北师大版初二数学下册知识点归纳
- 格式:docx
- 大小:20.04 KB
- 文档页数:6
北师大版初二数学下册知识点归纳北师大版初二数学下册知识点归纳1第一章分式1分式及其基本性质分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变2分式的运算(1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
(2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减3整数指数幂的加减乘除法4分式方程及其解法第二章反比例函数1反比例函数的表达式、图像、性质图像:双曲线表达式:y=k/x(k不为0)性质:两支的增减性相同;2反比例函数在实际问题中的应用第三章勾股定理1勾股定理:直角三角形的两个直角边的平方和等于斜边的平方2勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形。
第四章四边形1平行四边形性质:对边相等;对角相等;对角线互相平分。
判定:两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形;一组对边平行而且相等的四边形是平行四边形。
推论:三角形的中位线平行第三边,并且等于第三边的一半。
2特殊的平行四边形:矩形、菱形、正方形(1)矩形性质:矩形的四个角都是直角;矩形的对角线相等;矩形具有平行四边形的所有性质判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;推论:直角三角形斜边的中线等于斜边的一半。
(2)菱形性质:菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形具有平行四边形的一切性质判定:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形。
(3)正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。
3梯形:直角梯形和等腰梯形等腰梯形:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等;同一个底上的两个角相等的梯形是等腰梯形。
最新北师大版《数学》(八年级下册)知识点总结第一章三角形的证明1、等腰三角形(1)三角形全等的性质及判定全等三角形的对应边相等,对应角也相等判定:SSS、SAS、ASA、AAS。
(2)等腰三角形的判定、性质及推论性质:等腰三角形的两个底角相等(等边对等角)判定:有两个角相等的三角形是等腰三角形(等角对等边)推论:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(即“三线合一”)(3)等边三角形的性质及判定定理性质定理:等边三角形的三个角都相等,并且每个角都等于60度;等边三角形的三条边都满足“三线合一”的性质;等边三角形是轴对称图形,有3条对称轴。
判定定理:有一个角是60度的等腰三角形是等边三角形。
或者三个角都相等的三角形是等边三角形。
(4)含30度的直角三角形的边的性质定理:在直角三角形中,如果一个锐角等于30度,那么它所对的直角边等于斜边的一半。
2、直角三角形(1)勾股定理及其逆定理定理:直角三角形的两条直角边的平方和等于斜边的平方。
逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
(2)命题包括已知和结论两部分;逆命题是将倒是的已知和结论交换;正确的逆命题就是逆定理。
(3)直角三角形全等的判定定理定理:斜边和一条直角边对应相等的两个直角三角形全等(斜边直角边,简称:HL)3、线段的垂直平分线(中垂线)(1)线段垂直平分线的性质及判定性质:线段垂直平分线上的点到这条线段两个端点的距离相等。
判定:到一条线段两个端点距离相等的点在这条线段的垂直平分线上。
(2)三角形三边的垂直平分线的性质三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。
(3)如何用尺规作图法作线段的垂直平分线分别以线段的两个端点A、B为圆心,以大于AB的一半长为半径作弧,两弧交于点M、N;作直线MN,则直线MN就是线段AB的垂直平分线。
4、角平分线(1)角平分线的性质及判定定理性质:角平分线上的点到这个角的两边的距离相等;判定:在一个角的内部,且到角的两边的距离相等的点,在这个角的平分线上。
第一章三角形的证明※知识点1 全等三角形的判定及性质判定定理简称判定定理的内容性质SSS三角形分别相等的两个三角形全等全等三角形对应边相等、对应角相等SAS两边及其夹角分别相等的两个三角形全等ASA两角及其夹边分别相等的两个三角形全等AAS两角分别相等且其中一组等角的对边相等的两个三角形全等※知识点2 等腰三角形的性质定理及推论内容几何语言条件与结论等腰三角形的性质定理等腰三角形的两底角相等。
简述为:等边对等角在△ABC中,若AB=AC,则∠B=∠C条件:边相等,即AB=AC结论:角相等,即∠B=∠C推论等腰三角形在△ABC,A条件:等腰三角顶角的平分线、底边上的中线及底边上的高线互相垂直,简述为:三线合一B=AC,AD⊥BC,则AD是BC边上的中线,且AD平分∠BAC形中一直顶点的平分线,底边上的中线、底边上的高线之一结论:该线也是其他两线※等腰三角形中的相等线段:1.等腰三角形两底角的平分线相等2.等腰三角形两腰上的高相等3.两腰上的中线相等4.底边的中点到两腰的距离相等※知识点3 等边三角形的性质定理内容性质定理等边三角形的三个内角都相等,并且每个角都等于60度解读【要点提示】1)等边三角形是特殊的等腰三角形。
