性与向量性,推导下列公式:BA B A A B A B B A )()()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=⋅∇A A A A )()(221∇⋅-∇=⨯∇⨯A2. 设u 是空间坐标z y x ,,的函数,证明:u uf u f ∇=∇d d )(,uu u d d )(A A ⋅∇=⋅∇,uu u d d )(A A ⨯∇=⨯∇ 证明:3. 设222)'()'()'(z z y y x x r -+-+-=为源点'x 到场点x的距离,r 的方向规定为从源点指向场点。
(1)证明下列结果,并体会对源变量求微商与对场变量求微商的关系:r r r /'r =-∇=∇ ; 3/)/1(')/1(r r r r -=-∇=∇ ;0)/(3=⨯∇r r ;0)/(')/(33=⋅-∇=⋅∇r r r r , )0(≠r 。
(2)求r ⋅∇ ,r ⨯∇ ,r a )(∇⋅ ,)(r a ⋅∇ ,)]sin([0r k E ⋅⋅∇及)]sin([0r k E ⋅⨯∇ ,其中a 、k 及0E 均为常向量。
4. 应用高斯定理证明fS f ⨯=⨯∇⎰⎰SVV d d ,应用斯托克斯(Stokes )定理证明⎰⎰=∇⨯LSϕϕl S d d5. 已知一个电荷系统的偶极矩定义为 'd '),'()(V t t Vx x p ⎰=ρ,利用电荷守恒定律0=∂∂+⋅∇tρJ 证明p 的变化率为:⎰=V V t td ),'(d d x J p6. 若m 是常向量,证明除0=R 点以外,向量3/R)(R m A ⨯=的旋度等于标量3/R R m ⋅=ϕ的梯度的负值,即ϕ-∇=⨯∇A ,其中R 为坐标原点到场点的距离,方向由原点指向场点。
7. 有一内外半径分别为1r 和2r 的空心介质球,介质的电容率为ε,使介质球内均匀带静止自由电荷f ρ,求:(1)空间各点的电场;(2)极化体电荷和极化面电荷分布。
第二章 习题1. 有导体存在时的唯一性定理是说: 若给出介质中自由电荷的分布,给定每个导体上的_______或每个导体上的______,以及(包围所有导体的)界面S 上sn s ∂∂ϕϕ或,则S 内静电场E被唯一确定. 2. 无导体存在时的静电学问题的唯一性定理为: 设空间区域V 可以分为若干小区域i V ,每个小区域i V 充满均匀介质i ε,若给出V 内自由电荷的分布,同时给出V 的界面S上的__ _ ___或_ __ ____,则V 内静电场E被唯一确定.3. 半径为0R 的接地导体球置于均匀外电场0E 中,导体球外为真空.试用分离变量法,求导体球外的电势、场强和导体球面上的自由电荷面密度σ.4. 半径为0R 的接地导体球置于均匀外电场0E中,球外真空, 试用分离变量法,求电势、导体面上的电荷面密度及场强.5. 半径为R 的空心带电球面,面电荷密度为θσσcos 0=f (0σ为常量),球外充满介电常数为ε的均匀介质,求球内外的电势、场强.6. 在两个互相垂直的接地导体平面所围成的直角空间内有一点电荷Q ,它到两个平面的距离为a 和b ,其坐标为)0,,(b a ,那么当用镜像法求空间的电势时,其镜像电荷的数目为______,这时所围成的直角空间内任意点),,(z y x 的电势为______.7. 两个无穷大的接地导体平面分别组成一个450、600、900两面角,在两面角内与两导体平面等距离处置一点电荷Q ,则在这三种情形下,像电荷的个数分别为 ______,______,______.8. 一电量为q 的点电荷在两平行接地导体平面中间,离两板距离均为a ,则像电荷的个数为_______.9.有两个电量为q的点电荷A和B,相距2b,在它们的联线的中点放一半径为a的接地导体球(b>a),则每一个点电荷受力大小为_______.10.电荷分布为ρ,体积为V的带电体系在外电场(电势为eϕ)中的能量为_______.11.两个同心带电球面(内、外半径分别为a、b)均匀地带有相同的电荷Q,则这两个带电球面之间的相互作用能为_________;系统的总静电能为_________.12.半径为R的接地导体球外有一点电荷q,它离球心的距离为a,则他们的相互作用能为_______.。
.zD a e 2.63x yC xye y e + .x yB aye axe -+ .()r A are 柱坐标系p p B are ϕ=电动力学练习题第一章电磁现象的基本规律一.选择题1.下面函数中能描述静电场强度的是( )2.下面矢量函数中不能表示磁场强度的是( )3.变化的磁场激发的感应电场满足( )4.非稳恒电流的电流线起自于( )A.正点荷增加的地方;B.负电荷减少的地方;C.正电荷减少的地方;D.电荷不发生改变的地方。
5.在电路中负载消耗的能量是( )A.通过导线内的电场传递的;B.通过导线外周围的电磁场传递的;C.通过导线内的载流子传递;D. 通过导线外周围的电磁场传递的,且和导线内电流无关。
二、填空题1.极化强度为 的均匀极化介质球,半径为R,设与球面法线夹角为θ,则介质球的电偶极矩等于_____,球面上极化电荷面密度为_____。
2.位移电流的实质是_________.3.真空中一稳恒磁场的磁感应强度(柱坐标系)产生该磁场的电流密度等于_______。
4.在两种导电介质分界面上,有电荷分布,一般情况下,电流密度满足的边值关系是____。
5.已知某一区域在给定瞬间的的电流密度:其中c 是大于零的常量。
此瞬间电荷密度的时间变化率等于___ ,若以原点为中心,a 为半径作一球面,球内此刻的总电荷的时间变化率等于_____。
6.在两绝缘介质的界面处,电场的边值关系应采用()21 ,n D D ⋅-= 21()n E E ⨯-=。
在绝缘介质与导体的界面(或两导体的界面处)稳恒电流的情况下,电流的边值关系为7.真空中电磁场的能量密度w =_____________,能流密度S =_________。
8.已知真空中电场为23r r E ab r r =+(a ,b 为常数),则其电荷分布为______。
9.传导电流与自由电荷之间的关系为:f J ∇⋅= _____________ 极化电流与束缚电荷之间的关系为:p J ∇⋅=_____________然而按分子电流观点,磁化电流的散度为 M J ∇⋅=_____________ 10.电荷守恒定律的微分形式为_____________。
三、简答题1. 电磁场理论赖以建立的重要实验及其重要意义。
2. 静电场能量公式12e W dV ρϕ=⎰、静磁场能量公式12m W J AdV =⋅⎰的适用条件。
3.静电场能量可以表示为12e W dV ρϕ=⎰,在非恒定情况下,场的总能量也能这样完全通过电荷或电流分布表示出来吗为什么4. 写出真空中Maxewll 方程组的微分形式和积分形式,并简述各个式子的物理意义。
5. 写出线性均匀各向同性介质中麦克斯韦方程微分形式和积分形式,其简述其物理意义。
6.电象法及其理论依据。
答:镜像法的理论基础(理论依据)是唯一性定理。
其实质是在所研究的场域外的适当地方,用实际上不存在的“像电荷”代替真实的导体上的感应电荷或介质中的极化电荷对场点的作用。
在代替的时候,必须保证原有的场方程、边界条件不变,而象电荷的大小以及所处的位置由Poisson 方程和边界条件决定。
7. 引入磁标势的条件和方法。
|答:在某区域内能够引入磁标势的条件是该区域内的任何回路都不被电流所链环,就是说该区域是没有自由电流分布的单连通区域。
