中考专题压轴2 点的存在性问题
- 格式:doc
- 大小:432.42 KB
- 文档页数:10
点的存在性问题考点分析:在中考压轴题中经常会出现寻找某个或几个点满足一定的条件的问题,此类问题往往需要分类讨论。
而解此类题的一般方法是:利用基本的性质、定理、判定结合勾股定理、相似、锐角三角函数来解决。
作图或者构建方程。
一、寻找点满足特殊三角形 典型例题:例1.(08年西城一模)已知抛物线221:221(0,1)C y ax amx am m a m =-+++的顶点为A ,抛物线2C 的对称轴是y 轴,顶点为B 点,且抛物线1C 和2C 关于P(1,3)成中心对称。
(1)用含m 的代数式表示抛物线1C 的顶点坐标; (2)求m 的值和抛物线2C 的解析式;(3)设抛物线2C 与x 轴正半轴的交点是C ,当△ABC 为等腰三角 形时,求a 的值.针对性训练:1. (08年海淀二模)已知二次函数2y ax bx c =++的图像分别经过点(0,3),(3,0),(-2,-5)。
求:(1)求这个二次函数的解析式; (2)求这个二次函数的最值;(3)若设这个二次函数的图像与x 轴交于点C 、D (点C 在点D 的左侧),且点A 是该图像的顶点,请在这个二次函数的对称轴上确定一点B ,使△ACB 是等腰三角形,求出点B 坐标。
2. 已知二次函数m x x y +-=221的图象经过点A(-3,6),并与x 轴交于B 、C 两点(点B 在C 的左边),P 为它的顶点.(1)试确定m 的值;(2)设点D 为线段OC 上的一点,且满足BAC DPC ∠=∠,求直线AD 的解析式;(3)在y 轴的正半轴上是否存在点M ,使P CM ∆为等腰三角形,若存在,求出所有满足条件的点M 的坐标,若不存在,请说明理由.3.(07年密云二模)如图,点A (4,m )在一次函数y =2x -4和二次函数y =ax 2的图象上,过点A 作直线y =n 的垂线,垂足为E ,点E 关于直线y =2x -4的对称点F 在y 轴上,点C 是直线y =2x -4与y 轴的交点.(1) 求二次函数的解析式; (2) 求实数n 的值;(3) 二次函数y =ax 2的图象上是否存在点P ,满足PA =PC ,若存在,试求出所有符合条件的点P 的坐标,若不存在,请说明理由.4.(08重庆市卷)已知:如图,抛物线)0(22≠+-=a c ax ax y 与y 轴交于点C (0,4),与x 轴交于点A 、B ,点A 的坐标为(4,0)。
专题四几何最值的存在性问题【考题研究】在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。
从历年的中考数学压轴题型分析来看,经常会考查到距离或者两条线段和差最值得问题,并且这部分题目在中考中失分率很高,应该引起我们的重视。
几何最值问题再教材中虽然没有进行专题讲解,到却给了我们很多解题模型,因此在专题复习时进行压轴训练是必要的。
【解题攻略】最值问题是一类综合性较强的问题,而线段和(差)问题,要归归于几何模型:(1)归于“两点之间的连线中,线段最短”凡属于求“变动的两线段之和的最小值”时,大都应用这一模型.(2)归于“三角形两边之差小于第三边”凡属于求“变动的两线段之差的最大值”时,大都应用这一模型.两条动线段的和的最小值问题,常见的是典型的“牛喝水”问题,关键是指出一条对称轴“河流”(如图1).三条动线段的和的最小值问题,常见的是典型的“台球两次碰壁”或“光的两次反射”问题,关键是指出两条对称轴“反射镜面”(如图2).两条线段差的最大值问题,一般根据三角形的两边之差小于第三边,当三点共线时,两条线段差的最大值就是第三边的长.如图3,PA与PB的差的最大值就是AB,此时点P在AB 的延长线上,即P′.解决线段和差的最值问题,有时候求函数的最值更方便,建立一次函数或者二次函数求解最值问题.【解题类型及其思路】解决平面几何最值问题的常用的方法有:(1)应用两点间线段最短的公理(含应用三角形的三边关系)求最值;(2)应用垂线段最短的性质求最值;(3)应用轴对称的性质求最值;(4)应用二次函数求最值;(5)应用其它知识求最值。
【典例指引】类型一【确定线段(或线段的和,差)的最值或确定点的坐标】【典例指引1】(2018·天津中考模拟)如图,在平面直角坐标系中,长方形OABC的顶点A、C分别在x轴、y轴的正半轴上.点B的坐标为(8,4),将该长方形沿OB翻折,点A的对应点为点D,OD与BC交于点E.(I)证明:EO=EB;(Ⅱ)点P是直线OB上的任意一点,且△OPC是等腰三角形,求满足条件的点P的坐标;(Ⅲ)点M是OB上任意一点,点N是OA上任意一点,若存在这样的点M、N,使得AM+MN 最小,请直接写出这个最小值.【举一反三】(2020·云南初三)如图,抛物线y=ax2+bx+3经过点B(﹣1,0),C(2,3),抛物线与y轴的焦点A,与x轴的另一个焦点为D,点M为线段AD上的一动点,设点M的横坐标为t.(1)求抛物线的表达式;(2)过点M作y轴的平行线,交抛物线于点P,设线段PM的长为1,当t为何值时,1的长最大,并求最大值;(先根据题目画图,再计算)(3)在(2)的条件下,当t为何值时,△PAD的面积最大?并求最大值;(4)在(2)的条件下,是否存在点P,使△PAD为直角三角形?若存在,直接写出t的值;若不存在,说明理由.类型二 【确定三角形、四边形的周长的最值或符合条件的点的坐标】【典例指引2】(2020·重庆初三期末)如图,抛物线2y ax bx =+(0a >)与双曲线k y x=相交于点A 、B ,已知点A 坐标()1,4,点B 在第三象限内,且AOB ∆的面积为3(O 为坐标原点).(1)求实数a 、b 、k 的值;(2)在该抛物线的对称轴上是否存在点P 使得POB ∆为等腰三角形?若存在请求出所有的P 点的坐标,若不存在请说明理由.(3)在坐标系内有一个点M ,恰使得MA MB MO ==,现要求在y 轴上找出点Q 使得BQM ∆的周长最小,请求出M 的坐标和BQM ∆周长的最小值.【举一反三】(2019·重庆实验外国语学校初三)如图1,已知抛物线y =﹣23384x +x +3与x 轴交于A 和B 两点,(点A 在点B 的左侧),与y 轴交于点C .(1)求出直线BC 的解析式.(2)M 为线段BC 上方抛物线上一动点,过M 作x 轴的垂线交BC 于H ,过M 作MQ ⊥BC 于Q ,求出△MHQ 周长最大值并求出此时M 的坐标;当△MHQ 的周长最大时在对称轴上找一点R ,使|AR ﹣MR |最大,求出此时R 的坐标.(3)T 为线段BC 上一动点,将△OCT 沿边OT 翻折得到△OC ′T ,是否存在点T 使△OC ′T 与△OBC 的重叠部分为直角三角形,若存在请求出BT 的长,若不存在,请说明理由.类型三 【确定三角形、四边形的面积最值或符合条件的点的坐标】【典例指引3】(2019·甘肃中考真题)如图,已知二次函数y =x 2+bx +c 的图象与x 轴交于点A (1,0)、B (3,0),与y 轴交于点C .(1)求二次函数的解析式;(2)若点P 为抛物线上的一点,点F 为对称轴上的一点,且以点A 、B 、P 、F 为顶点的四边形为平行四边形,求点P 的坐标;(3)点E 是二次函数第四象限图象上一点,过点E 作x 轴的垂线,交直线BC 于点D ,求四边形AEBD 面积的最大值及此时点E 的坐标.【举一反三】(2019·内蒙古中考真题)如图,在平面直角坐标系中,已知抛物线22(0)y ax bx a =++≠与x 轴交于()1,0A -),()3,0B 两点,与y 轴交于点C ,连接BC .(1)求该抛物线的解析式,并写出它的对称轴;(2)点D 为抛物线对称轴上一点,连接CD BD 、,若DCB CBD ∠=∠,求点D 的坐标;(3)已知()1,1F ,若(),E x y 是抛物线上一个动点(其中12x <<),连接CE CF EF 、、,求CEF ∆面积的最大值及此时点E 的坐标.B C M N为顶点(4)若点N为抛物线对称轴上一点,抛物线上是否存在点M,使得以,,,的四边形是平行四边形?若存在,请直接写出所有满足条件的点M的坐标;若不存在,请说明理由.【新题训练】1.如图,直线y=5x+5交x轴于点A,交y轴于点C,过A,C两点的二次函数y=ax2+4x +c的图象交x轴于另一点B.(1)求二次函数的表达式;(2)连接BC,点N是线段BC上的动点,作ND⊥x轴交二次函数的图象于点D,求线段ND 长度的最大值;(3)若点H为二次函数y=ax2+4x+c图象的顶点,点M(4,m)是该二次函数图象上一点,在x轴,y轴上分别找点F,E,使四边形HEFM的周长最小,求出点F、E的坐标.2.(2019·江苏中考真题)如图,已知等边△ABC的边长为8,点P是AB边上的一个动点(与点A、B不重合),直线l是经过点P的一条直线,把△ABC沿直线l折叠,点B的对应点是点B’.(1)如图1,当PB=4时,若点B’恰好在AC边上,则AB’的长度为_____;(2)如图2,当PB=5时,若直线l//AC,则BB’的长度为;(3)如图3,点P在AB边上运动过程中,若直线l始终垂直于AC,△ACB’的面积是否变化?若变化,说明理由;若不变化,求出面积;(4)当PB=6时,在直线l变化过程中,求△ACB’面积的最大值.3.(2019·湖南中考真题)如图,在平面直角坐标系xOy中,矩形ABCD的边AB=4,BC=6.若不改变矩形ABCD的形状和大小,当矩形顶点A在x轴的正半轴上左右移动时,矩形的另一个顶点D始终在y轴的正半轴上随之上下移动.(1)当∠OAD=30°时,求点C的坐标;(2)设AD的中点为M,连接OM、MC,当四边形OMCD的面积为212时,求OA的长;(3)当点A移动到某一位置时,点C到点O的距离有最大值,请直接写出最大值,并求此时cos∠OAD的值.4.