它具有等腰三角形的一切性质2)等边三角形每条边上的中线、高线和所对角的平分线“三线合一”【易错点】所有的等边三角形都是等腰三角形,但不是所有的等腰三角形都是等边三角形※知识点4 等腰三角形的判定定理内容几何语言条件与结论等腰三角形的判定定理有两个角相等的三角形是等腰三角形,简述为:等校对等边在△ABC中,若∠B=∠C则AC=BC条件:角相等,即∠B=∠C结论:边相等,即AB=AC解读【注意】对“等角对等边”的理解仍然要注意,他的前提是“在同一个三角形中”拓展判定一个三角形是等腰三角形有两种方法(1)利用等腰三角形;(2)利用等腰三角形的判定定理,即“等角对等边”※知识点5 反证法概念证明的一般步骤反证法在证明时,先假设命题的结论不成立,然后推导出与定义、基本事实、已有定理或已知条件相矛盾的结果,从而证明命题的结论一定成立,这种证明方法称为反证法(1)假设命题的结论不成立(2)从这个假设出发,应用正确的推论方法,得出与定义、基本事实、已有定理或已知条件相矛盾的结果(3)由矛盾的结果判定假设不正确,从而肯定原命题正确解读【要点提示】(1)当一个命题涉及“一定”“至少”“至多”“无限”“唯一”等情况时,由于结论的反面简单明确,常常用反证法来证明(2)“推理”必须顺着假设的思路进行,即把假设当作已知条件,“得出矛盾”是指推出与定义、基本事实、已有定理或已知条件相矛盾的结果第二章一元一次不等式与一元一次不等式组一. 不等关系※1. 一般地,用符号“<”(或“≤”), “>”(或“≥”)连接的式子叫做不等式※2. 准确“翻译”不等式,正确理解“非负数”、“不小于”等数学术语.非负数<===> 大于等于0(≥0) <===> 0和正数<===> 不小于0非正数<===> 小于等于0(≤0) <===> 0和负数<===> 不大于0二. 不等式的基本性质※1. 掌握不等式的基本性质,并会灵活运用:(1) 不等式的两边加上(或减去)同一个整式,不等号的方向不变,即:如果a>b,那么a+c>b+c, a-c>b-c.(2) 不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即:如果a>b,并且c>0,那么ac>bc,(3) 不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:如果a>b,并且c<0,那么ac<bc, < span=""></bc, <>※2. 比较大小:(a、b分别表示两个实数或整式)一般地:如果a>b,那么a-b是正数;反过来,如果a-b是正数,那么a>b;如果a=b,那么a-b等于0;反过来,如果a-b等于0,那么a=b;如果a<b,那么a-b是负数;反过来,如果a-b是正数,那么a<b;< span=""></b,那么a-b是负数;反过来,如果a-b是正数,那么a<b;<>即:a>b <===> a-b>0a=b <===> a-b=0a a-b<0三. 不等式的解集:※1.能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式。
八年级北师数学下册知识点八年级是初中的重要阶段之一,学生在这一年需要扎实地掌握许多数学知识点,为高中阶段的学习打下坚实的基础。
在北师大数学下册中,我们可以学到许多有用的知识点和方法。
下面,我们将详细介绍八年级北师数学下册的知识点。
一. 有理数有理数是指整数和分数的统称。
在学习有理数的过程中,我们需要掌握有理数的四则运算及其性质,包括加法结合律、交换律和分配律等。
此外,还需掌握有理数的大小比较和绝对值的概念。
二. 代数式代数式是用字母或符号表示数的式子。
在学习代数式的过程中,我们需要了解各种代数式的化简方法,包括合并同类项、移项和因式分解等。
此外,还需了解代数式的展开公式和配方法等。
三. 方程与不等式方程与不等式是二元一次方程和一元一次不等式的统称。
在学习方程与不等式的过程中,我们需要了解各种方程和不等式的求解方法,包括逐项移项、消元和配方等。
此外,还需了解方程和不等式的应用及其解法。
四. 几何几何是数学中重要的一部分,也是人类文明发展过程中的重要组成部分。
在学习几何的过程中,我们需要了解各种图形的性质和变换,包括平移、旋转、对称和相似等。
此外,还需掌握各种几何图形的周长、面积和体积的计算方法。
五. 统计与概率统计与概率是数学中的实用部分,也是现代社会管理和决策中的重要组成部分。
在学习统计与概率的过程中,我们需要了解各种统计量和分布规律,包括均值、中位数、众数和方差等。
此外,还需了解概率的计算和应用。
总之,八年级北师数学下册是一门综合性很强的课程,学生需要在学习过程中注重理论与实践相结合,注重掌握知识的深度与广度,才能够在高中阶段的学习中更好地发挥自己的潜力。
八年级下册数学北师知识点总结本文将对八年级下册数学北师知识点进行全面总结,帮助学生更好地掌握课程内容。
一、代数式的应用
1. 一次函数的表示与应用
2. 二次函数的表示与应用
3. 线性方程组与解法
4. 二元一次方程组的应用
5. 不等式的基本性质及应用
二、几何图形的认识
1. 三角形的基本性质
2. 三角形中的角平分线定理
3. 相似三角形及其应用
4. 圆的定义及性质
5. 弧长、扇形面积的计算
6. 圆的切线与切线定理