若对于求解区域内的任何闭合回路,都有 则引入φm , 8. 真空中电磁场的能量密度和动量密度,并简述它们在真空中平面电磁波情况下分别与能流密度及动量流密度间的关系。
9. 真空中和均匀良导体中定态电磁波的一般形式及其两者的差别。
10. 比较库仑规范与洛伦兹规范。
11.$12.分别写出在洛仑兹规范和库仑规范下电磁场标势矢势所满足的波动方程,试比较它们的特点。
13. 写出推迟势,并解释其物理意义。
答:推迟势的物理意义:推迟势说明电荷产生的物理作用不能立刻传至场点, 而是在较晚的时刻才传到场点, 所推迟的时间r /c 正是电磁作用从源点x ’传至场点x 所需的时间, c 是电磁作用的传播速度。
14. 解释什么是电磁场的规范变换和规范不变性答:设ψ为任意时空函数,作变换ψ∇+='→A A A ,t∂∂-='→ψϕϕϕ /有B A A =⨯∇='⨯∇,E tAt A =∂∂--∇=∂'∂-'∇-ϕϕ,0d =⋅⎰Ll H 0=⨯∇H mH ϕ-∇=V rc r t t '-'=⎰d )/,(4),(0x J x Απμ即()ϕ'',A 与()ϕ,A 描述同一电磁场。
1. 一个半径为R 的电介质球极化强度P=K2r r电容率为(1) 计算束缚电荷的体密度和面密度(2) 计算自由电荷体密度(3) 计算球外和球内的电势(4) 求该带电介质球产生的静电场总能量解(1)2222/)11(rK r rr r K r r K P P −=⋅∇+⋅∇−=⋅∇−=⋅−∇=r r r r ρ RP P P n )(12rr r −⋅−=σ 又球外无极化电荷02=P r RK rr K n P n RRp /21=⋅=⋅=r r rr σ(2) 由公式 E D rr ε= PE D rr r +=0εεεε−=P D r r200)(rKP D f εεεεεερ−=⋅∇−=⋅∇=r r`(3)对于球外电场由高斯定理可得∫=⋅0εQs d E rr外 022002sin )(4εϕθθεεεερπ∫∫∫∫⋅−==⋅∴d drd r r KdV r E f 外r r r )(300r rεεεε−∴KRE 外同理可得球内电场20r rK E rr ⋅−εε内球外电势外外r)(rd 00εεεεϕ−⋅∴∫∞∞KRE rrrR ln)(rd rd 000rεεεεεεϕ−+−⋅⋅∫∫∞K KE E RR球内电势内外内rr r r42022020r2rrr r 2121内内内εεεεεεεεωK K K E D r r r r ⋅⋅⋅⋅⋅∴ ∫∫∫∫−⋅−⋅∴2022202)2d drd sin r r )(21d εεπεϕθθεεεωK R K V W 内内∫∫∫∫−⋅⋅−⋅=2002224200222)(2d drd sin r r 1)(21dεεεπεϕθθεεεεωRK R K V W R 外外200))(1(2εεεεπε−+=∴K R W W W 外内2 在均匀外电场中置入半径为0R 的导体球试用分离变数法球下列两种情况的电势1导体球上接有电池使球与地保持电势差;0φ2 导体球上带总电荷Q.解1当导体球上接有电池与地保持电势差0φ时以地为电势零点本问题的定解条件如下φφ内R=0R02外ϕ∇R>0R 且 =−==∞→0000cos φϕϕθϕR R R R E 外外0ϕ是未置入导体球前坐标原点的电势根据有关的数理知识可解得)cos R Ran 1n nnnn θϕ外P b ∑∞由于00cos ϕθϕ外R E R −=∞→即021210210cos )(cos cos )(cos cos a ϕθθθθθϕ+−=+++++∞→∞=+∞=∑∑R E P RbR b R b P R a R a R n n n n n n nn 外故而有)1(0),1(0,,0100>=>=−==n b n a E a a n n ϕθθϕϕcos b cos21000Rb R R E +∴外又020100000cosb cos ,0φθθϕϕφϕ=+−====R b R R E R R R R 即外外故而又有=+−=+∴0cos cos 201000000θθφϕR b R E R b 得到 20010000,)(R E b R b =−=ϕφ最后得定解问题的解为)(cos )(cos 03000000R R RR E R R R E >+−++−=θϕφϕθϕ外2当导体球上带总电荷Q 时定解问题存在的方式是=∂∂−+>∇<∇∫∞→→)(ds (Rcos )(0)(00sR 000R 0R 02020R R Q R E R R R R R 原点的电势是未置入导体球前坐标有限外外内外内外内φεφφϕϕθφφφφ解得满足边界条件的解是∑=0n n n n cos R 内θϕP a ∑=0n n1n n00cos R Rcos 外θθϕϕP b E由于∞→R 外ϕ的表达式中只出现了)1(0cos cos (1>=n b P n 项故θθθθϕϕcos b cos 21000Rb R R E +∴外又有0R R =外ϕ是一个常数导体球是静电平衡C R b R R E R R =+−==θθϕϕcos b cos 201000000外3001201000cos cos R E b R b R E ==+−∴即θθθθϕϕcos cos 230000RR E R b R E ++外 又由边界条件Q 外∫∂∂−sds rφε 004πεQ b =∴,000R 4R R Q <−∴ϕπεϕ内023000Rcos cos R 4R R E RR E Q>+外θθπεϕ3均匀介质球的中心置一点电荷f Q 球的电容率为ε球外为真空试用分离变数法求空间电势把结果与使用高斯定理所得结果比较提示空间各点的电势是点电荷f Q 的电势RQ πε4f与球面上的极化电荷所产生的电势的叠加后者满足拉普拉斯方程解一. 高斯法在球外0R R >,由高斯定理有fP f Q Q Q Q s d E =+=⋅∫总rr 0ε对于整个导体球而言束缚电荷)0=P Q 204R Q E f πε=∴r积分后得是积分常数外C C RQ .(40f +πεϕ又由于0,0=∴=∞→C R 外ϕ)(400R R RQ f >=∴πεϕ外在球内0R R <,由介质中的高斯定理∫=⋅fQ s d D r r又24,R Q E E D f πεε=∴=rrr积分后得到是积分常数内22f.(4C C RQ +πεϕ由于20f 44,0C R Q R Q f R R +==πεπεϕϕ故而有外内).(4400002R R R Q R Q C f f<−=∴πεπε)(44400f0ff R R R Q R Q RQ <−∴πεπεπεϕ内二. 