(2018·江苏中考真题)如图,在平面直角坐标系中,一次函数y=﹣23x+4的图象与x轴和y轴分别相交于A、B两点.动点P从点A出发,在线段AO上以每秒3个单位长度的速度向点O作匀速运动,到达点O停止运动,点A关于点P的对称点为点Q,以线段PQ为边向上作正方形PQMN.设运动时间为t秒.(1)当t=13秒时,点Q的坐标是;(2)在运动过程中,设正方形PQMN与△AOB重叠部分的面积为S,求S与t的函数表达式;(3)若正方形PQMN对角线的交点为T,请直接写出在运动过程中OT+PT的最小值.5.(2020·江苏初三期末)已知二次函数223y x x =--+的图象和x 轴交于点A 、B ,与y轴交于点C ,点P 是直线AC 上方的抛物线上的动点.(1)求直线AC 的解析式.(2)当P 是抛物线顶点时,求APC ∆面积.(3)在P 点运动过程中,求APC ∆面积的最大值.6.(2020·江苏初三期末)如图,抛物线265y ax x =+-交x 轴于A 、B 两点,交y 轴于点C ,点B 的坐标为()5,0,直线5y x =-经过点B 、C .(1)求抛物线的函数表达式;(2)点P 是直线BC 上方抛物线上的一动点,求BCP ∆面积S 的最大值并求出此时点P 的坐标;(3)过点A 的直线交直线BC 于点M ,连接AC ,当直线AM 与直线BC 的一个夹角等于ACB ∠的3倍时,请直接写出点M 的坐标.7.(2019·石家庄市第四十一中学初三)如图,在平面直角坐标系中,抛物线y =x (x ﹣b )﹣与y轴相交于A点,与x轴相交于B、C两点,且点C在点B的右侧,设抛物线的顶点为P.(1)若点B与点C关于直线x=1对称,求b的值;(2)若OB=OA,求△BCP的面积;(3)当﹣1≤x≤1时,该抛物线上最高点与最低点纵坐标的差为h,求出h与b的关系;若h 有最大值或最小值,直接写出这个最大值或最小值.8.(2020·江西初三期中)如图①,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(-3,0),与y轴交于点C.(1)求抛物线的解析式;(2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由;(3)如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.9.(2020·山东初三期末)如图,抛物线y=ax2+bx+c(a≠0)的图象过点C(0,1),顶点为Q (2,3),点D在x轴正半轴上,且OD=OC.(1)求直线CD的解析式;(2)求抛物线的解析式;(3)将直线CD绕点C逆时针方向旋转45°所得直线与抛物线相交于另一点E,求证:△CEQ ∽△CDO;(4)在(3)的条件下,若点P是线段QE上的动点,点F是线段OD上的动点,问:在P 点和F点移动过程中,△PCF的周长是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.10.(2020·盘锦市双台子区第一中学初三月考)如图①,已知抛物线y=ax2+bx+c的图像经过点A(0,3)、B(1,0),其对称轴为直线l:x=2,过点A作AC∥x轴交抛物线于点C,∠AOB 的平分线交线段AC于点E,点P是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE面积最大,并求出其最大值;(3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.11.(2020·四川初三)如图,一次函数122y x=-+的图像与坐标轴交于A、B两点,点C 的坐标为(1,0)-,二次函数2y ax bx c =++的图像经过A 、B 、C 三点.(1)求二次函数的解析式(2)如图1,已知点(1,)D n 在抛物线上,作射线BD ,点Q 为线段AB 上一点,过点Q 作QM y ⊥轴于点M ,作QN BD ⊥于点N ,过Q 作//QP y 轴交抛物线于点P ,当QM 与QN 的积最大时,求点P 的坐标;(3)在(2)的条件下,连接AP ,若点E 为抛物线上一点,且满足APE ABO ∠=∠,求点E 的坐标.12.(2019·广东初三)如图,已知抛物线y =﹣3x 2+bx +c 与x 轴交于原点O 和点A (6,0),抛物线的顶点为B .(1)求该抛物线的解析式和顶点B 的坐标;(2)若动点P 从原点O 出发,以每秒1个长度单位的速度沿线段OB 运动,设点P 运动的时间为t (s ).问当t 为何值时,△OPA 是直角三角形?(3)若同时有一动点M 从点A 出发,以2个长度单位的速度沿线段AO 运动,当P 、M 其中一个点停止运动时另一个点也随之停止运动.设它们的运动时间为t (s ),连接MP ,当t 为何值时,四边形ABPM 的面积最小?并求此最小值.13.(2019·山东初三期中)如图,已知抛物线经过两点A (﹣3,0),B (0,3),且其对称轴为直线x =﹣1.(1)求此抛物线的解析式.(2)若点Q 是对称轴上一动点,当OQ +BQ 最小时,求点Q 的坐标.(3)若点P 是抛物线上点A 与点B 之间的动点(不包括点A ,点B ),求△PAB 面积的最大值,并求出此时点P 的坐标.14.(2019·四川中考真题)如图,抛物线212y x bx c =-++过点(3,2)A ,且与直线72y x =-+交于B 、C 两点,点B 的坐标为(4,)m .(1)求抛物线的解析式;(2)点D 为抛物线上位于直线BC 上方的一点,过点D 作DE x ⊥轴交直线BC 于点E ,点P 为对称轴上一动点,当线段DE 的长度最大时,求PD PA +的最小值;(3)设点M 为抛物线的顶点,在y 轴上是否存在点Q ,使45AQM ︒∠=?若存在,求点Q的坐标;若不存在,请说明理由.15.(2019·天津中考真题)已知抛物线2y x bx c =-+(b c ,为常数,0b >)经过点(1,0)A -,点(,0)M m 是x 轴正半轴上的动点. (Ⅰ)当2b =时,求抛物线的顶点坐标;(Ⅱ)点(,)D D b y 在抛物线上,当AM AD =,5m =时,求b 的值; (Ⅲ)点1(,)2Q Q b y +在抛物线上,当22AM QM +的最小值为332时,求b 的值. 16.(2019·湖南中考真题)如图,抛物线y =ax 2+bx (a >0)过点E (8,0),矩形ABCD 的边AB 在线段OE 上(点A 在点B 的左侧),点C 、D 在抛物线上,∠BAD 的平分线AM 交BC 于点M ,点N 是CD 的中点,已知OA =2,且OA :AD =1:3.(1)求抛物线的解析式;(2)F 、G 分别为x 轴,y 轴上的动点,顺次连接M 、N 、G 、F 构成四边形MNGF ,求四边形MNGF 周长的最小值;(3)在x 轴下方且在抛物线上是否存在点P ,使△ODP 中OD 610求出点P 的坐标;若不存在,请说明理由;(4)矩形ABCD 不动,将抛物线向右平移,当平移后的抛物线与矩形的边有两个交点K 、L ,且直线KL 平分矩形的面积时,求抛物线平移的距离.17.(2019·辽宁中考真题)如图,在平面直角坐标系中,抛物线y =ax 2+bx +2(a ≠0)与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,抛物线经过点D (﹣2,﹣3)和点E (3,2),点P 是第一象限抛物线上的一个动点.(1)求直线DE 和抛物线的表达式;(2)在y 轴上取点F (0,1),连接PF ,PB ,当四边形OBPF 的面积是7时,求点P 的坐标; (3)在(2)的条件下,当点P 在抛物线对称轴的右侧时,直线DE 上存在两点M ,N (点M 在点N 的上方),且MN =22,动点Q 从点P 出发,沿P →M →N →A 的路线运动到终点A ,当点Q 的运动路程最短时,请直接写出此时点N 的坐标.18.(2019·湖南中考真题)已知抛物线2(0)y ax bx c a =++≠过点(1,0)A ,(3,0)B 两点,与y 轴交于点C ,=3OC .(1)求抛物线的解析式及顶点D 的坐标;(2)过点A 作AM BC ⊥,垂足为M ,求证:四边形ADBM 为正方形;(3)点P 为抛物线在直线BC 下方图形上的一动点,当PBC ∆面积最大时,求点P 的坐标; (4)若点Q 为线段OC 上的一动点,问:12AQ QC +是否存在最小值?若存在,求岀这个最小值;若不存在,请说明理由.专题四 几何最值的存在性问题【考题研究】在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。