三、函数的知识
1. 函数的概念及性质
2. 一次函数的图像及性质
3. 二次函数的图像及性质
4. 指数函数与对数函数
5. 幂函数与反比例函数
四、统计与概率
1. 统计调查及其方法
2. 统计图的绘制及应用
3. 概率及其计算方法
4. 条件概率及其应用
5. 排列组合及其应用
五、解析几何
1. 坐标系与直线方程
2. 直线的截距式与一般式
3. 圆的方程及其性质
4. 双曲线及其基本知识
六、立体几何
1. 空间图形的基本认识
2. 球的认识及其性质
3. 空间旋转体的认识及其性质
4. 几何体的表面积及体积计算
七、数学建模
1. 数学建模的基本方法
2. 数学模型的设计与建立
3. 数学模型的求解与应用
八、数学思维
1. 判断与推理能力的培养
2. 问题解决能力的提升
3. 数学思维的应用技巧。
北师大版八年级下册数学知识点总结北师大版八年级下册数学主要包括以下知识点:
1. 分式:
- 分式的概念和性质
- 分式的化简和展开
- 分式的四则运算(加减乘除)
- 分式方程的解法
2. 二次根式:
- 二次根式的概念和性质
- 二次根式的化简和展开
- 二次根式的运算(加减乘除)
- 二次根式的求值和应用
3. 平面图形与变换:
- 平行四边形、菱形和正方形的性质和判定
- 三角形的内角和外角性质
- 相似三角形的判定和性质
- 平面图形的位似变换(翻转、旋转、平移)
4. 数据与统计:
- 统计图表的读取和分析
- 数据的表示和处理(频数、频率、平均数等)
- 抽样调查和用样本估计总体
5. 方程与不等式:
- 一元一次方程的概念和性质
- 一元一次方程的解法(整数解、分数解、无解)
- 一元一次方程应用问题的解法
- 一元一次不等式的概念和性质
- 一元一次不等式的解法
6. 概率与统计:
- 随机事件的概念和性质
- 独立事件、互斥事件和相反事件
- 事件的概率计算
- 概率的应用(排列组合、事件的发生次数等)
这些是北师大版八年级下册数学的主要知识点总结,希望对你有帮助。
如果你还有其他问题,请继续提问。
八下数学知识点归纳北师大版
八下数学知识点归纳(北师大版)
1. 整式的加减运算:将同类项相加或相减,并注意合并同类项的系数。
2. 一元一次方程:解一元一次方程时,可以通过加减变换、乘除变换或移项来求解。
3. 二元一次方程组:通过消元法或代入法来求解含有两个未知数的方程组。
4. 三角形的面积:根据三角形的底和高、两边和夹角的正弦公式、两边和夹角的余弦公式来计算三角形的面积。
5. 平行线与比例:根据平行线的性质来求解问题,应用相似三角形的性质计算比例。
6. 一元二次方程:利用配方法或公式法来解一元二次方程,并注意解的情况。
7. 空间图形的计算:通过计算形体的体积或表面积来解决空间图形的问题。
8. 圆的面积和周长:通过半径、直径、弦和扇形的关系来计算圆的面积和周长。
9. 概率与统计:根据事件发生的可能性来计算概率,并通过统计数据的分析和整理来得出结论。
10. 点、直线、平面的关系:通过点和直线的位置关系来判断它们是否相交或平行。
以上是八下数学教材中的一些重要知识点,希望对你的学习有所帮助。
最新北师大版初二下册数学知识点归纳篇一第一章分式1、分式及其基本性质分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变2、分式的运算(1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
(2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减3、整数指数幂的加减乘除法4、分式方程及其解法第二章反比例函数1、反比例函数的表达式、图像、性质图像:双曲线表达式:y=k/x(k不为0)性质:两支的增减性相同;2、反比例函数在实际问题中的应用第三章勾股定理1、勾股定理:直角三角形的两个直角边的平方和等于斜边的平方2、勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形。
第四章四边形1、平行四边形性质:对边相等;对角相等;对角线互相平分。
判定:两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形;一组对边平行而且相等的四边形是平行四边形。
推论:三角形的中位线平行第三边,并且等于第三边的一半。
2、特殊的平行四边形:矩形、菱形、正方形(1)矩形性质:矩形的四个角都是直角;矩形的对角线相等;矩形具有平行四边形的所有性质判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;推论:直角三角形斜边的中线等于斜边的一半。
(2)菱形性质:菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形具有平行四边形的一切性质判定:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形。
(3)正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。
3、梯形:直角梯形和等腰梯形等腰梯形:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等;同一个底上的两个角相等的梯形是等腰梯形。
北师初二下册数学知识点数学作为一门重要的学科,是培养学生逻辑思维和解决问题能力的关键。