分离变量法本题所求的电势是由点电荷f Q 与介质球的极化电荷两者各自产生的电势的叠加且有着球对称性因此其解可写作'4ϕπεϕ+=R Qf 由于'φ是球对称的其通解为R b a +='ϕ由于球心有f Q 的存在所以有∞→内R ϕ 即a4内RQ f πεϕ在球外有外0R ∞→ϕ 即Rb 4f 外R Q πεϕ 由边界条件得f 0fRb4a 4,0R R Q R Q R ++πεπεϕϕ即外内20f20020f 0R4b 4,RR 0R Q R R Q R πεεεπεεϕεϕε−=−∂∂∂∂即外内)11(4a),11(400f 0εεπεεπε−−=∴R Q Q b f<−>∴00f00f f 00f ,444,R4R R R Q R Q R Q R R Q πεπεπεϕπεϕ内外4 均匀介质球电容率为1ε的中心置一自由电偶极子fPr球外充满了另一种介质电容率为2ε求空间各点的电势和极化电荷分布提示同上题'431φπεφ+⋅=RR P f r r ,而'φ满足拉普拉斯方程解RR∂∂=∂∂外内φεφε21又内∑+−=∂∂l 1l 0l 31f 11l 4cos 2(0P R A R P R R πεθεφε∑−−=∂∂外l 2l 0l301f 221l (4cos 2(0P R B R P RR πεθεφε比较系数)(cos θl P B00A0030113012312113,24242R B A R B R A R ff=−−=+及επερεεπρ得)2(4)(2,)2(4)(22112113211211εεπερεεεεπερεε+−=+−=f fB R A 比较的系数)(cos 2θP 40224221,32R B A R B R A=ε及011(012=+R A ε所以0,022==B A 同理)3,2(,0L ===l B A l l 最后有)(,)2(4)(24cos )2(4)(2403211213132112131R R R RR R R R R R f f f f <+⋅−+⋅=+−+⋅εεπερεεπερθεεπερεεπερφrrr rr r内)(,)2(43)2(4)(24cos )2(4)(2403213211213122112131R R RR RRRRRRR f f f f f >+⋅=+⋅−+⋅=+−+⋅εεπρεεπερεεπερθεεπερεεπερφr r rrr r r r 外- 7 -球面上的极化电荷密度n P P n n P r,21−=σ从2指向1如果取外法线方向则nn n n p P P )])[()])[(0102内外球外φεεφεεσ∇−−∇−=−= 0)()(0102R RRR内外∂∂−+∂∂−−=φεεφεε]cos )2(4)2(2)(2)2(4cos )(6)[()2(4cos 6)(32112121321200132102θρεεπεεεεεεεπθρεεεεεεπθρεεf f f R R R ++−−−+−−−+−−= θρεεπεεεεθρεεπεεεεεεεcos )2(2)(3cos )2(4)(6)(632112103211012201f f R R +−−=+−+−=求极化偶极子l q P f r r=可以看成两个点电荷相距l 对每一个点电荷运用高斯定理就得到在每个点电荷旁边有极化电荷 ))(1(,)1(1010f P f P q q q q −−=−−=εεεε两者合起来就是极化偶极子 fP P P r r )1(1−=εε5.空心导体球壳地内外半径为R 1和R 2球中心置一偶极子Pr球壳上带电Q 求空间各点电势和电荷分布解+⋅=∞====∇→→∞→为有限值0'1'1301022332,4,0,0r r r r r P C φφπεφφφφφr r=∂∂+∂∂−+⋅====∫∑∫∑===−+013301223131212)(cos 4,),(cos εφφθπεφφφφθφQdS rdS r P r A r r P CC CP r B R r R r l ll f R r R r l l l rrφ=+++=+++CR A A R P C P R B R B R B f L L θπεθθcos 4cos cos 110210232222120即)4.3.2(0),3.2.1(0,0cos )4(,2111200L L =====+==l A l B R P R A C R B A l l f θπε∑∑+−−=−−=∂∂++−=+−=∂∂+−L L θφθπεθπεθφcos 2)1(cos 2cos 4cos 2311210231310113101R B R B P r B l r A R P P R lA R P r l l l f L l l f 又则∫∫∫====∂∂−02121210210344B R B R dS R B dS R B dS r ππφ000sin cos 4sin cos 220021310200213101=+=−+−=∂∂∫∫∫∫∫ππππϕθθθπεϕθθθπεφd d R R P d d R R P dS r f f 故∫∫==∂∂+∂∂−00134επφφQB r dS r 3101200004,4,4R P A R Q A Q B f πεπεπε−===最后有<<=>=<+⋅−⋅=)(,4)(,4)(,44421202203120310201R r R R QR r r Q R r R QR r P r r P f πεφπεφπεπεπεφr r r r 电荷分布在r R 1的面上313131104cos 4cos 2cos 1R P R P R P r f f f Pπθπθπθφεσ−=−+−=∂∂=在r R 2面上223042R Qr P πφεσ=∂∂−=6在均匀外电场0E r中置入一带均匀自由电荷f ρ的绝缘介质球ε求空间各点的电势解=∇++∑+061)(cos )('2'21φφρεφθφr P r B r A f l l l ll内外内φ是由高斯定理解得的f ρ的作用加上0E r的共同作用'0,cos →∞→−=r r r E φθφ外有限++∑∑+)(cos61)(cos cos 210θρεφθθφl l e f l l l P r c r P r B r E 内外:)0R r =外内φφ++++23022010000cos P R BR B R B R E θ ++++22020120cos 610P R c R c c R f θρε即000206R B c R f =+ερ012100R c R B R E =+20232R c R B =rr ∂∂=∂∂外内φεφε∑+−−+−=∂∂)1(cos (200l l l R P B l E rθεφ外]L +++= +=∂∂∑−202101002cos 3)(cos 3P R c c R P R lc R r f l l l f εθερθερφ内LL+−−−−2423123cos2cos PRBRBRBEεθεεθε即23RBRfερ−=3112RBECεεε−−=LL42232RBRCεε−=解方程得fRBρε303−=)6131(20εερ+−=fRC33123REREB++−=εεε123εεε+−=EC及2232CRRCεε−=即0)32(2=+RRCεε022==BC同理0==llBC LL3,2=l得<+±>+−+±22223233,cos236131(6,cos)2(3cos3cosRrrERrRrrRErRErRrEfffθεεεεερερφθεεεθερθφ内外7在一个很大的电解槽中充满电导率为2σ的液体使其中流着均匀的电流0fδ今在液体中置入一个电导率为1σ的小球求稳衡时电流和电荷分布讨论21σσ>>及12σσ>>两种情况的电流分布特点先求空间电势∇∇22外内φφ外内φφRr=因为)(Rrnn=外内δδ稳恒电流认为表面无电流堆积即nn流出流入=故rr222221外内φσφσ=并且δδ=∞→r外即θφcosrEr−=∞→外()02Ej fσ=有限内∞→rφ可以理解为在恒流时0→r的小封闭曲面流入流出这时的解即为>+−+<022121300000212,cos )2(cos ,cos 23R r rR E r E R r r E θσσσσθφθσσσφ外内求内外电场)22sin 12222(φθφθθφφφe r e r e E r rr rΦ++−=−∇=)sin (cos 23)22122(0212θθθθσσσθφφe e E e r re E r r r r rr r−+=+内内内ze E r021223σσσ+=[]θθθθσσσσθθe e r R E e e E E r r rr r r sin cos 2)2()sin (cos 212133000++−+−外[]θθθθθσσσσθθe e e rR E e e E r r r rr r r r sin cos cos 3)2()sin (cos 212133000+−+−+−−+−+30302121300cos 3)2(r E e r E R E r v v θσσσσ求电流 根据内内E j vr1σ 外外E j v v2σ 及 =⋅=r f f e r r r E rr r j E j r vr v v v5025020cos )(0θσσ得])(3[2,2335302121211000rj rrr j R j j j j f f f r rr r r r −⋅=σσσσσσσ内外内)(2cos 3)()(2121000120σσσσθεεεω−+=−=−=E E E E E nn n n f 内外8.