【压轴题】动点存在性问题集锦1如图,在平面直角坐标系中,已知点A 坐标为(2,4),直线2=x 与x 轴相交于点B ,连结OA ,抛物线2x y =从点O 沿OA 方向平移,与直线2=x 交于点P ,顶点M 到A 点时停止移动.(1)求线段OA 所在直线的函数解析式; (2)设抛物线顶点M 的横坐标为m ,①用m 的代数式表示点P 的坐标; ②当m 为何值时,线段PB 最短;(3)当线段PB 最短时,相应的抛物线上是否存在点Q ,使△QMA 的面积与△PMA 的面积相等,若存在,请求出点Q 的坐标;若不存在,请说明理由.2如图所示,已知二次函数图象的顶点坐标为C (1,1),直线,y =k x +m 的图象与该二次函数的图象交于A ,B两点,其中,点A 坐标为(52,134),点B 在Y 轴上,直线与x 轴的交点为F , P 为线段AB 上的一个动点(点P 与A 、B 不重合),过P 作X 轴的垂线与这个二次函数的图象交于E 点.(1)求k 、m 的值及这个二次函数的解析式;(2)设线段PE 的长为h,点P 的横坐标为x,求h 与x 之间的函数关系,并写出自变量x 的取值范围; (3)D 为直线AB 与这个二次函数图象对称轴的交点,在线段AB 上是否存在点p ,使得以点P 、E 、D 为顶点的三角形与△BOF 相似?若存在,请求出P 点的坐标;若不存在,请说明理由.3已知:抛物线y =ax 2+bx +c 与x 轴交于A 、B 两点,与y 轴交于点C ,其中点B 在x 轴的正半轴上,点C 在y 轴的正半轴上,线段OB 、OC 的长(OB <OC )是方程x 2-10x +16=0的两个根,且抛物线的对称轴是直线x =-2.(1)求A 、B 、C 三点的坐标; (2)求此抛物线的表达式; (3)求△ABC 的面积;(4)若点E 是线段AB 上的一个动点(与点A 、点B 不重合),过点E 作EF ∥AC 交BC 于点F ,连接CE ,设AE 的长为m ,△CEF 的面积为S ,求S 与m 之间的函数关系式,并写出自变量m 的取值范围;(5)在(4)的基础上试说明S 是否存在最大值,若存在,请求出S 的最大值,并求出此时点E 的坐标,判断此时△BCE 的形状;若不存在,请说明理由.4.已知,如图抛物线y=ax 2+3ax+c (a>0) 与y 轴交于C 点,与x 轴交于A 、B 两点,A 点在B 点左侧,点B 的坐标为(1,0),OC=3OB. (1) 求抛物线的解析式;(2) 若点D 是线段AC 下方抛物线上的动点,求四边形ABCD 面积的最大值;(3) 若点E 在x 轴上,点P 在抛物线上,是否存在以A 、C 、E 、P 为顶点且以AC 为一边的平行四边形?若存在,求点P 的坐标;若不存在,请说明理由。
2017年中考备考专题复习:存在性问题一、综合题(共21题;共291分)1、(2016•金华)在平面直角坐标系中,点O为原点,点A的坐标为(﹣6,0).如图1,正方形OBCD 的顶点B在x轴的负半轴上,点C在第二象限.现将正方形OBCD绕点O顺时针旋转角α得到正方形OEFG.(1)如图2,若α=60°,OE=OA,求直线EF的函数表达式.(2)若α为锐角,tanα= ,当AE取得最小值时,求正方形OEFG的面积.(3)当正方形OEFG的顶点F落在y轴上时,直线AE与直线FG相交于点P,△OEP的其中两边之比能否为2:1?若能,求点P的坐标;若不能,试说明理由2、(2016•临沂)如图,在平面直角坐标系中,直线y=﹣2x+10与x轴,y轴相交于A,B两点,点C的坐标是(8,4),连接AC,BC.(1)求过O,A,C三点的抛物线的解析式,并判断△ABC的形状;(2)动点P从点O出发,沿OB以每秒2个单位长度的速度向点B运动;同时,动点Q从点B出发,沿BC以每秒1个单位长度的速度向点C运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为t秒,当t为何值时,PA=QA?(3)在抛物线的对称轴上,是否存在点M,使以A,B,M为顶点的三角形是等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.3、(2016•内江)已知抛物线C:y=x2﹣3x+m,直线l:y=kx(k>0),当k=1时,抛物线C与直线l只有一个公共点.(1)求m的值;(2)若直线l与抛物线C交于不同的两点A,B,直线l与直线l1:y=﹣3x+b交于点P,且+ = ,求b的值;(3)在(2)的条件下,设直线l1与y轴交于点Q,问:是否在实数k使S△APQ=S△BPQ?若存在,求k的值,若不存在,说明理由.4、(2016•新疆)如图,抛物线y=ax2+bx﹣3(a≠0)的顶点为E,该抛物线与x轴交于A、B两点,与y轴交于点C,且BO=OC=3AO,直线y=﹣x+1与y轴交于点D.(1)求抛物线的解析式;(2)证明:△DBO∽△EBC;(3)在抛物线的对称轴上是否存在点P,使△PBC是等腰三角形?若存在,请直接写出符合条件的P点坐标,若不存在,请说明理由.5、(2016•深圳)如图,抛物线y=ax2+2x﹣3与x轴交于A、B两点,且B(1,0)(1)求抛物线的解析式和点A的坐标;(2)如图1,点P是直线y=x上的动点,当直线y=x平分∠APB时,求点P的坐标;(3)如图2,已知直线y= x﹣分别与x轴、y轴交于C、F两点,点Q是直线CF下方的抛物线上的一个动点,过点Q作y轴的平行线,交直线CF于点D,点E在线段CD的延长线上,连接QE.问:以QD 为腰的等腰△QDE的面积是否存在最大值?若存在,请求出这个最大值;若不存在,请说明理由.6、(2016•南宁)如图,已知抛物线经过原点O,顶点为A(1,1),且与直线y=x﹣2交于B,C两点.(1)求抛物线的解析式及点C的坐标;(2)求证:△ABC是直角三角形;(3)若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由.7、(2016•眉山)已知如图,在平面直角坐标系xOy中,点A、B、C分别为坐标轴上上的三个点,且OA=1,OB=3,OC=4,(1)求经过A、B、C三点的抛物线的解析式;(2)在平面直角坐标系xOy中是否存在一点P,使得以以点A、B、C、P为顶点的四边形为菱形?若存在,请求出点P的坐标;若不存在,请说明理由;(3)若点M为该抛物线上一动点,在(2)的条件下,请求出当|PM﹣AM|的最大值时点M的坐标,并直接写出|PM﹣AM|的最大值.8、(2016•潍坊)如图,已知抛物线y= x2+bx+c经过△ABC的三个顶点,其中点A(0,1),点B(﹣9,10),AC∥x轴,点P是直线AC下方抛物线上的动点.(1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.9、(2016•宁夏)在矩形ABCD中,AB=3,AD=4,动点Q从点A出发,以每秒1个单位的速度,沿AB 向点B移动;同时点P从点B出发,仍以每秒1个单位的速度,沿BC向点C移动,连接QP,QD,PD.若两个点同时运动的时间为x秒(0<x≤3),解答下列问题:(1)设△QPD的面积为S,用含x的函数关系式表示S;当x为何值时,S有最大值?并求出最小值;(2)是否存在x的值,使得QP⊥DP?试说明理由.10、(2016•泸州)如图,在平面直角坐标系中,点O为坐标原点,直线l与抛物线y=mx2+nx相交于A (1,3 ),B(4,0)两点.(1)求出抛物线的解析式;(2)在坐标轴上是否存在点D,使得△ABD是以线段AB为斜边的直角三角形?若存在,求出点D的坐标;若不存在,说明理由;(3)点P是线段AB上一动点,(点P不与点A、B重合),过点P作PM∥OA,交第一象限内的抛物线于点M,过点M作MC⊥x轴于点C,交AB于点N,若△BCN、△PMN的面积S△BCN、S△PMN满足S△BCN=2S△PMN,求出的值,并求出此时点M的坐标.11、(2016•攀枝花)如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0),与y轴交于点C(0,﹣3)(1)求抛物线的解析式;(2)点P在抛物线位于第四象限的部分上运动,当四边形ABPC的面积最大时,求点P的坐标和四边形ABPC 的最大面积.(3)直线l经过A、C两点,点Q在抛物线位于y轴左侧的部分上运动,直线m经过点B和点Q,是否存在直线m,使得直线l、m与x轴围成的三角形和直线l、m与y轴围成的三角形相似?若存在,求出直线m的解析式,若不存在,请说明理由.12、(2016•资阳)已知抛物线与x轴交于A(6,0)、B(﹣,0)两点,与y轴交于点C,过抛物线上点M(1,3)作MN⊥x轴于点N,连接OM.(1)求此抛物线的解析式;(2)如图1,将△OMN沿x轴向右平移t个单位(0≤t≤5)到△O′M′N′的位置,MN′、M′O′与直线AC分别交于点E、F.①当点F为M′O′的中点时,求t的值;②如图2,若直线M′N′与抛物线相交于点G,过点G作GH∥M′O′交AC于点H,试确定线段EH是否存在最大值?若存在,求出它的最大值及此时t的值;若不存在,请说明理由.13、(2016•梅州)如图,在平面直角坐标系中,已知抛物线y=x2+bx+c过A,B,C三点,点A的坐标是(3,0),点C的坐标是(0,﹣3),动点P在抛物线上.(1)b=________,c=________,点B的坐标为________;(直接填写结果)(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;(3)过动点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.14、(2016•昆明)如图1,对称轴为直线x= 的抛物线经过B(2,0)、C(0,4)两点,抛物线与x 轴的另一交点为A(1)求抛物线的解析式;(2)若点P为第一象限内抛物线上的一点,设四边形COBP的面积为S,求S的最大值;(3)如图2,若M是线段BC上一动点,在x轴是否存在这样的点Q,使△MQC为等腰三角形且△MQB为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.15、(2016•贵港)如图,抛物线y=ax2+bx﹣5(a≠0)与x轴交于点A(﹣5,0)和点B(3,0),与y 轴交于点C.(1)求该抛物线的解析式;(2)若点E为x轴下方抛物线上的一动点,当S△ABE=S△ABC时,求点E的坐标;(3)在(2)的条件下,抛物线上是否存在点P,使∠BAP=∠CAE?若存在,求出点P的横坐标;若不存在,请说明理由.16、(2016•雅安)已知Rt△ABC中,∠B=90°,AC=20,AB=10,P是边AC上一点(不包括端点A、C),过点P作PE⊥BC于点E,过点E作EF∥AC,交AB于点F.设PC=x,PE=y.