北师初二下册的数学课程涉及了许多重要的数学知识点,让我们一步一步来了解这些知识点。
1.分式与整式在初二下册数学中,我们首先学习了分式与整式的概念。
分式是指具有分子和分母的表达式,而整式则不含有分式。
我们学习如何进行分式的加减乘除运算,并学会将分式化简为最简形式。
2.负数的认识学习负数是初中数学的重要内容之一。
我们通过实际生活中的例子,如温度的正负表示、海拔的正负表示等,来认识负数的概念。
在初二下册数学中,我们学会了负数的加减法、乘除法,并掌握了负数的应用。
3.平方根与立方根平方根与立方根是初二下册数学中的另一个重要知识点。
我们学习了如何求一个数的平方根和立方根,并通过实例来应用这些知识。
4.一元一次方程初二下册数学中,我们开始学习一元一次方程的解法。
通过将方程转化为等价方程组,我们能够解决一元一次方程中的未知数。
5.一次函数一次函数也是初二下册数学的重要内容。
我们学习了一次函数的定义、性质以及如何根据函数的图像来确定函数的表达式。
6.一元二次方程一元二次方程是初二下册数学中的难点,但也是重要的知识点之一。
我们学习了一元二次方程的解法,包括因式分解法、配方法以及求根公式等。
7.三角形的面积与相似初二下册数学中,我们学习了三角形的面积与相似。
通过学习三角形面积计算的公式和方法,以及相似三角形的性质,我们能够解决与三角形相关的问题。
8.圆的面积与周长圆是初二下册数学中的重要几何图形之一。
我们学习了如何计算圆的面积和周长,并掌握了圆的性质和定理。
9.数据的表示与统计数据的表示与统计也是初二下册数学的重要内容。
我们学习了如何用表格、图表和统计量来表示和描述数据,并通过实例来应用这些知识。
10.概率与统计概率与统计是初二下册数学的最后一个知识点。
我们学习了概率的基本概念和计算方法,并通过实例来理解和应用概率的知识。
总结起来,北师初二下册数学课程涉及了分式与整式、负数的认识、平方根与立方根、一元一次方程、一次函数、一元二次方程、三角形的面积与相似、圆的面积与周长、数据的表示与统计以及概率与统计等重要的数学知识点。
初二数学北师大版下册数学知识点总结一、三角形的证明1、等腰三角形(1)性质:等腰三角形的两腰相等;等腰三角形的两底角相等(等边对等角);等腰三角形顶角的平分线、底边上的中线、底边上的高相互重合(三线合一)。
(2)判定:有两边相等的三角形是等腰三角形;如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)。
2、等边三角形(1)性质:等边三角形的三条边都相等;等边三角形的三个内角都相等,并且每个角都等于 60°。
(2)判定:三条边都相等的三角形是等边三角形;三个角都相等的三角形是等边三角形;有一个角是 60°的等腰三角形是等边三角形。
3、直角三角形(1)性质:直角三角形的两个锐角互余;直角三角形斜边上的中线等于斜边的一半;在直角三角形中,如果一个锐角等于 30°,那么它所对的直角边等于斜边的一半。
(2)判定:如果三角形的三边长 a、b、c 满足 a²+ b²= c²,那么这个三角形是直角三角形。
4、反证法先假设命题的结论不成立,然后推导出与定义、基本事实、已有定理或已知条件相矛盾的结果,从而证明命题的结论一定成立。
二、一元一次不等式与一元一次不等式组1、不等式的基本性质(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变。
(2)不等式两边乘(或除以)同一个正数,不等号的方向不变。
(3)不等式两边乘(或除以)同一个负数,不等号的方向改变。
2、一元一次不等式(1)定义:只含有一个未知数,未知数的次数是 1,且不等号两边都是整式的不等式叫做一元一次不等式。
(2)解法:去分母、去括号、移项、合并同类项、系数化为 1。
3、一元一次不等式组(1)定义:几个含有同一个未知数的一元一次不等式合在一起,就组成了一个一元一次不等式组。
(2)解集:几个不等式的解集的公共部分,叫做由它们所组成的不等式组的解集。
(3)解不等式组:分别求出不等式组中各个不等式的解集,然后找出它们的公共部分。
本文将对北师大版八年级下数学的知识点进行归纳总结,主要包括以下内容:一、有理数部分1.有理数的加减运算:同号相加,异号相减。
绝对值较大的数决定运算结果的符号。
2.有理数的乘法运算:同号为正,异号为负。
绝对值相乘。
3.有理数的除法运算:同号为正,异号为负。
绝对值相除。
4.有理数的混合运算:按照四则运算的优先级进行计算。
5.有理数的比较:可以通过同号比较绝对值的大小来判断。
二、代数部分1.代数式的基本性质:代数式的项由系数、字母和指数组成。
2.代数式的加减运算:将同类项进行合并,保持字母和指数不变。
3.代数式的乘法运算:将字母和指数相乘,同类项相加。
4.代数式的分配律:对于两个或多个代数式的乘法,先用括号里的数与每个数相乘,再将结果相加。
5.代数式的因式分解:将一个代数式写成由几个因式相乘的形式。
6.代数式的公式化简:利用特定的公式将复杂的代数式简化。
三、平面图形与空间图形部分1.三角形的基本性质:三角形的内角和为180°,等边三角形的内角均为60°。
2.三角形的分类:按边长和角度分为等边三角形、等腰三角形和普通三角形。
3.平行四边形的性质:对角线相互平分,对边互相平行且长度相等。
4.梯形的性质:有两组对边平行,非平行边相互不等长。
5.菱形的性质:对角线相互垂直且互相平分,边长相等。
6.空间图形的视图:顶视图、侧视图、正视图。
7.三维图形的表面积和体积:通过公式计算。