半径为0R 的导体球外充满均匀绝缘介质ε导体球接地离球心为a 处)(0R a >置一点电荷f Q 试用分离变数法求空间各点电势证明所得结果与镜像法结果相同提示).()(cos )(1cos 211022a R P aR a aR a R rn n n>=−+=∑∞=θθ解1分离变数法由电势叠加原理球外电势''f,4φφπεφ+RQ 外是球面上感应电荷产生的电势且满足定解条件 ==>=∇=∞→00)(,00''2R r r R r 外φφφ根据分离变数法得)(,)(cos 001'R r P r B l l l l>=∑∞=+θφ ∑∞=++−+∴0122f )(cos cos 214l l l lP rB ar r a Q θθπεφ外*)(,)(cos )(cos )(14010a r P rB P a r a Q l ll ln n n f <+=∑∑∞=+∞=θθπε 又0)(cos ])(4[100=+=∑∞=+=n l l oll fR r P R B a R a Q θπεφ外即 0)(4,...,04,0410201000=+=+=++l ll f f fR B a R a Q R B a R a Q R B a Q πεπεπε,4,4,41203100aQ a R B a Q a R B a Q R B fl l l f O fπεπεπε+−=−=−=∴代入*式得解如图建立坐标系本题具有球对称性设在球内0r 处有像电荷'Q ,'Q 代替球面上感应电荷对空间电场的作用由对称性'Q 在O f Q 的连线上先令场点P 1在球面上根据边界条件有常数即=−==+fQ Q Q Q f Q Q r r r Q r Q f f'''',0将'Q 的位置选在使∆'Q P 1O∆f Q P 1O,则有常数aR r r fQ Q 0'=为达到这一目的令'Q 距圆心为r 0则 aR r a R R r 200000,==并有aQ R Q aR Q Q r r f f Q Q f0'0''−===−=常数这样满足条件的像电荷就找到了空间各点电势为).(],cos 2)(cos 2[414422020222'1a r aR r a R r aQ R ar r a Q r Qr Q fff >++−−+=+=θθπεπεπεφ外将分离变数法所得结果展开为Legend 级数可证明两种方法所求得的电势相等9接地的空心导体球的内外半径为R 1和R 2在球内离球心为a(a<R 0)处置一点电荷Q 用镜像法求电势导体球上的感应电荷有多少分布在内表面还是外表面解球外的电势及导体内电势恒为0而球内电势只要满足即可内01r =R φ因此做法及答案与上题同解略cos 2cos 2[412124121220θθπεφa R R aRR a QR Ra a R Q−+−−+=内因为球外0=φ故感应电荷集中在内表面并且为Q.R 1R 2P210.上题的导体球壳不接地而是带总电荷Q 0,或使其有确定电势0ϕ试求这两种情况的电势又问0ϕ与Q 0是何种关系时两种情况的解是相等的解由于球壳上有自由电荷Q 0并且又是导体球壳故整个球壳应该是等势体其电势用高斯定理求得为2004R Q Q πε+所以球壳内的电势将由Q 的电势像电荷aQR 1−的电势及球壳的电势叠加而成球外电势利用高斯公式就可得故>+=<++−+−−+==)(,4)].(cos 2cos 2[412001202124121220R R RQ Q R R R Q Q a R R aR R a QR Ra a R Q πεφθθπεφφ外内或>=<+−+−−+==)(,).(cos 2cos 2[41202102124121220R R r R R R a R R a R R a QR Ra a R Q φφφθθπεφφ外内当20004R Q Q πεφ+=时两种情况的解相同11在接地的导体平面上有一半径为a 的半球凸部如图半球的球心在导体平面上点电荷Q 位于系统的对称轴上并与平面相距为bb>a 试用电象法求空间电势解如图利用镜像法根据一点电荷附近置一无限大接地导体平板和一点电荷附近置一接地导体球两个模型可确定三个镜像电荷的电量和位置rb r Q Q rba r Qb a Q rb a r Q b a Q rr r−=−=−===−=33222211,,,θθθπεφcos 2cos 21cos 21[4224222220R b a ba Rb aRb b R Rb b R Q +++++−−+=O12. 有一点电荷Q 位于两个互相垂直的接地导体平面所围成的直角空间内它到两个平面的距离为a 和b 求空间电势解可以构造如图所示的三个象电荷来代替 两导体板的作用−++−+−−−+−+−=222022200)()()(1)()()(1[4b z a y x x b z a y x x Q πεφ )0,()()()(1)()()(122202220>++++−+−+++−−z y b z a y x x b z a y x x 13.设有两平面围成的直角形无穷容器其内充满电导率为的液体取该两平面为xz 面和yz 面在x 0,y 0,z 0和x 0,y 0,-z 0两点分别置正负电极并通以电流I 求导电液体中的电势解本题的物理模型是由外加电源在A B 两点间建立电场使溶液中的载流子运动形成电流I,当系统稳定时是恒定场即0=∂∂+⋅∇t j ρr 中对于恒定的电流可按静电场的方式处理于是在A 点取包围A 的包围面∫=⋅nQ s d E εr r 而又有σ⋅=⋅=∫E i s d i I rr r r }∫⋅=⇒sd E I r r σ1∴有σεεσ111I Q QI =⇒=对BQ σε1I Q Q B −=−=又在容器壁上,0=n j r即元电流流入容器壁由Ej r rσ=有0=n j r时=n E r∴可取如右图所示电像B(x 0,y 0,z 0)y14.画出函数dx的图说明)()(x P δρ∇⋅−=是一个位于原点的偶极子的电荷密度解=∞≠=0,0,0)(x x x δx x x x dx x d x ∆−∆+=→∆)()(lim )(0δδδ10)(0=≠dxx d x δ时2=∆∞−=>∆=→∆x dxx d x x 0lim )(,0x a 00δ时 +∞=∆∞−=<∆→∆xdx x d x b x 0lim )(,0)0δ15证明1)0).