(1)求y与x的函数关系式;(2)是否存在点P使△PEF是Rt△?若存在,求此时的x的值;若不存在,请说明理由.17、(2016•衢州)如图1,在直角坐标系xoy中,直线l:y=kx+b交x轴,y轴于点E,F,点B的坐标是(2,2),过点B分别作x轴、y轴的垂线,垂足为A、C,点D是线段CO上的动点,以BD为对称轴,作与△BCD或轴对称的△BC′D.(1)当∠CBD=15°时,求点C′的坐标.(2)当图1中的直线l经过点A,且k=﹣时(如图2),求点D由C到O的运动过程中,线段BC′扫过的图形与△OAF重叠部分的面积.(3)当图1中的直线l经过点D,C′时(如图3),以DE为对称轴,作于△DOE或轴对称的△DO′E,连结O′C,O′O,问是否存在点D,使得△DO′E与△CO′O相似?若存在,求出k、b的值;若不存在,请说明理由.18、(2016•杭州)在线段AB的同侧作射线AM和BN,若∠MAB与∠NBA的平分线分别交射线BN,AM于点E,F,AE和BF交于点P.如图,点点同学发现当射线AM,BN交于点C;且∠ACB=60°时,有以下两个结论:①∠APB=120°;②AF+BE=AB.那么,当AM∥BN时:(1)点点发现的结论还成立吗?若成立,请给予证明;若不成立,请求出∠APB的度数,写出AF,BE,AB长度之间的等量关系,并给予证明;(2)设点Q为线段AE上一点,QB=5,若AF+BE=16,四边形ABEF的面积为32 ,求AQ的长.19、(2016•梧州)如图,抛物线y=ax2+bx﹣4(a≠0)与x轴交于A(4,0)、B(﹣1,0)两点,过点A 的直线y=﹣x+4交抛物线于点C.(1)求此抛物线的解析式;(2)在直线AC上有一动点E,当点E在某个位置时,使△BDE的周长最小,求此时E点坐标;(3)当动点E在直线AC与抛物线围成的封闭线A→C→B→D→A上运动时,是否存在使△BDE为直角三角形的情况,若存在,请直接写出符合要求的E点的坐标;若不存在,请说明理由.20、(2016•玉林)如图,抛物线L:y=ax2+bx+c与x轴交于A、B(3,0)两点(A在B的左侧),与y 轴交于点C(0,3),已知对称轴x=1.(1)求抛物线L的解析式;(2)将抛物线L向下平移h个单位长度,使平移后所得抛物线的顶点落在△OBC内(包括△OBC的边界),求h的取值范围;(3)设点P是抛物线L上任一点,点Q在直线l:x=﹣3上,△PBQ能否成为以点P为直角顶点的等腰直角三角形?若能,求出符合条件的点P的坐标;若不能,请说明理由.21、(2016•曲靖)如图,在平面直角坐标系中,抛物线y=ax2+2ax+c交x轴于A,B两点,交y轴于点C (0,3),tan∠OAC= .(1)求抛物线的解析式;(2)点H是线段AC上任意一点,过H作直线HN⊥x轴于点N,交抛物线于点P,求线段PH的最大值;(3)点M是抛物线上任意一点,连接CM,以CM为边作正方形CMEF,是否存在点M使点E恰好落在对称轴上?若存在,请求出点M的坐标;若不存在,请说明理由.答案解析部分一、综合题【答案】(1)解:如图1,过点E作EH⊥OA于点H,EF与y轴的交点为M.∵OE=OA,α=60°,∴△AEO为正三角形,∴OH=3,EH= =3 .∴E(﹣3,3 ).∵∠AOM=90°,∴∠EOM=30°.在Rt△EOM中,∵cos∠EOM= ,即= ,∴OM=4 .∴M(0,4 ).设直线EF的函数表达式为y=kx+4 ,∵该直线过点E(﹣3,3 ),∴﹣3k+4 =3 ,解得k= ,所以,直线EF的函数表达式为y= x+4(2)解:如图2,射线OQ与OA的夹角为α(α为锐角,tanα).无论正方形边长为多少,绕点O旋转角α后得到正方形OEFG的顶点E在射线OQ上,∴当AE⊥OQ时,线段AE的长最小.在Rt△AOE中,设AE=a,则OE=2a,∴a2+(2a)2=62,解得a1= ,a2=﹣(舍去),∴OE=2a= ,∴S=OE2=正方形OEFG(3)解:设正方形边长为m.当点F落在y轴正半轴时.如图3,当P与F重合时,△PEO是等腰直角三角形,有= 或= .在Rt△AOP中,∠APO=45°,OP=OA=6,∴点P1的坐标为(0,6).在图3的基础上,当减小正方形边长时,点P在边FG 上,△OEP的其中两边之比不可能为:1;当增加正方形边长时,存在= (图4)和= (图5)两种情况.如图4,△EFP是等腰直角三角形,有= ,即= ,此时有AP∥OF.在Rt△AOE中,∠AOE=45°,∴OE= OA=6 ,∴PE= OE=12,PA=PE+AE=18,∴点P2的坐标为(﹣6,18).如图5,过P作PR⊥x轴于点R,延长PG交x轴于点H.设PF=n.在Rt△POG中,PO2=PG2+OG2=m2+(m+n)2=2m2+2mn+n2,在Rt△PEF中,PE2=PF2+EF2=m2+n2,当= 时,∴PO2=2PE2.∴2m2+2mn+n2=2(m2+n2),得n=2m.∵EO∥PH,∴△AOE∽△AHP,∴= ,∴AH=4OA=24,即OH=18,∴m=9 .在等腰Rt△PRH中,PR=HR= PH=36,∴OR=RH﹣OH=18,∴点P3的坐标为(﹣18,36).当点F落在y轴负半轴时,如图6,P与A重合时,在Rt△POG中,OP= OG,又∵正方形OGFE中,OG=OE,∴OP= OE.∴点P4的坐标为(﹣6,0).在图6的基础上,当正方形边长减小时,△OEP的其中两边之比不可能为:1;当正方形边长增加时,存在= (图7)这一种情况.如图7,过P作PR⊥x轴于点R,设PG=n.在Rt△OPG中,PO2=PG2+OG2=n2+m2,在Rt△PEF中,PE2=PF2+FE2=(m+n )2+m2=2m2+2mn+n2.当= 时,∴PE2=2PO2.∴2m2+2mn+n2=2n2+2m2,∴n=2m,由于NG=OG=m,则PN=NG=m,∵OE∥PN,∴△AOE∽△ANP,∴=1,即AN=OA=6.在等腰Rt△ONG中,ON= m,∴12= m,∴m=6 ,在等腰Rt△PRN中,RN=PR=6,∴点P5的坐标为(﹣18,6).所以,△OEP的其中两边的比能为:1,点P的坐标是:P1(0,6),P2(﹣6,18),P3(﹣18,36),P4(﹣6,0),P5(﹣18,6)【考点】待定系数法求一次函数解析式,正方形的性质【解析】【分析】(1)先判断出△AEO为正三角形,再根据锐角三角函数求出OM即可;(2)判断出当AE⊥OQ时,线段AE的长最小,用勾股定理计算即可;(3)由△OEP的其中两边之比为:1分三种情况进行计算即可.此题是正方形的性质题,主要考查了正方形的性质,等腰三角形的性质,勾股定理,解本题的关键是灵活运用勾股定理进行计算.【答案】(1)解:∵直线y=﹣2x+10与x轴,y轴相交于A,B两点,∴A(5,0),B(0,10),∵抛物线过原点,∴设抛物线解析式为y=ax2+bx,∵抛物线过点B(0,10),C(8,4),∴,∴,∴抛物线解析式为y= x2﹣x,∵A(5,0),B(0,10),C(8,4),∴AB2=52+102=125,BC2=82+(8﹣5)2=100,AC2=42+(8﹣5)2=25,∴AC2+BC2=AB2,∴△ABC是直角三角形(2)解:如图1,当P,Q运动t秒,即OP=2t,CQ=10﹣t时,由(1)得,AC=OA,∠ACQ=∠AOP=90°,在Rt△AOP和Rt△ACQ 中,,∴Rt△AOP≌Rt△ACQ,∴OP=CQ,∴2t=10﹣t,∴t= ,∴当运动时间为时,PA=QA(3)解:存在,∵y= x2﹣ x,∴抛物线的对称轴为x= ,∵A(5,0),B(0,10),∴AB=5 设点M(,m),①若BM=BA时,∴()2+(m﹣10)2=125,∴m1= ,m2= ,∴M1(,),M2(,),②若AM=AB时,∴()2+m2=125,∴m3= ,m4=﹣,∴M3(,),M4(,﹣),③若MA=MB时,∴(﹣5)2+m2=()2+(10﹣m)2,∴m=5,∴M(,5),此时点M恰好是线段AB的中点,构不成三角形,舍去,∴点M的坐标为:M1(,),M2(,),M3(,),M4(,﹣)【考点】待定系数法求二次函数解析式,全等三角形的判定与性质,等腰三角形的性质【解析】【分析】(1)先确定出点A,B坐标,再用待定系数法求出抛物线解析式;用勾股定理逆定理判断出△ABC是直角三角形;(2)根据运动表示出OP=2t,CQ=10﹣t,判断出Rt△AOP≌Rt△ACQ,得到OP=CQ即可;(3)分三种情况用平面坐标系内,两点间的距离公式计算即可,此题是二次函数综合题,主要考查了待定系数法求函数解析式,三角形的全等的性质和判定,等腰三角形的性质,解本题的关键是分情况讨论,也是本题的难点.【答案】(1)解:当k=1时,抛物线C与直线l只有一个公共点,∴直线l解析式为y=x,∵,∴x2﹣3x+m=x,∴x2﹣4x+m=0,∴△=16﹣4m=0,∴m=4(2)解:如图,分别过点A,P,B作y轴的垂线,垂足依次为C,D,E,则△OAC∽△OPD,∴.同理,.∵,∴=2.∴ =2.∴,即.解方程组,得x=x= ,即PD= .由方程组消去y,得x2﹣(k+3)x+4=0.∵AC,BE是以上一元二次方程的两根,∴AC+BE=k+3,AC×BE=4.∴.解得b=8.(3)解:不存在.理由如下:假设存在,当S△APQ=S△BPQ时,有AP=PB,于是PD﹣AC=PE﹣PD,即AC+BE=2PD.由(2)可知AC+BE=k+3,PD= ,∴k+3=2×,即(k+3)2=16.解得k=1(舍去k=﹣7).当k=1时,A,B两点重合,△BQA不存在.∴不存在实数k使S△APQ=S△BPQ 【考点】根与系数的关系,比例的性质,相似三角形的判定与性质【解析】【分析】(1)两图象有一个交点,则对应的方程组有一组解,即△=0,代入计算即可求出m的值;(2)作出辅助线,得到△OAC∽△OPD,+ =2,同理+ =2,AC,BE是x2﹣(k+3)x+4=0两根,即可;(3)由S△APQ=S△BPQ得到AC+BE=2PD,建立方程(k+3)2=16即可.