四、统计与概率部分1.频数与频率:统计频数表示其中一数值出现的次数,频率表示其中一数值出现的概率。
2.基本统计图形:直方图、条形图、折线图、饼图。
3.事件与概率:事件是指其中一结果的集合,概率是指其中一事件发生的可能性。
五、函数部分1.函数的定义:函数是一种映射关系,每个自变量有唯一的函数值。
2.函数的图像特点:包括函数的单调性、奇偶性、周期性等。
3. 一次函数:表示为y = kx + b的形式,k为斜率,b为截距。
新北师大版八年级数学下册知识点总结新北师大版八年级数学下册知识点总结一、知识点概述本篇总结了新北师大版八年级数学下册的主要知识点,包括平行线、三角形、四边形、概率等。
这些知识点是八年级数学学习的基础,对于学生掌握更高级的数学概念具有重要意义。
二、知识点详解1、平行线:理解平行线的概念,掌握平行线的性质和判定方法,了解平行线的应用。
2、三角形:掌握三角形的性质,熟悉各类三角形(如等腰、直角、等边)的特点,了解三角形的高、中线和角平分线的概念。
3、四边形:理解四边形的概念,掌握各类四边形(如矩形、菱形、正方形)的性质,了解梯形、多边形的特点。
4、概率:理解概率的概念,掌握概率的求解方法,了解概率在生活中的应用。
三、知识点总结本篇知识点总结了新北师大版八年级数学下册的主要内容,包括平行线、三角形、四边形和概率。
这些知识点是数学学习的基础,对于学生掌握更高级的数学概念具有重要意义。
在学习过程中,学生应注重理解概念、掌握性质和应用,从而更好地掌握这些知识点。
四、学习建议为了更好地掌握这些知识点,学生可以采取以下学习建议:1、做好课堂笔记:在课堂上,认真听讲,做好笔记,将老师讲解的重点难点记录下来,方便课后复习。
2、练习做题:在掌握基本概念之后,要多做练习题,通过做题加深对知识点的理解,同时也可以检验自己的学习成果。
3、积极思考:在学习过程中,要积极思考,通过思考加深对知识点的理解,培养自己的数学思维。
4、理论联系实际:将学到的知识点与实际生活联系起来,通过实际例子来理解概念,从而更好地掌握知识点。
五、拓展阅读在掌握基本知识点的基础上,学生可以进一步拓展阅读,了解更多与数学相关的知识和应用。
例如,可以阅读一些数学课外书籍、数学期刊和数学竞赛资料,从而拓宽自己的数学知识面。
此外,还可以通过数学实验、数学探究等活动,深入了解数学的应用和实际意义。
总之,新北师大版八年级数学下册的知识点是八年级数学学习的重要内容,学生应认真掌握、深入理解,并通过拓展阅读和实践活动,进一步拓宽自己的数学知识面。
八年级下册数学北师知识点八年级下册数学是高中数学的基础,为了顺利过渡到高中数学,北师数学教育专家总结了以下几个关键知识点。
一、平面直角坐标系平面直角坐标系是一种描述平面上点位置的方法。
它由两条互相垂直的直线(x轴和y轴)组成,它们的交点叫做原点,任意一点的位置可以用它在x轴和y轴上所对应的坐标表示。
二、二次根式二次根式是指形如√a(a≥0)的式子。
二次根式有一些简化的规律,例如分解质因数,开平方等,通过这些规律我们可以简化计算过程。
三、函数函数是指两个变量之间的一种关系。
在数学中,我们用y=f(x)来表示一个函数,其中x是自变量,y是函数值,f(x)是函数的表达式。
函数在现代数学和自然科学中有着广泛的应用。
四、三角形三角形是平面几何中的重要图形之一。
三角形的三条边和三个角可以通过一些特殊规律进行计算,例如正弦定理、余弦定理、角平分线定理等。
这些规律在物理、工程和金融等领域中有着广泛的应用。
五、相似三角形相似三角形是指拥有相似形状(形状一致但大小不同)的三角形。
在相似三角形中,它们的对应边的比值相等,通过这些比值,我们可以计算出它们的长度或者面积。
六、立体几何立体几何是几何学中的一部分,它着重研究立体图形(例如圆锥、立方体等)的性质和规律。
立体几何在建筑、工程和数码图形学等领域中有着广泛的应用价值。
七、数据统计数据统计是数学中的一种应用,它用于收集、整理、分析和解释数据。
在数据统计中,我们学习如何计算平均数、中位数、标准差等基本概念,这些知识对于统计学、经济学和心理学等领域中的数据分析都是至关重要的。
以上七个知识点,是八年级下册数学中最为关键的内容,掌握它们可以为下面的学习和高中数学打下坚实的基础。
北师大版八年级下册数学知识点本文将介绍北师大版八年级下册数学的重点知识点,包括平面图形、三角形、线段比例、线性方程组和二次根式等内容。
一、平面图形1.平行四边形:具有两组对边分别平行的四边形,对边相等,对角线互相平分。
2.三角形:根据三边关系,可以分为等边三角形、等腰三角形和一般三角形。
根据角的关系,可以分为锐角三角形、钝角三角形和直角三角形。
3.多边形:指定端点后依次连线连接起来的图形。
常见的多边形有三角形、四边形、五边形、六边形等。
4.正方形:具有四个边相等,四个角相等的特殊四边形。
二、三角形1.三角形的内角和:三角形内角和等于180度。
2.直角三角形:其中一个内角为90度的三角形。
3.锐角三角形:三个内角均小于90度的三角形。
4.钝角三角形:其中一个内角大于90度的三角形。
5.等边三角形:具有三个边相等的三角形。
6.等腰三角形:具有两个边相等的三角形,对应的两个角也相等。
三、线段比例1.相似三角形:具有对应角相等,对应边成比例的两个三角形。
2.线段的比例:给定线段AB和CD,若存在点E使得AE/EB =CE/ED成立,则称线段AB和CD成比例。
四、线性方程组1.一元一次方程:仅含有一个未知数x,并且未知数的最高次数为1的方程。
形如ax+b=0。
2.一次方程组:含有两个或以上未知数、最高次数分别为1的多个方程组成的方程组。