((1)(>=a x a ax δδ若a<0,结果如何20)(=x x δ证明1根据∑−=)(()](['kk x x x x φδφδ所以ax ax )()(δδ=2从)(x δ的定义可直接证明有任意良函数f(x),则)()(x F x x f =⋅也为良函数∫=⋅==0)()()(0x x x f dx x x x f δ16一块极化介质的极化矢量为)('x P r r 根据偶极子静电势的公式极化介质所产生的静电势为∫⋅=V dV r rx P '3'4)(πεϕr r r 另外根据极化电荷公式,)(''P n x P P P r r r r r r ⋅=⋅−∇=σρ及极化介质所产生的电势又可表为∫∫⋅+⋅∇−=S V r Sd x P dV r x P 0'''0''4)(4)(πεπεϕr r r r r 试证明以上两表达式是等同的证明∫∫∇⋅=⋅=VVdV rx P dV r r x P '''0'3'01)(41)(41r r rr r πεπεϕ 又有r P r P r P p 11)1('''∇⋅+⋅∇=∇r r r 则][41])([41'''''''''0∫∫∫∫⋅+⋅∇−=⋅∇+⋅∇−=S V V V S d r P dV r P dV r P dV r P r r r r r πεπεϕ ][41][41'0'''0∫∫∫∫+=⋅+⋅∇−=S P V P S V dS r dV rdS r n P dV r P r s rr r σρπεπε刚好是极化体电荷的总电势和极化面电荷产生的总电势之和17证明下述结果并熟悉面电荷和面偶极层两侧电势和电场的变化1 在面电荷两侧电势法向微商有跃变而电势是连续的2 在面偶极层两侧电势有跃变 P n rr ⋅=−0121εϕϕ而电势的法向微商是连续的各带等量正负面电荷密度σ±而靠的很近的两个面形成面偶极层而偶极矩密度.)lim 0l P l r rσσ→∞→=证明1如图可得,20εσss E ∆⋅=∆⋅ 022,200210=−=−=∴z z E εσεσφφεσ面z e E n r r 01112εσφ==∂∂ )(20222z e E nr −==∂∂εσφ 02211εσφφ=∂∂−∂∂∴n n 2)可得ze E r r 0εσ= 00012limlim εεσφφP n l n l E l l r r r r r r ⋅=⋅=⋅=−∴→→ 又E nE n r r =∂∂=∂∂21,φφ++z12lr.012=∂∂−∂∂∴nn φφ18.一个半径为R 0的球面在球坐标20πθ<<的半球面上电势为0ϕ在πθπ<<2的半球面上电势为0ϕ−求空间各点电势提示=−===+−=⋅⋅−⋅⋅⋅⋅⋅−+∫)(,)1()(,0)0(1)1(,12)()()(642)1(531211011偶数奇数n n P P n x P x P dx x P n n n n n n n 解=∞<=∇∇∞→→0022r r 外内外内φφφφ≤<−<≤===πθπφπθφθφ2,20,)(000f R r ∑=)(cos θφl l l P r A内 这是内φ按球函数展开的广义傅立叶级数l l r A 是展开系数∫∫⋅−+=+==−πθθθφθθφ011]sin )(cos [212]cos )(cos [21200d P l d P l f R A l R l R l ll 内内]sin )(cos sin )(cos [21220200∫∫+−+=πππθθθφθθθφd P d P l l l ])()([212100010∫∫−−+=dx x P dx x P l l l φφ ∫∫+−+=−10010)()([212dxx P dx x P l l l φ由)()1()(x P x P l ll −=−则])()()1[(2121010100∫∫+−+=+dx x P dx x P l R A l ll φ∫+−=+1010)(]1)1[(2dxx P l l φ当l 为偶数时00=ll R A当l 为奇数时有101101010012)()()12()(]1)1[(212+−+=+−+=−++∫l x P x P l dx x P l R A l l l l ll φφ ])1(642)2(531)1()1(642531)1[(2121−⋅⋅⋅⋅⋅−⋅⋅⋅⋅⋅−−+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−−=−+l l l ll l φ ])1(642)2(531)1()1(642531)1[(2121−⋅⋅⋅⋅⋅−⋅⋅⋅⋅⋅−++⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−=−−l l l ll l φ )12()1(642)2(531)1()11()1(642)2(531)1(210210++⋅⋅⋅⋅⋅−⋅⋅⋅⋅⋅−=++−⋅⋅⋅⋅⋅−⋅⋅⋅⋅⋅−=−−l l l l ll l l l φφ则 )12()1(642)2(531)1(2100++⋅⋅⋅⋅⋅−⋅⋅⋅⋅⋅−=−l l l R A l ll φ∑<++⋅⋅⋅⋅⋅−⋅⋅⋅⋅⋅−=−)(),(cos ))(12()1(642)2(531)1(00210R r l P R rl l l l l l 取奇数内θφφ∑+)(cos 1θφl l lP r B 外又)12()1(642)2(531)1(])(cos [212211110++⋅⋅⋅⋅⋅−⋅⋅⋅⋅⋅−=+=−−+∫l l l P l r B l l R l lφθφ外即∑>++⋅⋅⋅⋅⋅−⋅⋅⋅⋅⋅−=+−)(),(cos ))(12()1(642)2(531)1(01021R r l P rR l l l l l l 为奇数外θφ。
第二章 静电场1. 一个半径为R 的电介质球,极化强度为2/r K r P =,电容率为ε。
(1)计算束缚电荷的体密度和面密度: (2)计算自由电荷体密度; (3)计算球外和球内的电势;(4)求该带电介质球产生的静电场总能量。
解:(1)P ⋅-∇=p ρ2222/)]/1()/1[()/(r K r r K r K -=∇⋅+⋅∇-=⋅∇-=r r r)(12P P n -⋅-=p σR K R r r /=⋅==P e (2))/(00εεεε-=+=P P E D 内200)/()/(r K f εεεεεερ-=-⋅∇=⋅∇=P D 内(3))/(/0εεε-==P D E 内内rr frKRr Ve e D E 200200)(4d εεεεπερε-===⎰外外 rKRr)(d 00εεεεϕ-=⋅=⎰∞r E 外外)(ln d d 00εεεεϕ+-=⋅+⋅=⎰⎰∞r R K RR rr E r E 外内内(4)⎰⎰⎰∞-+-=⋅=R R rrr R K r r r K V W 42200222022202d 4)(21d 4)(21d 21πεεεεπεεεE D 20))(1(2εεεεπε-+=K R2. 在均匀外电场中置入半径为0R 的导体球,试用分离变量法求下列两种情况的电势:(1)导体球上接有电池,使球与地保持电势差0Φ; (2)导体球上带总电荷Q 解:(1)该问题具有轴对称性,对称轴为通过球心沿外电场0E 方向的轴线,取该轴线为极轴,球心为原点建立球坐标系。