此题是二次函数综合题,主要考查了相似三角形的性质和判定,比例的性质,一元二次方程的根与系数的关系,解本题的关键是灵活运用根与系数的关系.【答案】(1)解:∵抛物线y=ax2+bx﹣3,∴c=﹣3,∴C(0,﹣3),∴OC=3,∵BO=OC=3AO,∴BO=3,AO=1,∴B(3,0),A(﹣1,0),∵该抛物线与x轴交于A、B两点,∴,∴,∴抛物线解析式为y=x2﹣2x﹣3(2)证明:由(1)知,抛物线解析式为y=x2﹣2x﹣3=(x﹣1)2﹣4,∴E(1,﹣4),∵B(3,0),A(﹣1,0),C(0,﹣3),∴BC=3 ,BE=2 ,CE= ,∵直线y=﹣x+1与y轴交于点D,∴D(0,1),∵B(3,0),∴OD=1,OB=3,BD= ,∴,,,∴,∴△BCE∽△BDO(3)解:存在,理由:设P(1,m),∵B(3,0),C(0,﹣3),∴BC=3 ,PB= ,PC= ,∵△PBC是等腰三角形,①当PB=PC时,∴= ,∴m=﹣1,∴P(1,﹣1),②当PB=BC时,∴3 = ,∴m=±,∴P(1,)或P(1,﹣),③当PC=BC时,∴3 = ,∴m=﹣3±,∴P(1,﹣3+ )或P(1,﹣3﹣),∴符合条件的P点坐标为P(1,﹣1)或P(1,)或P(1,﹣)或P(1,﹣3+ )或P (1,﹣3﹣)【考点】二次函数的应用,二次函数与一次函数的交点问题【解析】【分析】(1)先求出点C的坐标,在由BO=OC=3AO,确定出点B,A的坐标,最后用待定系数法求出抛物线解析式;(2)先求出点A,B,C,D,E的坐标,从而求出BC=3 ,BE=2 ,CE= ,OD=1,OB=3,BD= ,求出比值,得到得出结论;(3)设出点P的坐标,表示出PB,PC,求出BC,分三种情况计算即可.此题是二次函数综合题,主要考查了点的坐标的确定方法,两点间的距离公式,待定系数法,等腰三角形的性质,相似三角形的判定,解本题的关键是判断△BCE∽△BDO.难点是分类.【答案】(1)解:把B(1,0)代入y=ax2+2x﹣3,可得a+2﹣3=0,解得a=1,∴抛物线解析式为y=x2+2x﹣3,令y=0,可得x2+2x﹣3=0,解得x=1或x=﹣3,∴A点坐标为(﹣3,0).(2)解:若y=x平分∠APB,则∠APO=∠BPO,如图1,若P点在x轴上方,PA与y轴交于点B′,由于点P在直线y=x上,可知∠POB=∠POB′=45°,在△BPO和△B′PO 中,∴△BPO≌△B′PO(ASA),∴BO=B′O=1,设直线AP解析式为y=kx+b,把A、B′两点坐标代入可得,解得,∴直线AP解析式为y= x+1,联立,解得,∴P点坐标为(,);若P点在x轴下方时,同理可得△BOP≌△B′OP,∴∠BPO=∠B′PO,又∠B′PO在∠APO的内部,∴∠APO≠∠BPO,即此时没有满足条件的P点,综上可知P点坐标为(,).(3)解:如图2,作QH⊥CF,交CF于点H,∵CF为y= x﹣,∴可求得C(,0),F(0,﹣),∴tan∠OFC= = ,∵DQ∥y轴,∴∠QDH=∠MFD=∠OFC,∴tan∠HDQ= ,不妨设DQ=t,DH= t,HQ= t,∵△QDE是以DQ为腰的等腰三角形,∴若DQ=DE,则S△DEQ = DE•HQ= ×t×t= t2,若DQ=QE,则S△DEQ = DE•HQ= ×2DH•HQ= ×t×t=t2,∵t2<t2,∴当DQ=QE时△DEQ的面积比DQ=DE时大.设Q点坐标为(x,x2+2x﹣3),则D(x,x﹣),∵Q点在直线CF的下方,∴DQ=t= x﹣﹣(x2+2x﹣3)=﹣x2﹣x+ ,当x=﹣时,t max=3,∴(S△DEQ)max= t2= ,即以QD为腰的等腰三角形的面积最大值为【考点】抛物线与x轴的交点【解析】【分析】(1)把B点坐标代入抛物线解析式可求得a的值,可求得抛物线解析式,再令y=0,可解得相应方程的根,可求得A点坐标;(2)当点P在x轴上方时,连接AP交y轴于点B′,可证△OBP≌△OB′P,可求得B′坐标,利用待定系数法可求得直线AP的解析式,联立直线y=x,可求得P点坐标;当点P在x轴下方时,同理可求得∠BPO=∠B′PO,又∠B′PO在∠APO的内部,可知此时没有满足条件的点P;(3)过Q作QH⊥DE于点H,由直线CF的解析式可求得点C、F的坐标,结合条件可求得tan∠QDH,可分别用DQ表示出QH和DH的长,分DQ=DE和DQ=QE两种情况,分别用DQ的长表示出△QDE的面积,再设出点Q的坐标,利用二次函数的性质可求得△QDE的面积的最大值.本题主要考查二次函数的综合应用,涉及知识点有待定系数法、角平分线的定义、全等三角形的判定和性质、三角形的面积、等腰三角形的性质、二次函数的性质及分类讨论等.在(2)中确定出直线AP的解析式是解题的关键,在(3)中利用DQ表示出△QDE的面积是解题的关键.本题考查知识点较多,综合性较强,计算量大,难度较大.【答案】(1)解:∵顶点坐标为(1,1),∴设抛物线解析式为y=a(x﹣1)2+1,又抛物线过原点,∴0=a(0﹣1)2+1,解得a=﹣1,∴抛物线解析式为y=﹣(x﹣1)2+1,即y=﹣x2+2x,联立抛物线和直线解析式可得,解得或,∴B(2,0),C(﹣1,﹣3)(2)证明:如图,分别过A、C两点作x轴的垂线,交x轴于点D、E两点,则AD=OD=BD=1,BE=OB+OE=2+1=3,EC=3,∴∠ABO=∠CBO=45°,即∠ABC=90°,∴△ABC是直角三角形;(3)解:假设存在满足条件的点N,设N(x,0),则M(x,﹣x2+2x),∴ON=|x|,MN=|﹣x2+2x|,由(2)在Rt△ABD和Rt△CEB中,可分别求得AB= ,BC=3 ,∵MN⊥x轴于点N∴∠ABC=∠MNO=90°,∴当△ABC和△MNO相似时有= 或= ,①当= 时,则有,即|x||﹣x+2|= |x|,∵当x=0时M、O、N不能构成三角形,∴x≠0,∴|﹣x+2|= ,即﹣x+2=±,解得x= 或x= ,此时N点坐标为(,0)或(,0);②当= 时,则有,即|x||﹣x+2|=3|x|,∴|﹣x+2|=3,即﹣x+2=±3,解得x=5或x=﹣1,此时N点坐标为(﹣1,0)或(5,0),综上可知存在满足条件的N点,其坐标为(,0)或(,0)或(﹣1,0)或(5,0)【考点】抛物线与x轴的交点,勾股定理【解析】【分析】(1)可设顶点式,把原点坐标代入可求得抛物线解析式,联立直线与抛物线解析式,可求得C点坐标;(2)分别过A、C两点作x轴的垂线,交x轴于点D、E两点,结合A、B、C三点的坐标可求得∠ABO=∠CBO=45°,可证得结论;(3)设出N点坐标,可表示出M点坐标,从而可表示出MN、ON的长度,当△MON和△ABC 相似时,利用三角形相似的性质可得= 或= ,可求得N点的坐标.本题为二次函数的综合应用,涉及知识点有待定系数法、图象的交点问题、直角三角形的判定、勾股定理、相似三角形的性质及分类讨论等.在(1)中注意顶点式的运用,在(3)中设出N、M的坐标,利用相似三角形的性质得到关于坐标的方程是解题的关键,注意相似三角形点的对应.本题考查知识点较多,综合性较强,难度适中.【答案】(1)解:设抛物线的解析式为y=ax2+bx+c,∵A(1,0)、B(0,3)、C(﹣4,0),∴,解得:a=﹣,b=﹣,c=3,∴经过A、B、C三点的抛物线的解析式为y=﹣x2﹣x+3(2)解:在平面直角坐标系xOy中存在一点P,使得以点A、B、C、P为顶点的四边形为菱形,理由为:∵OB=3,OC=4,OA=1,∴BC=AC=5,当BP平行且等于AC时,四边形ACBP为菱形,∴BP=AC=5,且点P到x轴的距离等于OB,∴点P的坐标为(5,3),当点P在第二、三象限时,以点A、B、C、P为顶点的四边形只能是平行四边形,不是菱形,则当点P的坐标为(5,3)时,以点A、B、C、P为顶点的四边形为菱形.(3)解:设直线PA的解析式为y=kx+b(k≠0),∵A(1,0),P(5,3),∴,解得:k= ,b=﹣,∴直线PA的解析式为y= x﹣,当点M与点P、A不在同一直线上时,根据三角形的三边关系|PM﹣AM|<PA,当点M与点P、A在同一直线上时,|PM﹣AM|=PA,∴当点M与点P、A在同一直线上时,|PM﹣AM|的值最大,即点M为直线PA与抛物线的交点,解方程组,得或,∴点M的坐标为(1,0)或(﹣5,﹣)时,|PM﹣AM|的值最大,此时|PM﹣AM|的最大值为5.【考点】二次函数的应用【解析】【分析】(1)设抛物线的解析式为y=ax2+bx+c,把A,B,C三点坐标代入求出a,b,c的值,即可确定出所求抛物线解析式;(2)在平面直角坐标系xOy中存在一点P,使得以点A、B、C、P为顶点的四边形为菱形,理由为:根据OA,OB,OC的长,利用勾股定理求出BC与AC的长相等,只有当BP与AC平行且相等时,四边形ACBP为菱形,可得出BP的长,由OB的长确定出P的纵坐标,确定出P坐标,当点P在第二、三象限时,以点A、B、C、P为顶点的四边形只能是平行四边形,不是菱形;(3)利用待定系数法确定出直线PA解析式,当点M与点P、A不在同一直线上时,根据三角形的三边关系|PM﹣AM|<PA,当点M与点P、A在同一直线上时,|PM﹣AM|=PA,当点M与点P、A在同一直线上时,|PM﹣AM|的值最大,即点M为直线PA与抛物线的交点,联立直线AP与抛物线解析式,求出当|PM﹣AM|的最大值时M坐标,确定出|PM﹣AM|的最大值即可.此题属于二次函数综合题,涉及的知识有:二次函数的性质,待定系数法确定抛物线解析式、一次函数解析式,菱形的判定,以及坐标与图形性质,熟练掌握待定系数法是解本题的关键.