3.边量:方程中不含未知数,只有常数项的项。
4.逐次消去法:通过将两给定方程之一的一个变量消去,使它变成一个新的方程组,在应用逐次消去法时,我们可以消去方程组中的任意一个或几个变量。
5.唯一解:方程组中,未知数的取值只有一个,能使所有的方程都成立。
6.无解:方程组中不存在任何一个解。
7.有无穷多个解:方程组中,未知数的取值有无穷多个,能使所有的方程都成立。
五、二次根式1.平方根:非负数a的平方根是满足b²=a的非负数b。
2.平方根性质:非负数a和b的平方根满足:平方根的积等于非负数的平方根,即√(a*b)=√a * √b。
北师版数学八年级下重点知识汇总一、函数1. 变量与函数嘿呀,函数这个东西呢,在八年级下可重要啦。
变量就像是两个小跟班,自变量决定因变量的值呢。
比如说,我们去买苹果,苹果的个数就是自变量,花的钱就是因变量,因为钱是根据苹果个数变的呀。
函数的表示方法也有三种,表格法、解析式法和图象法。
解析式法就像是函数的身份证,清楚地告诉你自变量和因变量的关系。
图象法呢,就像给函数画了一幅画,能直观地看到函数的变化趋势。
2. 一次函数一次函数的形式是y = kx + b(k,b为常数,k≠0)。
这里的k可重要啦,它决定了函数图象的倾斜方向和倾斜程度。
当k>0时,图象是上升的,就像爬山一样,y随x的增大而增大;当k<0时,图象是下降的,y随x的增大而减小。
b呢,是函数图象与y轴的交点的纵坐标。
如果b = 0,那这个一次函数就变成正比例函数y = kx啦,它的图象是过原点的一条直线呢。
3. 一次函数与一元一次方程、一元一次不等式一次函数y = kx + b与一元一次方程kx + b = 0的关系可密切了。
一元一次方程的解其实就是一次函数y = kx + b的图象与x轴交点的横坐标。
而一元一次不等式kx + b>0(或<0)的解集呢,就是一次函数y = kx + b的图象在x轴上方(或下方)部分对应的x的取值范围。
二、图形的平移与旋转1. 平移图形的平移就是把图形上的所有点按照相同的方向和距离移动。
在平面直角坐标系中,点(x,y)向左平移a个单位就变成(x - a,y),向右平移a 个单位就变成(x + a,y),向上平移b个单位就变成(x,y + b),向下平移b个单位就变成(x,y - b)。
平移后的图形与原图形形状和大小都不变,只是位置变了。
2. 旋转旋转是绕着一个固定点转动。
这个固定点叫旋转中心。
在旋转过程中,图形上的每一个点都绕着旋转中心转动相同的角度。
旋转前后的图形也是全等的。
比如一个三角形绕着一个点旋转,旋转后的三角形和原来的三角形大小、形状都一模一样,只是方向可能变了。
A CB O 图1 图2O A C B D EF北师大版数学八年级下册知识点归纳第一章 三角形的证明1.等腰三角形的“三线合一”:顶角平分线、底边上的中线、底边上的高互相重合。
2.等边三角形是特殊的等腰三角形,作一条等边三角形的三线合一线,将等边三角形分成两个全等的直角三角形,其中一个锐角等于30º,这它所对的直角边必然等于斜边的一半。
3.有一个角等于60º的等腰三角形是等边三角形。
4.如果知道一个三角形为直角三角形首先要想的定理有:①勾股定理:222c b a =+(注意区分斜边与直角边)②在直角三角形中,如有一个内角等于30º,那么它所对的直角边等于斜边的一半 ③在直角三角形中,斜边上的中线等于斜边的一半(此定理将在第三章出现)5.垂直平分线.....是垂直于一条线段..并且平分这条线段的直线..。
(注意着重号的意义) <直线与射线有垂线,但无垂直平分线>6.线段垂直平分线上的点到这一条线段两个端点距离相等。
7.线段垂直平分线逆定理:到一条线段两端点距离相等的点,在这条线段的垂直平分线上。
8.三角形的三边的垂直平分线交于一点,并且这个点到三个顶点的距离相等。
(如图1所示,AO=BO=CO )9.角平分线上的点到角两边的距离相等。
10.角平分线逆定理:在角内部的,如果一点到角两边的距离相等,则它在该角的平分线上。
角平分线是到角的两边距离相等的所有点的集合。
11.三角形三条角平分线交于一点,并且交点到三边距离相等,交点即为三角形的内心。
(如图2所示,OD=OE=OF)第二章一元一次不等式和一元一次不等式组一、一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式。
1、能使不等式成立的未知数的值,叫做不等式的解.2、不等式的解不唯一,把所有满足不等式的解集合在一起,构成不等式的解集.3、求不等式解集的过程叫解不等式.4、由几个一元一次不等式组所组成的不等式组叫做一元一次不等式组5、不等式组的解集 :一元一次不等式组各个不等式的解集的公共部分。
八年级下教材大纲梳理第一章三角形的证明一、全等三角形判定、性质:1.判定(SSS) (SAS) (ASA) (AAS) (HL直角三角形)2.全等三角形的对应边相等、对应角相等。
二、等腰三角形的性质定理:等腰三角形有两边相等;(定义)定理:等腰三角形的两个底角相等(简写成“等边对等角”)。
推论1:等腰三角形顶角的平分线、底边上的中线及底边上的高线互相重合。
(三线合一)推论2:等边三角形的各角都相等,并且每一个角都等于60°。
等腰三角形是以底边的垂直平分线为对称轴的轴对称图形;三、等腰三角形的判定1. 有关的定理及其推论定理:有两个角相等的三角形是等腰三角形(简写成“等角对等边”。
)推论1:三个角都相等的三角形是等边三角形。
推论2:有一个角等于60°的等腰三角形是等边三角形。