当0R R >时,电势ϕ满足拉普拉斯方程,通解为∑++=nn n nn n P R b R a )(cos )(1θϕ 因为无穷远处 0E E →,)(cos cos 10000θϕθϕϕRP E R E -=-→ 所以 00ϕ=a ,01E a -=,)2(,0≥=n a n当 0R R →时,0Φ→ϕ所以 0101000)(cos )(cos Φ=+-∑+n nn nP R b P R E θθϕ 即: 002010000/,/R E R b R b =Φ=+ϕ所以 )2(,0,),(3010000≥==-Φ=n b R E b R b n ϕ⎩⎨⎧≤Φ>+-Φ+-=)()(/cos /)(cos 000230000000R R R R R R E R R R E θϕθϕϕ(2)设球体待定电势为0Φ,同理可得⎩⎨⎧≤Φ>+-Φ+-=)()(/cos /)(cos 000230000000R R R R R R E R R R E θϕθϕϕ当 0R R →时,由题意,金属球带电量Qφθθθϕθεϕεd d sin )cos 2cos (d 200000000R E R E S nQ R R ⎰⎰+-Φ+=∂∂-== )(40000ϕπε-Φ=R所以 00004/)(R Q πεϕ=-Φ⎩⎨⎧≤+>++-=)(4/)(cos )/(4/cos 00002300000R R RQ R R R R E R Q R E πεϕθπεθϕϕ3. 均匀介质球的中心置一点电荷f Q ,球的电容率为ε,球外为真空,试用分离变量法求空间电势,把结果与使用高斯定理所得结果比较。
电动力学 第一章练习一、填空1. 一个半径为a 的带电球,其介电常数为ε,电荷在球内均匀分布,总电荷为Q ,则球内电场满足=⋅∇E ____________,球外电场满足=⋅∇E ____________。
2. 一个半径为a 的带电导体球处于静电平衡状态,所带总电荷为Q ,其介电常数为ε0,则球内电场满足=⋅∇E ____________,球外电场满足=⋅∇E ____________。
3. 一个半径为a 的带电球,其介电常数为ε,电荷在球内均匀分布,总电荷为Q ,则球内电场满足=⨯∇E ____________,球外电场满足=⨯∇E ____________。
4. 电流I 均匀分布于半径为a 的无穷长直导线内,导线外为真空,则导线内磁场B⨯∇=__________,导线外磁场B ⨯∇=_________。
5. 电流I 均匀分布于半径为a 的无穷长直导线内,导线外为真空,则导线内磁场B ⋅∇=__________,导线外磁场B ⋅∇=_________。
二、选择1. 在带自由面电流的磁介质界面上,两边介质的介电常数不同,这时候边值关系为:A. 磁感应强度法向不连续,磁场强度切向连续。
B. 磁感应强度切向连续,磁场强度法向不连续。
C. 磁感应强度法向连续,磁场强度切向不连续。
D. 磁感应强度切向不连续,磁场强度法向连续。
2. 介质极化时,束缚电荷体密度P ρ与电极化矢量P 的普遍关系为:A. P P ⨯-∇=ρB. P P⋅∇=ρ C. P P ⨯∇=ρ D. P P⋅-∇=ρ 3. 在稳恒电流电路中,电流总是闭合的,表示此特征的方程为(J为电流密度,ρ为电荷体密度): A. t J ∂∂=⋅∇ρ B. tJ ∂∂-=⋅∇ρ C. 0=⋅∇J D.0=⨯∇J 4. 由麦克斯韦方程⎰⎰⋅-=⋅S L S B dt d l E d d 可得界面上,电场强度的边值关系为(α为电流线密度,σ为电荷面密度):A. α-=-t t E E 12B. α=-t t E E 12C. 012=-t t E ED. σ=-t t E E 12三、计算题1. 有一内外半径分别为r 1和r 2的空心介质球,介质的电容率为ε,使介质内均匀带静止自由电荷密度ρf ,求:(1) 空间各点的电场;(2) 极化电荷体密度和极化电荷面密度。
电动力学答案第一章 电磁现象的普遍规律1. 根据算符∇的微分性与向量性,推导下列公式:B A B A A B A B B A )()()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=⋅∇A A A A )()(221∇⋅-∇=⨯∇⨯A 解:(1))()()(c c A B B A B A ⋅∇+⋅∇=⋅∇B A B A A B A B )()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=c c c cB A B A A B A B )()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=(2)在(1)中令B A =得:A A A A A A )(2)(2)(∇⋅+⨯∇⨯=⋅∇,所以 A A A A A A )()()(21∇⋅-⋅∇=⨯∇⨯即 A A A A )()(221∇⋅-∇=⨯∇⨯A2. 设u 是空间坐标z y x ,,的函数,证明:u u f u f ∇=∇d d )( , u u u d d )(A A ⋅∇=⋅∇, uu u d d )(A A ⨯∇=⨯∇ 证明: (1)z y x z u f y u f x u f u f e e e ∂∂+∂∂+∂∂=∇)()()()(z y x z uu f y u u f x u u f e e e ∂∂+∂∂+∂∂=d d d d d d u uf z u y u x u u f z y x ∇=∂∂+∂∂+∂∂=d d )(d d e e e (2)z u A y u A x u A u z y x ∂∂+∂∂+∂∂=⋅∇)()()()(A zuu A y u u A x u u A z y x ∂∂+∂∂+∂∂=d d d d d duu z u y u x u u A u A u A z y x z z y y x x d d )()d d d d d d (Ae e e e e e ⋅∇=∂∂+∂∂+∂∂⋅++= (3)uA u A u A z u y u x u uu z y x zy x d /d d /d d /d ///d d ∂∂∂∂∂∂=⨯∇e e e Azx y y z x x y z yu u A x u u A x u u A z u u A z uu A y u u A e e e )d d d d ()d d d d ()d d d d (∂∂-∂∂+∂∂-∂∂+∂∂-∂∂=z x y y z x x y z y u A x u A x u A z u A z u A y u A e e e ])()([])()([])()([∂∂-∂∂+∂∂-∂∂+∂∂-∂∂=)(u A ⨯∇=3. 设222)'()'()'(z z y y x x r -+-+-=为源点'x 到场点x 的距离,r 的方向规定为从源点指向场点。
电动力学习题(2008年9月)第一章 电磁现象普遍规律1.1. 设 u 是空间坐标 x , y , z 的函数,证明:∇f (u ) = ,df u du ∇ (),d u u du ∇=∇A A ()d u u du∇⨯=∇⨯A A 1.2. 根据算符 ∇ 的微分性和矢量性,推导下列公式∇(A ∙B ) = B ⨯(∇⨯ A ) + (B ∙∇) A + A ⨯(∇⨯ B ) + ( A ∙∇)B ,A ⨯(∇⨯ A ) =12∇ A 2-( A ∙∇) A .1.3. 设 R =x ' 到场点 x 的距离,r 的方向规定为从源点指向场点。
(1) 证明下列结果,并体会对源变数求微商()x y z x y z∂∂∂'∇=++'''∂∂∂e e e 与对场变量求微商()x y z x y z∂∂∂∇=++∂∂∂e e e 的关系: ,R R R '∇=-∇=R 311,R R R'∇=-∇=-R 30,R ∇⨯=R 330.(0)R R R '∇=-∇=≠R R (2) 求∇∙R, ∇⨯R , (a ∙∇)R , ∇(a ∙ R ), ∇∙ [E 0sin(k ∙r )] 以及 ∇⨯[E 0sin(k ∙r )], 其中 a , k 及E 0 均为常矢量。