【答案】(1)解:∵点A(0,1).B(﹣9,10)在抛物线上,∴,∴,∴抛物线的解析式为y= x2+2x+1(2)解:∵AC∥x轴,A(0,1)∴x2+2x+1=1,∴x1=6,x2=0,∴点C的坐标(﹣6,1),∵点A(0,1).B(﹣9,10),∴直线AB的解析式为y=﹣x+1,设点P(m,m2+2m+1)∴E(m,﹣m+1)∴PE=﹣m+1﹣(m2+2m+1)=﹣m2﹣3m,∵AC⊥EP,AC=6,∴S四边形AECP=S△AEC+S△APC= AC×EF+ AC×PF= AC×(EF+PF)= AC×PE= ×6×(﹣m2﹣3m)=﹣m2﹣9m=﹣(m+ )2+ ,∵﹣6<m<0∴当m=﹣时,四边形AECP的面积的最大值是,此时点P(﹣,﹣).(3)解:∵y= x2+2x+1= (x+3)2﹣2,∴P(﹣3,﹣2),∴PF=y F﹣y P=3,CF=x F﹣x C=3,∴PF=CF,∴∠PCF=45°同理可得:∠EAF=45°,∴∠PCF=∠EAF,∴在直线AC上存在满足条件的Q,设Q(t,1)且AB=9 ,AC=6,CP=3 ∵以C、P、Q为顶点的三角形与△ABC相似,①当△CPQ∽△ABC时,∴,∴,∴t=﹣4,∴Q(﹣4,1)②当△CQP∽△ABC时,∴,∴,∴t=3,∴Q(3,1).【考点】二次函数的应用【解析】【分析】(1)用待定系数法求出抛物线解析式即可;(2)设点P(m,m2+2m+1),表示出PE=﹣m2﹣3m,再用S四边形AECP=S△AEC+S△APC= AC×PE,建立函数关系式,求出极值即可;(3)先判断出PF=CF,再得到∠PCF=∠EAF,以C、P、Q为顶点的三角形与△ABC相似,分两种情况计算即可.此题是二次函数综合题,主要考查了待定系数法,相似三角形的性质,几何图形面积的求法(用割补法),解本题的关键是求函数解析式.【答案】(1)解:∵四边形ABCD为矩形,∴BC=AD=4,CD=AB=3,当运动x秒时,则AQ=x,BP=x,∴BQ=AB﹣AQ=3﹣x,CP=BC﹣BP=4﹣x,∴S△ADQ= AD•AQ= ×4x=2x,S△BPQ= B Q•BP= (3﹣x)x= x﹣x2,S△PCD= PC•CD= •(4﹣x)•3=6﹣x,又S矩形ABCD=AB•BC=3×4=12,∴S=S矩形ABCD﹣S△ADQ﹣S△BPQ﹣S△PCD=12﹣2x﹣(x﹣x2)﹣(6﹣x)= x2﹣2x+6= (x﹣2)2+4,即S= (x﹣2)2+4,∴S为开口向上的二次函数,且对称轴为x=2,∴当0<x<2时,S随x的增大而减小,当2<x≤3时,S随x的增大而增大,又当x=0时,S=5,当S=3时,S= ,但x的范围内取不到x=0,∴S不存在最大值,当x=2时,S有最小值,最小值为4(2)解:存在,理由如下:由(1)可知BQ=3﹣x,BP=x,CP=4﹣x,当QP⊥DP时,则∠BPQ+∠DPC=∠DPC+∠PDC,∴∠BPQ=∠PDC,且∠B=∠C,∴△BPQ∽△PCD,∴,即,解得x= (舍去)或x= ,∴当x= 时QP⊥DP【考点】二次函数的最值,矩形的性质,相似三角形的判定与性质【解析】【分析】(1)可用x表示出AQ、BQ、BP、CP,从而可表示出S△ADQ、S△BPQ、S△PCD的面积,则可表示出S,再利用二次函数的增减性可求得是否有最大值,并能求得其最小值;(2)用x表示出BQ、BP、PC,当QP⊥DP时,可证明△BPQ∽△CDP,利用相似三角形的性质可得到关于x的方程,可求得x的值.本题为四边形的综合应用,涉及知识点有矩形的性质、二次函数的最值、相似三角形的判定和性质及方程思想等.在(1)中求得S关于x的关系式后,求S的最值时需要注意x的范围,在(2)中证明三角形相似是解题的关键.本题考查知识点较多,综合性较强,难度适中.【答案】(1)解:∵A(1,3 ),B(4,0)在抛物线y=mx2+nx的图象上,∴,解得,∴抛物线解析式为y=﹣x2+4 x(2)解:存在三个点满足题意,理由如下:当点D在x轴上时,如图1,过点A作AD⊥x轴于点D,∵A(1,3 ),∴D坐标为(1,0);当点D在y轴上时,设D(0,d),则AD2=1+(3 ﹣d)2,BD2=42+d2,且AB2=(4﹣1)2+(3 )2=36,∵△ABD是以AB为斜边的直角三角形,∴AD2+BD2=AB2,即1+(3 ﹣d)2+42+d2=36,解得d= ,∴D点坐标为(0,)或(0,);综上可知存在满足条件的D点,其坐标为(1,0)或(0,)或(0,);(3)解:如图2,过P作PF⊥CM于点F,∵PM∥OA,∴Rt△ADO∽Rt△MFP,∴=3 ,∴MF=3 PF,在Rt△ABD中,BD=3,AD=3 ,∴tan∠ABD= ,∴∠ABD=60°,设BC=a,则CN= a,在Rt△PFN中,∠PNF=∠BNC=30°,∴tan∠PNF= = ,∴FN= PF,∴MN=MF+FN=4 PF,∵S△BCN=2S△PMN,∴a2=2××4 PF2,∴a=2 PF,∴NC= a=2 PF,∴= ,∴MN= NC= ×a= a,∴MC=MN+NC=(+ )a,∴M点坐标为(4﹣a,(+ )a),又M点在抛物线上,代入可得﹣(4﹣a)2+4 (4﹣a)=(+ )a,解得a=3﹣或a=0(舍去),OC=4﹣a= +1,MC=2 + ,∴点M的坐标为(+1,2 + ).【考点】二次函数的应用【解析】【分析】(1)由A、B两点的坐标,利用待定系数法可求得抛物线解析式;(2)分D在x轴上和y轴上,当D在x轴上时,过A作AD⊥x轴,垂足D即为所求;当D点在y轴上时,设出D点坐标为(0,d),可分别表示出AD、BD,再利用勾股定理可得到关于d的方程,可求得d的值,从而可求得满足条件的D点坐标;(3)过P作PF⊥CM于点F,利用Rt△ADO∽Rt△MFP以及三角函数,可用PF分别表示出MF和NF,从而可表示出MN,设BC=a,则可用a表示出CN,再利用S△BCN=2S△PMN,可用PF表示出a的值,从而可用PF表示出CN,可求得的值;借助a可表示出M点的坐标,代入抛物线解析式可求得a的值,从而可求出M点的坐标.本题为二次函数的综合应用,涉及知识点有待定系数法、勾股定理、相似三角形的判定和性质、点与函数图象的关系及分类讨论等.在(2)中注意分点D在x轴和y轴上两种情况,在(3)中分别利用PF表示出MF和NC是解题的关键,注意构造三角形相似.本题涉及知识点较多,计算量较大,综合性较强,特别是第(3)问,难度很大.【答案】(1)解:把B、C两点坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=x2﹣2x﹣3(2)解:如图1,连接BC,过Py轴的平行线,交BC于点M,交x轴于点H,在y=x2﹣2x﹣3中,令y=0可得0=x2﹣2x﹣3,解得x=﹣1或x=3,∴A点坐标为(﹣1,0),∴AB=3﹣(﹣1)=4,且OC=3,∴S△ABC= AB•OC= ×4×3=6,∵B(3,0),C(0,﹣3),∴直线BC解析式为y=x﹣3,设P点坐标为(x,x2﹣2x﹣3),则M点坐标为(x,x﹣3),∵P点在第四限,∴PM=x﹣3﹣(x2﹣2x﹣3)=﹣x2+3x,∴S△PBC= PM•OH+ PM•HB= PM•(OH+HB)=PM•OB= PM,∴当PM有最大值时,△PBC的面积最大,则四边形ABPC的面积最大,∵PM=﹣x2+3x=﹣(x﹣)2+ ,∴当x= 时,PM max= ,则S△PBC= ×= ,此时P点坐标为(,﹣),S四边形ABPC=S△ABC+S△PBC=6+ = ,即当P点坐标为(,﹣)时,四边形ABPC的面积最大,最大面积为;(3)解:如图2,设直线m交y轴于点N,交直线l于点G,则∠AGP=∠GNC+∠GCN,当△AGB和△NGC相似时,必有∠AGB=∠CGB,又∠AGB+∠CGB=180°,∴∠AGB=∠CGB=90°,∴∠ACO=∠OBN,在Rt△AON和Rt△NOB中∴Rt△AON≌Rt△NOB(ASA),∴ON=OA=1,∴N点坐标为(0,﹣1),设直线m解析式为y=kx+d,把B、N两点坐标代入可得,解得,∴直线m解析式为y= x﹣1,即存在满足条件的直线m,其解析式为y= x﹣1【考点】抛物线与x轴的交点,全等三角形的判定与性质,相似三角形的判定【解析】【分析】(1)由B、C两点的坐标,利用待定系数法可求得抛物线的解析式;(2)连接BC,则△ABC的面积是不变的,过P作PM∥y轴,交BC于点M,设出P点坐标,可表示出PM的长,可知当PM取最大值时△PBC的面积最大,利用二次函数的性质可求得P点的坐标及四边形ABPC的最大面积;(3)设直线m与y轴交于点N,交直线l于点G,由于∠AGP=∠GNC+∠GCN,所以当△AGB 和△NGC相似时,必有∠AGB=∠CGB=90°,则可证得△AOC≌△NOB,可求得ON的长,可求出N点坐标,利用B、N两的点坐标可求得直线m的解析式.本题为二次函数的综合应用,涉及知识点有待定系数法、二次函数的最值、相似三角形的判定、全等三角形的判定和性质等.在(2)中确定出PM的值最时四边形ABPC的面积最大是解题的关键,在(3)中确定出满足条件的直线m的位置是解题的关键.本题考查知识点较多,综合性较强,特别是第(2)问和第(3)问难度较大.【答案】(1)解:设抛物线解析式为y=a(x﹣6)(x+ ),把点M(1,3)代入得a=﹣,∴抛物线解析式为y=﹣(x﹣6)(x+ ),∴y=﹣x2+ x+2.(2)解:①如图1中,AC与OM交于点G.连接EO′.∵AO=6,OC=2,MN=3,ON=1,∴=3,∴,∵∠AOC=∠MON=90°,∴△AOC∽△MNO,∴∠OAC=∠NMO,∵∠NMO+∠MON=90°,∴∠MON+∠OAC=90°,∴∠AGO=90°,∴OM⊥AC,∵△M′N′O′是由△MNO平移所。