2. 反证法:先假设命题的结论不成立,然后推导出与定义、基本事实、已有定理或已知条件相矛盾的结果,从而证明命题的结论一定成立。
这种证明方法称为反证法四、直角三角形1、直角三角形的性质直角三角形的两锐角互余直角三角形两条直角边的平方和等于斜边的平方;在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;在直角三角形中,斜边上的中线等于斜边的一半。
2、直角三角形判定如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形;3、互逆命题、互逆定理在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题.如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理.五、线段的垂直平分线、角平分线1、线段的垂直平分线。
性质:线段垂直平分线上的点到这条线段两个端点的距离相等;三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。
(外心)判定:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
北师大版初二数学下册知识点归纳
学会整合知识点。
把需要学习的信息、掌握的知识分类,做成思维导图或知识点卡片,会让你的大脑、思维条理清醒,方便记忆、温习、掌握。
这里给大家整理了一些有关北师大版初二数学下册知识点归纳,希望对大家有所帮助.
北师大版初二数学下册知识点归纳1
第一章分式
1分式及其基本性质分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变
2分式的运算
(1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
(2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减3整数指数幂的加减乘除法
4分式方程及其解法
第二章反比例函数
1反比例函数的表达式、图像、性质
图像:双曲线
表达式:y=k/x(k不为0)
性质:两支的增减性相同;
2反比例函数在实际问题中的应用
第三章勾股定理
1勾股定理:直角三角形的两个直角边的平方和等于斜边的平方
2勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形。
第四章四边形
1平行四边形
性质:对边相等;对角相等;对角线互相平分。
判定:两组对边分别相等的四边形是平行四边形;
两组对角分别相等的四边形是平行四边形;
对角线互相平分的四边形是平行四边形;
一组对边平行而且相等的四边形是平行四边形。
推论:三角形的中位线平行第三边,并且等于第三边的一半。
2特殊的平行四边形:矩形、菱形、正方形
(1)矩形
性质:矩形的四个角都是直角;
矩形的对角线相等;
矩形具有平行四边形的所有性质
判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;
推论:直角三角形斜边的中线等于斜边的一半。
(2)菱形性质:菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形具有平行四边形的一切性质判定:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形。
(3)正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。
3梯形:直角梯形和等腰梯形
等腰梯形:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等;同一个底上的两个角相等的梯形是等腰梯形。
北师大版初二数学下册知识点归纳2
第一章一元一次不等式和一元一次不等式组
一、一般地,用符号(或),(或)连接的式子叫做不等式.
能使不等式成立的未知数的值,叫做不等式的解.不等式的解不,把所有满足不等式的解集合在一起,构成不等式的解集.求不等式解集的过程叫解不等式.
由几个一元一次不等式组所组成的不等式组叫做一元一次不等式
组
不等式组的解集:一元一次不等式组各个不等式的解集的公共部分.
等式基本性质1:在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式.基本性质2:在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式.
二、不等式的基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变.(注:移项要变号,但不等号不变.)性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.不等式的基本性质1、若ab,则a+cb+c;2、若ab,c0则acbc若c0,则ac 不等式的其他性质:反射性:若ab,则bb,且bc,则ac
三、解不等式的步骤:1、去分母;2、去括号;3、移项合并同类项;4、系数化为1.四、解不等式组的步骤:1、解出不等式的解集2、在同一数轴表示不等式的解集.五、列一元一次不等式组解实际问题的一般步骤:(1)审题;(2)设未知数,找(不等量)关系式;(3)设元,(根据不等量)关系式列不等式(组)(4)解不等式组;检验并作答.