1.4. 若m 是常矢量,证明除 R=0 点外,矢量 3R ⨯=m R A 的旋度等于标量 3R ϕ=m R 的梯度的负值,即 ϕ∇⨯=-∇A 。
其中 R 为原点到场点的距离,方向由原点指向场点。
1.5. 应用高斯定理证明,V S dv d ∇⨯=⨯⎰⎰⎰⎰⎰f s f 利用斯托克斯定理(用曲面积分来表示曲线积分) ,L S d d =∇⨯⎰⎰⎰f l f s 证明 S Ld d ϕϕ⨯∇=⎰⎰⎰s l 1.6. 球心为O 半径为 R 的均匀带电球,电荷密度为ρ,在O' 处挖去一个半 径为R/2的空洞,OO'=R/2,试算出空洞内的电场强度。
电动力学必考题第一章 电磁现象的普遍规律例题(课本P7) 电荷Q 均匀分布于半径为a 的球体内,求各点的电场强度,并由此直接计算电场的散度。
解:作半径为r 的球(与电荷球体同心)。
由对称性,在球面上各点的电场强度有相同的数值E ,并沿径向。
1)当 r>a 时,球面所围的总电荷为Q ,由高斯定理得024επQ E r S d E ==⋅⎰204r Q E πε=30 ()4Qr E r a rπε=>2) 若r<a, 则球面所围电荷为333333/43434a Qr a Q r r ==ππρπ应用高斯定理得30324a Qr E r S d E επ==⋅⎰()30 4Qr E r a a πε=<30 ()4Qr E r a r πε=>()30 4QrE r a a πε=<电场的散度当r>a 时34Q r E r πε∇⋅=∇⋅=当r<a 时 304Q E r aπε∇⋅=∇⋅30034Qaρπεε==1. 根据算符∇的微分性与向量性,推导下列公式:B A B A A B A B B A )()()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=⋅∇A A A A )()(221∇⋅-∇=⨯∇⨯A解:(1))()()(c c A B B A B A ⋅∇+⋅∇=⋅∇B A B A A B A B )()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=c c c cB A B A A B A B )()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=(2)在(1)中令B A =得:A A A A A A )(2)(2)(∇⋅+⨯∇⨯=⋅∇,所以 A A A A A A )()()(21∇⋅-⋅∇=⨯∇⨯ 即 A A A A )()(221∇⋅-∇=⨯∇⨯A2. 设u 是空间坐标z y x ,,的函数,证明:u u f u f ∇=∇d d )( , u u u d d )(A A ⋅∇=⋅∇, uu u d d )(AA ⨯∇=⨯∇ 证明:(1)z y x z u f y u f x u f u f e e e ∂∂+∂∂+∂∂=∇)()()()(z y x z uu f y u u f x u u f e e e ∂∂+∂∂+∂∂=d d d d d d u uf z u y u x u u f z y x ∇=∂∂+∂∂+∂∂=d d )(d d e e e (2)z u A y u A x u A u z y x ∂∂+∂∂+∂∂=⋅∇)()()()(A zuu A y u u A x u u A z y x ∂∂+∂∂+∂∂=d d d d d du u z u y u x u u A u A u A z y x z z y y x x d d )()d d d d d d (Ae e e e e e ⋅∇=∂∂+∂∂+∂∂⋅++=(3)uA u A u A z u y u x u uu z y x zy x d /d d /d d /d ///d d ∂∂∂∂∂∂=⨯∇e e e Azx y y z x x y z yu u A x u u A x u u A z u u A z uu A y u u A e e e )d d d d ()d d d d ()d d d d (∂∂-∂∂+∂∂-∂∂+∂∂-∂∂=z x y y z x x y z yu A x u A x u A z u A z u A y u A e e e ])()([])()([])()([∂∂-∂∂+∂∂-∂∂+∂∂-∂∂=)(u A ⨯∇=第二章 静电场1. 一个半径为R 的电介质球,极化强度为2/r K r P =,电容率为ε。
第2章 习题第7讲 课下作业:教材第72页,14、15。
14、画出函数()d x dxδ的图:说明()()p x ρδ=-⋅∇是一个位于原点的偶极子的电荷密度。
15、证明: (1)()1()x ax aδδ=(0)a > (若a<0,结果如何?) (2)()0x x δ=。
补充题8:对静电场,为什么能引入标势ϕ,并推导出ϕ的泊松方程。
第8讲 课下作业:教材第73页,17。
17、证明下述结果并熟悉面电荷和面偶极层两侧电势和电场的变化。
(1)在面电荷、电势法向微商有跃变,而电势是连续的。
(2)在面偶极层两侧,电势有跃变,2101n pϕϕε-=⋅,而电势法向微商是连续的。
(各带等量正负面电荷密度σ±,而靠得很近的两个面形成偶极层,面偶极距密度0lim l p lσσ→∞→= 。
)第9讲 课下作业:教材第106页,1;第108-109页,14。
1、试用矢势A 表示一个沿z 方向的均匀恒定磁场B 0,写出A 的两种不同表示式,证明二者之差是无旋场。
14、电荷按体均匀分布的刚性小球,总电荷为Q ,半径为R 0,它以角速度ω绕自身某一直径转动,求 (1)它的磁矩;(2)它的磁矩与自转动量矩之比(设质量均匀分布)。
补充题9:给出静磁场矢势A 的物理意义,由矢势A 可以确定磁场B ,但是由磁场B 并不能唯一确定矢势A ,试证明对矢势A 可加辅助条件,并推导出矢势A 满足的微分方程J A μ-=∇2。
第10讲 课下作业:教材第185页,1。
1、若把Maxwell 方程组的所有矢量都分解为无旋的(纵场)和无散的(横场)两部分,写出E 和B 的着两部分在真空中所满足的方程式,并证明电场的无旋部分对应于库仑场。
补充题10:根据麦可斯韦方程组,推导满足洛伦兹规范的达郎贝尔方程。
利用电荷守恒定律,验证A 和φ的推迟势满足洛伦兹条件。
第11讲 课下作业:教材第186页,5。
5. 设A 和φ是满足洛伦兹规范的矢势和标势。
(1) 引入一矢量函数Z (x ,t) (赫兹矢量),若令 ϕ=-∇Z ,证明 21c t∂=∂ZA 。
(2) 若令 ρ=-∇P 证明 Z 满足方程 2220221c c tμ∂∇-=-∂ZZ P ,写出在真空中的推迟解。
(3) 证明 E 和 B 可通过 Z 用下列公式表出,2021(),c c tμ∂=∇⨯∇⨯-=∇⨯∂E Z P B Z 。
第2章 习题第7讲 课下作业:教材第72页,14、15。
14、画出函数()d x dxδ的图:说明()()p x ρδ=-⋅∇是一个位于原点的偶极子的电荷密度。