说“中考压轴题”的实践与反思一、说题的意义习题教学是九年级数学教学活动中的重要组成部分,通过分析解题思路、反思解题过程、拓展习题内容形式,从而使概念完整化、具体化,形成完善、合理的认知结构.这是中考复习的目标. 在做题的基础上来说题.二、说题的要求教师说题,不仅要求教师会解题,还要精准地掌握所考查的数学知识,多角度地研析题目结构,高视角地俯瞰题目本质,深层次地说明题目功能,有时还可以正确地指出题目的不足. 讲解解题思路和解题过程时必须符合学生的认知规律,即以学生理解为基本原则,同时站在教师的角度研究数学试题,其主要是揭示题目系统和教材系统的内在联系,解说解题的思路、方法及其规律.三、记一次说中考压轴题实例分析的全过程问题:已知抛物线y = -x2 + 3x + 4交y轴于点a,交x轴于点b,c(点b在点c的右侧). 过点a作垂直于y轴的直线l. 在位于直线l下方的抛物线上任取一点p,过点p作直线pq平行于y 轴交直线l于点q. 连接ap.(1)写出a,b,c三点的坐标;(2)若点p位于抛物线的对称轴的右侧:①如果以a,p,q三点构成的三角形与△aoc相似,求出点p 的坐标;②若将△apq沿ap对折,点q的对应点为点m. 是否存在点p,使得点m落在x轴上. 若存在,求出点p的坐标;若不存在,请说明理由.1. 说背景此题是以二次函数、直角三角形相似和折叠为背景,在点变引起形变的过程中,考查轴对称等有关知识的掌握及空间观念,有效地考查了学生的探究能力、综合运用数学知识的能力及空间观念,以及学生思考问题的深度与广度.2. 说题目重点要引导在位于直线l下方的抛物线上任取一点p,即p点始终位于直线l下方,另外,点p位于抛物线的对称轴的右侧. 使学生认真审题.3. 说解法问题(1)求点a,b,c的坐标,是二次函数的基础知识的应用,要求学生独立完成 .问题(2)的第①题:解法一(注:先从代数角度思考,再从几何角度思考)难点商榷1:问题(2)的第②题的解法的难点之一:用“几何画板”演示翻折过程,让学生体会对应三角形的全等关系,观察哪些线段在变化过程中保持不变. 从动态的过程中发现,当点m落在x轴上时,分点p在x轴上方与点p在x轴下方两种,而点p在x 轴上方时,点m不落在x轴上. 讲解突破学生解题难点的方法:学生在没有“几何画板”演示翻折过程的情况下,学生在动态问题中画出各种状态图,以形定数,以静制动. 探究出当点m落在x轴上时,只有点p在x轴上方与点p在x轴下方两种,而点p在x轴上方时,点m不落在x轴上. 教师讲解为什么点p 在x轴上方时,点m不落在x轴上的几何特性,而不能一知半解,出现滑过现象,透过表象,揭示本质. 教师要找到恒等关系作⊙a解决.难点商榷2:问题(2)的第②题的解法的难点之二:当点m落在x轴上时,点p在x轴下方情况下如何求p点坐标. 如何引导学生从复杂图形中提炼出基本图形.难点商榷3:讲解突破学生解题难点的方法:对折叠问题,先让学生回忆折叠常见图形,分析图中的全等三角形、相似三角形,点出基本图形,运用基本图形所包含的基本结论,引出解题方法.4. 说引申引申1:在翻折后点m落在第一象限时,试求点p横坐标的取值范围.引申2:若点p在抛物线上运动,△apq绕着点a顺时针旋转90°,是否存在点m落在抛物线的情况. 若存在,试求出点p的坐标;若不存在,试说明理由.四、说题活动的反思大家讨论中考压轴题突破技巧. 各类题型的中考数学压轴题在近几年的中考中慢慢涌现出来,比如设计新颖、富有创意的,还有以平移、旋转、翻折等图形变换为解题思路的. 解决中考数学压轴题,解题需找好四大切入点.切入点一:做不出、找相似,有相似、用相似. 切入点二:构造定理所需的图形或基本图形 .切入点三:紧扣不变量,并善于使用前题所采用的方法或结论. 切入点四:在题目中寻找多解的信息 .总之,中考数学压轴题的切入点有很多,考试时并不是一定要找到那么多,往往只需找到一两个就行了,关键是找到以后一定要敢于去做.【参考文献】[1]傅瑞琦. 说题,让主题教研更精彩[j]. 中国数学教育,2012(3):46-48.。
综合试题专题——存在性问题探索存在性问题是近几年课改实验后出现的一种新的探索性问题,一般以压轴题形式出现,所占分值较大,对知识的掌握不仅仅需要能灵活运用,更需要有较强的知识综合能力,解题的过程中对思维的严密性有较高的要求,数学的“分类讨论”思想方法体现十分充分,是造成考试分数差距拉大的重要题型之一,在中招复习中应引起充分重视,是中招冲刺的一个重要内容. 【特殊图形的存在性】 一、等腰三角形和直角三角形例1.如图,抛物线2812(0)y ax ax a a =-+<与x 轴交于A B ,两点(点A 在点B 的左侧),抛物线上另有一点C 在第一象限,满足ACB ∠为直角,且恰使OCA OBC △∽△.(1)求线段OC 的长.(2)求该抛物线的函数关系式.(3)在x 轴上是否存在点P ,使BC P △为等腰三角形?若存在,求出所有符合条件的P 点的坐标;若不存在,请说明理由.变式练习:如图,四边形OABC 是一张放在平面直角坐标系中的正方形纸片.点O 与坐标原点重合,点A 在x 轴上,点C 在y 轴上,OC =4,点E 为BC 的中点,点N 的坐标为(30),,过点N 且平行于y轴的直线MN 与EB 交于点M .现将纸片折叠,使顶点C 落在MNyCFE MBG上,并与MN 上的点G 重合,折痕为EF ,点F 为折痕与y 轴的交点. (1)求点G 的坐标;(2)求折痕EF 所在直线的解析式;(3)设点P 为直线EF 上的点,是否存在这样的点P ,使得以P 、F 、G 为顶点的三角形为等腰三角形,若存在,请直接写出点P 的坐标;若不存在,请说明理由.例2.如图,已知)22,0(),0,1(--E A ,以点A 为圆心,以AO 长为半径的圆交x 轴于另一点B ,过点B 作BF ∥AE 交⊙A 于点F ,直线EF 交x 轴于点C . (1)求证:直线FC 是⊙A 的切线; (2)求点C 的坐标及直线FC 的解析式;(3)有一个半径与⊙A 的半径相等,且圆心在x 轴上运动的⊙P .若⊙P 与直线FC 相交于M 、N 两点,是否存在这样的点P ,使△PMN 是直角三角形.若存在,求出点P 的坐标;若不存在,请说明理由.Oxy变式练习2:如图,面积为18的等腰直角三角形OAB 的一条直角边OA 在x 轴上,二次函数2(0)y ax bx c a =++≠的图象过原点,A 点和斜边OB 的中点M . (1)求出这个二次函数的解析式和对称轴.(2)在坐标轴上是否存在一点P ,使△PMA 中P A =PM ,如果存在,写出P 点的坐标,如果不存在,说明理由.二、平行四边形、菱形等的存在性例3.已知抛物线C 1:22y x mx n =-++(m ,n 为常数,且0,0>n m ≠)的顶点为A ,与y 轴交于点C ;抛物线C 2与抛物线C 1关于y 轴对称,其顶点为B ,连接AC ,BC ,AB . (1)请在横线上直接写出抛物线C 2的解析式:_______________; (2)当m =1时,判定△ABC 的形状,并说明理由;(3)抛物线C 1上是否存在点P ,使得四边形ABCP 为菱形?如果存在,请求出m 的值;如果不存在,请说明理由.变式练习3:如图,在直角坐标系中,以点A (0,3)为圆心,以23为半径的圆与x 轴相交于点B 、C ,与y 轴相交于点D 、E .(1)若抛物线213y x bx c =++经过C 、D 两点,求抛物线的解析式,并判断点B 是否在该抛物线上.(2)在(1)中的抛物线的对称轴上求一点P ,使得△PBD 的周长最小.(3)设Q 为(1)中的抛物线的对称轴上的一点,在抛物线上是否存在这样的点M ,使得四边形BCQM 是平行四边形.若存在,求出点M 的坐标;若不存在,说明理由.例4.已知:如图,二次函数42-=x y 的图象与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C .直线)2(>m m x =与x 轴交于点D . (1)求A 、B 、C 三点的坐标;(2)在直线)2(>m m x =上有一点P (点P 在第一象限),使得以P 、D 、B 为顶点的三角形与以B 、C 、O 顶点的三角形相似,求P 点的坐标(用含m 的代数式表示);(3)在(2)成立的条件下,试问:抛物线24=-上是否存在一点Q,使得四边形ABPQy x为平行四边形?如果存在这样的点Q,请求出m的值;如果不存在,请简要说明理由.变式练习4:如图,已知抛物线的顶点坐标为M(1,4),且经过点N(2,3),与x轴交于A、B两点(点A在点B左侧),与y轴交于点C.(1)求抛物线的解析式及点A、B、C的坐标;(2)若直线y kx t=+经过C、M两点,且与x轴交于点D,试证明四边形CDAN是平行四边形;x=上运动,请探索:在x轴(3)点P在抛物线的对称轴1上方是否存在这样的P点,使以P为圆心的圆经过A、B两点,并且与直线CD相切,若存在,请求出点P的坐标;若不存在,请说明理由.【相似图形的存在性】与定三角形相似的三角形的位置例5.已知抛物线c bx ax y ++=2经过)3,3(P ,)0,235(E 及原点(00)O ,. (1)求抛物线的解析式.(2)过P 点作平行于x 轴的直线PC 交y 轴于C 点,在抛物线对称轴右侧且位于直线PC 下方的抛物线上,任取一点Q ,过点Q 作直线QA 平行于y 轴交x 轴于A 点,交直线PC 于B 点,直线QA 与直线PC 及两坐标轴围成矩形OABC (如图).是否存在点Q ,使得△OPC 与△PQB 相似?若存在,求出Q 点的坐标;若不存在,请说明理由.(3)如果符合(2)中的Q 点在x 轴的上方,连结OQ ,矩形OABC 内的四个三角形△OPC 、△PQB 、△OQP 、△OQA 之间存在怎样的关系?为什么?