六、常考题型:1、求4x-67x-12的非负数解.2、已知3(x-a)=x-a+1r的解适合2(x-5)8a,求a的范围.
3、当m取何值时,3x+m-2(m+2)=3m+x的解在-5和5之间.
第二章分解因式
一、公式:1、ma+mb+mc=m(a+b+c)2、a2-b2=(a+b)(a-b)3、a22ab+b2=(ab)2二、把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.1、把几个整式的积化成一个多项式的形式,是乘法运算.2、把一个多项式化成几个整式的积的形式,是因式分解.3、ma+mb+mcm(a+b+c)4、因式分解与整式乘法是相反方向的变形.
三、把多项式的各项都含有的相同因式,叫做这个多项式的各项的公因式.提公因式法分解因式就是把一个多项式化成单项式与多项式相乘的形式.找公因式的一般步骤:(1)若各项系数是整系数,取系数的
公约数;(2)取相同的字母,字母的指数取较低的;(3)取相同的多项式,多项式的指数取较低的.(4)所有这些因式的乘积即为公因式.
四、分解因式的一般步骤为:(1)若有-先提取-,若多项式各项有公因式,则再提取公因式.(2)若多项式各项没有公因式,则根据多项式特点,选用平方差公式或完全平方公式.(3)每一个多项式都要分解到不能再分解为止.
五、形如a2+2ab+b2或a2-2ab+b2的式子称为完全平方式.分解因式的方法:1、提公因式法.2、运用公式法.
第三章分式
注:1对于任意一个分式,分母都不能为零.
2分式与整式不同的是:分式的分母中含有字母,整式的分母中不含字母.
3分式的值为零含两层意思:分母不等于零;分子等于零.(中B0时,分式有意义;分式中,当B=0分式无意义;当A=0且B0时,分式的值为零.)
常考知识点:1、分式的意义,分式的化简.2、分式的加减乘除运算.3、分式方程的解法及其利用分式方程解应用题.
第四章相似图形
一、定义表示两个比相等的式子叫比例.如果a与b的比值和c与d的比值相等,那么或a∶b=c∶d,这时组成比例的四个数a,b,c,d叫做比例的项,两端的两项叫做外项,中间的两项叫做内项.即a、d 为外项,c、b为内项.如果选用同一个长度单位量得两条线段AB、CD 的长度分别是m、n,那么就说这两条线段的比(ratio)AB∶CD=m∶n,或写成=,其中,线段AB、CD分别叫做这两个线段比的前项和后项.如果把表示成比值k,则=k或AB=kCD.四条线段a,b,c,d中,如果a与b的比等于c与d的比,即,那么这四条线段a,b,c,d叫做成比例线段,简称比例线段.黄金分割的定义:在线段AB上,点C 把线段AB分成两条线段AC和BC,如果,那么称线段AB被点C黄金分割(goldensection),点C叫做线段AB的黄金分割点,AC与AB 的比叫做黄金比.其中0.618.引理:平行于三角形的一边,并且和其他
两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例.相似多边形:对应角相等,对应边成比例的两个多边形叫做相似多边形.相似多边形:各角对应相等、各边对应成比例的两个多边形叫做相似多边形.相似比:相似多边形对应边的比叫做相似比.
二、比例的基本性质:1、若ad=bc(a,b,c,d都不等于0),那么.如果(b,d都不为0),那么ad=bc.2、合比性质:如果,那么.3、等比性质:如果==(b+d++n0),那么.4、更比性质:若那么.5、反比性质:若那么
三、求两条线段的比时要注意的问题:(1)两条线段的长度必须用同一长度单位表示,如果单位长度不同,应先化成同一单位,再求它们的比;(2)两条线段的比,没有长度单位,它与所采用的长度单位无关;(3)两条线段的长度都是正数,所以两条线段的比值总是正数.
四、相似三角形(多边形)的性质:相似三角形对应角相等,对应边成比例,相似三角形对应高的比、对应角平分线的比和对应中线的比都等于相似比.相似多边形的周长比等于相似比,面积比等于相似比的平方.
五、全等三角形的判定方法有:ASA,AAS,SAS,SSS,直角三角形除此之外再加HL
六、相似三角形的判定方法,判断方法有:1.三边对应成比例的两个三角形相似;2.两角对应相等的两个三角形相似;3.两边对应成比例且夹角相等;4.定义法:对应角相等,对应边成比例的两个三角形相似.5、定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.在特殊的三角形中,有的相似,有的不相似.1、两个全等三角形一定相似.2、两个等腰直角三角形一定相似.3、两个等边三角形一定相似.4、两个直角三角形和两个等腰三角形不一定相似.
七、位似图形上任意一对对应点到位似中心的距离之比等于位似比.如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一个点,那么这样的两个图形叫做位似图形,这个点叫位似中心,这时的相似比又称为位似比.
八、常考知识点:1、比例的基本性质,黄金分割比,位似图形的性质.2、相似三角形的性质及判定.相似多边形的性质.
第五章数据的收集与处理。