解1:()()ϕϕϕ∇=∇+∇f f f ∵()()p x ρδ=-⋅∇()()()x y z P i P j P k i k k x x j zδ∂∂∂=-++⋅++∂∂∂()()()()xy z P P P x y z x y zδδδ∂∂∂=-++∂∂∂()()()()p x y z p x δδδδ⎡⎤⎣⎦=-⋅∇=-∇⋅∴()()22()hh x x p x phδδρδ+--=-⋅∇=-利用:()()()∇=∇+∇fg f g f g 考虑:{}()()()VVVx dV x p x dV p x x x p x dV ρδδδ⎡⎤⎡⎤=-∇⋅=⋅∇-∇⋅⎣⎦⎣⎦⎰⎰⎰()()VSp x dV x p x dS δδ=-⋅⎰⎰()Vp x dV p δ==⎰11x ∇==p p∴ρ是偶极子的电荷密度分布,得证。
解2:∵()()p x ρδ=-⋅∇()()()x y z P i P j P k i k k x x j zδ∂∂∂=-++⋅++∂∂∂()()()()xy z P P P x y z x y zδδδ∂∂∂=-++∂∂∂ ()()22()()22()()()22Qhh hQ x Q x h h x x p x ph hh x x hδδδδδδδ=-=-++-+--=-⋅∇=-+--证毕解3:电偶极子的0p ql l =→, 且位于坐标原点的偶极子的两个电荷Q 和-Q 分别位于,22l l x x +==- - 则,22()2222()()()ll x x x x x x df f dxl lx x x l l l x x Qllp x p x ρδδδδδδδδδρδδ+-=∇∴+-∇+-∴=-=-∇=-∇-+=-Q (-)+Q (-)=-Q[()-()]()-()=()-()证毕。
解4:电偶极子的电势3014p rrϕπε=22200220001111()()4414()11()(4())()()4()()p p r rx rp x p x p x ϕπεπεπδρϕπδδπεεερδ∇=-∇∇=-∇∇∇=-∴∇=-∇-=∇=-∴=-∇ 15、证明: (1)()1()x ax aδδ=(0)a > (若a<0,结果如何?) (2)()0x x δ=。
证:()()1x dx ax dx a aδδ+∞+∞-∞-∞''==⎰⎰其中x ax '= ∴()()x ax aδδ=当0a <()()(')(')()1ax d ax x d x ax dx aaaδδδ+∞+∞-∞-∞-∞+∞=-==⎰⎰⎰()();x ax aδδ=-()0x x dx δ∞-∞=⎰∴0()x x δ=补充题8:对静电场,为什么能引入标势ϕ,并推导出ϕ的泊松方程。
第8讲 课下作业:教材第73页,17。
17、证明下述结果并熟悉面电荷和面偶极层两侧电势和电场的变化。
(1)在面电荷、电势法向微商有跃变,而电势是连续的。
(2)在面偶极层两侧,电势有跃变,2101n p ϕϕε-=⋅,而电势法向微商是连续的。
(各带等量正负面电荷密度σ±,而靠得很近的两个面形成偶极层,面偶极距密度0lim l p l σσ→∞→= 。
)证:(1)对于面电荷σ有:120n n E E σε-=;12t t E E = 即:120n n ϕϕσε∂∂-=∂∂ E有限,120P P → ,把电荷由1P 移至2P 所做的功趋于零。
∴12ϕϕ=(2)在面上取高斯闭合面如图:12n n E E -=0;12t t E E =即:12n nϕϕ∂∂-=∂∂0∵偶极层中的场0E σε=∴两面上的电势差为1200n pl σϕϕεε⋅-=⋅=故电势有跃变, 得证。
第9讲 课下作业:教材第106页,1;第108-109页,14。
1、试用矢势A 表示一个沿z 方向的均匀恒定磁场B 0,写出A 的两种不同表示式,证明二者之差是无旋场。
证:0B B k = ∴10A B x j = 或20A B yi =-∴1A B ∇⨯= 2A B ∇⨯=1200A A A B yi B x j =-=+∴0A ∇⨯= 得证。
14、电荷按体均匀分布的刚性小球,总电荷为Q ,半径为R 0,它以角速度ω绕自身某一直径转动,求 (1)它的磁矩;(2)它的磁矩与自转动量矩之比(设质量均匀分布)。
解:电荷密度为: 30034QR ρπε=2222102022002000sin sin 2552sin sin sin 5252R M r r d d dr QR M L r r r d d dr R m L R m M Q m L ωθωρπθθθϕπωδωθθθθϕωω=⋅=∴==⋅=∴=∴=⎰⎰⎰⎰⎰⎰补充题9:给出静磁场矢势A 的物理意义,由矢势A 可以确定磁场B ,但是由磁场B 并不能唯一确定矢势A ,试证明对矢势A 可加辅助条件,并推导出矢势A 满足的微分方程J A μ-=∇2。
第10讲 课下作业:教材第185页,1。
1、若把Maxwell 方程组的所有矢量都分解为无旋的(纵场)和无散的(横场)两部分,写出E 和B 的着两部分在真空中所满足的方程式,并证明电场的无旋部分对应于库仑场。
000L T ∇=∇⨯=⎧⎧⎧⎪⎪⎪∇=∇⨯=⎨⎨⎨⎪⎪⎪∇=∇⨯=⎩⎩⎩L T T L L T T L L T T L E =E +E E E J =J +J J J B =B +BB B 以角标和分别代表纵场和横场部分,则0000000000Maxwell t tt t μμεμμερρεε∇∴∂∂⎧⎧∇⨯=-∇⨯=-⎪⎪∂∂⎪⎪∂∂⎪⎪∇⨯=+∇⨯=+⎪⎪∂∂⇒⎨⎨⎪⎪∇=∇=⎪⎪⎪⎪⎪⎪∇=∇=⎩⎩T T T T T T LL L T B B =B B B E E E EB J B J E E B B B =B B =0 方程组: =0 0t ρε⎧∇=⎪⎪⎨∂⎪∇⨯=-⎪∂⎩L TTL T E B E E E 由 知,电场的无旋部分(纵场)对应于库仑场,电场的无散部分(横场)对应于电磁感应。
补充题10:根据麦可斯韦方程组,推导满足洛伦兹规范的达郎贝尔方程。
利用电荷守恒定律,验证A 和φ的推迟势满足洛伦兹条件。
证: ()*,144j x t j A dV dV r rμππε'''==⎰⎰*14dV rρϕπε'=⎰洛伦兹条件: 210A c tϕ∂∇⋅+=∂ 利用 ()()A u A u u u ∂∇⋅=⋅∇∂ *,r j j x t c ⎛⎫'=- ⎪⎝⎭r t t c'=-所以***tan t cons tj j j t x x t x '='∂∂∂∂=+''''∂∂∂∂ ()***tan t cons t j r j j t c '=∂⎛⎫'''∇⋅=∇⋅+∇ ⎪'∂⎝⎭()**0j tρ∂'∇+='∂证: ***11j j j r rr ⎛⎫∇⋅=∇⋅+∇⋅ ⎪⎝⎭ ***j j rj t t t c∂∂''∇⋅=∇=∇''∂∂ 而 ***11j j j r r r⎛⎫⎛⎫'''∇⋅=∇⋅-∇⋅ ⎪ ⎪⎝⎭⎝⎭所以 ()()********tan **tan 111 1 t cons t t cons t j j r j j r r t c r rj r j j r j t c r r t c j j r r '='=⎛⎫⎛⎫∂'''∇⋅=∇-∇⋅+∇⋅ ⎪ ⎪'∂⎝⎭⎝⎭⎛⎫⎡⎤∂∂⎛⎫''''=∇-∇⋅+∇⋅+-∇ ⎪ ⎪⎢⎥''∂∂⎝⎭⎝⎭⎣⎦⎛⎫''=-∇⋅+∇⋅⎪⎝⎭'=-∇⋅**1j j r r t ⎛⎫∂-⎪'∂⎝⎭所以 ***022V 0***00211114411441 0 V V S j A dV dV c t r r t c t r j dV dV dVr r t t r c μϕρρππεμμρρππ⎡⎤⎛⎫∂∂∂'''∇⋅+=-∇⋅+⋅⎢⎥ ⎪'∂∂∂⎝⎭⎣⎦⎡⎤∂∂''=--+⎢⎥'∂∂⎣⎦==⎰⎰⎰⎰⎰⎰00με⎛⎫⎪⎝⎭第11讲 课下作业:教材第186页,第5题。