变式练习5:如图,在⊙M 中,AB 所对的圆心角为120 ,已知圆的半径为2cm ,并建立如图所示的直角坐标系. (1)求圆心M 的坐标;(2)求经过A 、B 、C 三点的抛物线的解析式;x(3)点D 是弦AB 所对的优弧上一动点,求四边形ACBD 的最大面积;(4)在(2)中的抛物线上是否存在一点P ,使PAB △和ABC △相似?若存在,求出点P 的坐标;若不存在,请说明理由.例6.如图,直线3+-=x y 与x 轴,y 轴分别相交于点B ,点C ,经过B 、C 两点的抛物线c bx ax y ++=2与x 轴的另一交点为A ,顶点为P ,且对称轴是直线2x =.(1)求A 点的坐标;(2)求该抛物线的函数表达式;(3)连结AC ,请问在x 轴上是否存在点Q ,使得以点P 、B 、Q 为顶点的三角形与△ABC 相似,若存在,请求出点Q 的坐标;若不存在,请说明理由.x变式练习6:如图,已知C 、D 是双曲线xmy =在第一象限分支上的两点,直线CD 分别交x 轴,y 轴于A 、B 两点.设)()(2211y x D y x C ,,,,连结OC 、OD (O 是坐标有点),若BOC AOD a ∠=∠=,且tan a =31,OC =10. (1)求C 、D 的坐标和m 的值;(2)双曲线上是否存在一点P ,使得POC △和POD △的面积相等?若存在,给出证明,若不存在,说明理由.【与面积、周长有关的存在性问题】例7.如图,已知抛物线的顶点为M (2,-4),且过点A (-1,5),连接AM 交x 轴于点B .(1)求这条抛物线的解析式;(2)求点B 的坐标;(3)设点P (x ,y )是抛物线在x 轴下方、顶点左方一段上的动点,连接PO ,以P 为顶点、PO 为腰的等腰三角形的另一顶点Q 在x 轴上,过点Q 的垂线交直线AM 于点R ,连结PR ,设△PQR 的面积为S ,求S 与x 之间的函数关系式;(4)在上述动点P (x ,y )中,是否存在使2PQR S ∆=的点?若存在,求点P 的坐标;若不存在,说明理由.变式练习7:如图,抛物线c bx x y ++=2与x 轴交于A (-1,0),B (3,0) 两点. (1)求该抛物线的解析式;(2)设(1)中的抛物线上有一个动点P ,当点P 在该抛物线上滑动到什么位置时,满足S △P AB =8,并求出此时P 点的坐标;(3)设(1)中抛物线交y 轴于C 点,在该抛物线的对称轴上是否存在点Q ,使得△QAC 的周长最小?若存在,求出Q 点的坐标;若不存在,请说明理由.【综合型存在性试题类型】 例8.如图1,已知直线x y 21-=与抛物线6412+-=x y 交于A B ,两点. (1)求A 、B 两点的坐标;(2)求线段AB 的垂直平分线的解析式;(3)如图2,取与线段AB 等长的一根橡皮筋,端点分别固定在A ,B 两处.用铅笔拉着这根橡皮筋使笔尖P 在直线AB 上方的抛物线上移动,动点P 将与A ,B 构成无数个三角形,这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时P 点的坐标;如果不存在,请简要说明理由.变式练习8:如图,直线42+=x y 与x 轴、y 轴分别交于A 、B 两点,把△OAB 绕点O 顺时针旋转90°得到△OCD .(1)求经过A 、B 、D 三点的抛物线的解析式.(2)在所求抛物线上是否存在点P ,使得直线CP 把△OCD 分成面积相等的两部分?如果存在,求出点P 的坐标;如果不存在,请说明理由.x图2图1。
二次函数中的存在性问题1.抛物线()21134y x =--+与y 轴交于点A ,顶点为B ,对称轴BC 与x 轴交于点C .点P 在抛物线上,直线PQ //BC 交x 轴于点Q ,连接BQ .(1)若含45°角的直角三角板如图所示放置,其中一个顶点与点C 重合,直角顶点D 在BQ 上,另一个顶点E 在PQ 上,求直线BQ 的函数解析式;(2)若含30°角的直角三角板的一个顶点与点C 重合,直角顶点D 在直线BQ 上(点D 不与点Q 重合),另一个顶点E 在PQ 上,求点P 的坐标.2.如图,矩形OBCD 的边OD 、OB 分别在x 轴正半轴和y 轴负半轴上,且OD =10, OB =8.将矩形的边BC 绕点B 逆时针旋转,使点C 恰好与x 轴上的点A 重合. (1)若抛物线c bx x y ++-=231经过A 、B 两点,求该抛物线的解析式:______________;(2)若点M 是直线AB作MN ⊥x 轴于点N .是否存在点M ,使△AMN与△ACD 相似?若存在,求出点M 的坐标;若不存在,说明理由.3.已知抛物线2=23y x x --经过A 、B 、C 三点,点P (1,k )在直线BC :y=x -3上,若点M 在x 轴上,点N 在抛物线上,是否存在以A 、M 、N 、P 为顶点的四边形为平行四边形?若存在,请求出点M 的坐标;若不存在,请说明理由COyBA xx A B y OCCO y B Ax4.抛物线2212-+=x x y 与y 轴交于点C ,与直线y =x 交于A (-2,-2)、B (2,2)两点.如图,线段MN 在直线AB上移动,且MN M 的横坐标为m ,过点M 作x 轴的垂线与x 轴交于点P ,过点N 作x 轴的垂线与抛物线交于点Q .以P 、M 、Q 、N 为顶点的四边形否为平行四边形?若能,请求出m 的值;若不能,请说明理由.二次函数与几何综合1. 如图,抛物线y =ax 2-5ax+4(a <0)经过△ABC 的三个顶点,已知BC ∥x 轴,点A 在x 轴上,点C 在y 轴上,且AC =BC .(1)求抛物线的解析式.(2)在抛物线的对称轴上是否存在点M ,使|MA -MB |最大? 若存在,求出点M 的坐标;若不存在,请说明理由.2. 如图,已知抛物线y =ax 2-2ax -b (a >0)与x 轴交于A 、B 两点,点的坐标为(-1,0),与y 轴的负半轴交于点C ,顶点为D .连接AC 、CD ,∠ACD =90°.(1)求抛物线的解析式;(2)点E 在抛物线的对称轴上,点F 在抛物线上,且以B 、A 、F 、E 四点为顶点的四边形为平行四边形,求点F 的坐标.3. 如图,在平面直角坐标系中,直线3342y x =-与抛物线214y x bx c =-++交于A 、B 两点,点A 在x 轴上,点B 的横坐标为-8.(1)求该抛物线的解析式;(2)点P 是直线AB 上方的抛物线上一动点(不与点A 、B 重合),过点P 作x 轴的垂线,垂足为C ,交直线AB 于点D ,作PE ⊥AB 于点E .设△PDE 点P 的横坐标为x ,求l 关于x 的函数关系式,并求出l 的最大值.ACyxO B4. 已知,抛物线212y ax ax b =-+经过A (-1,0),C (2,32)两点, 与x 轴交于另一点B .(1)求此抛物线的解析式;(2)若抛物线的顶点为M ,点P 为线段OB 上一动点 (不与点B 重合),点Q 在线段MB 上移动,且∠MPQ =45°,设线段OP =x ,MQ=22y ,求y 2与x并直接写出自变量x 的取值范围.5. 已知抛物线2y ax bx c =++的对称轴为直线2x =,且与x轴交于A 、B 点C ,其中A (1,0),C (0,-3).(1)求抛物线的解析式;(2)若点P 在抛物线上运动(点P异于点A ),①如图1,当△PBC 的面积与△ABC 的面积相等时,求点P 的坐标; ②如图2,当∠PCB =∠BCA 时,求直线CP 的解析式.1.如图13,二次函数)0(2<++=p q px x y 的图象与x 轴交于A 、B 两点,与y 轴交于点C (0,-1),ΔABC 的面积为45。
备战2020中考数学之解密压轴解答题命题规律专题02 因动点产生的直角三角形问题【类型综述】解直角三角形的存在性问题,一般分三步走,第一步寻找分类标准,第二步列方程,第三步解方程并验根.一般情况下,按照直角顶点或者斜边分类,然后按照三角比或勾股定理列方程.有时根据直角三角形斜边上的中线等于斜边的一半列方程更简便.解直角三角形的问题,常常和相似三角形、三角比的问题联系在一起.如果直角边与坐标轴不平行,那么过三个顶点作与坐标轴平行的直线,可以构造两个新的相似直角三角形,这样列比例方程比较简便.【方法揭秘】我们先看三个问题:1.已知线段AB,以线段AB为直角边的直角三角形ABC有多少个?顶点C的轨迹是什么?2.已知线段AB,以线段AB为斜边的直角三角形ABC有多少个?顶点C的轨迹是什么?3.已知点A(4,0),如果△OAB是等腰直角三角形,求符合条件的点B的坐标.图1 图2 图3如图1,点C在垂线上,垂足除外.如图2,点C在以AB为直径的圆上,A、B两点除外.如图3,以OA为边画两个正方形,除了O、A两点以外的顶点和正方形对角线的交点,都是符合题意的点B,共6个.如图4,已知A(3, 0),B(1,-4),如果直角三角形ABC的顶点C在y轴上,求点C的坐标.我们可以用几何的方法,作AB为直径的圆,快速找到两个符合条件的点C.如果作BD⊥y轴于D,那么△AOC∽△CDB.设OC=m,那么341mm-=.这个方程有两个解,分别对应图中圆与y轴的两个交点.【典例分析】【例1】如图1,已知抛物线E1:y=x2经过点A(1,m),以原点为顶点的抛物线E2经过点B(2,2),点A、B关于y轴的对称点分别为点A′、B′.(1)求m的值及抛物线E2所表示的二次函数的表达式;(2)如图1,在第一象限内,抛物线E1上是否存在点Q,使得以点Q、B、B′为顶点的三角形为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由;(3)如图2,P为第一象限内的抛物线E1上与点A不重合的一点,连结OP并延长与抛物线E2相交于点P′,求△PAA′与△P′BB′的面积之比.图1 图2【例2】已知在平面直角坐标系xOy中,直线l别交x轴和y轴于点A(-3,0),B(0,3).(1)如图1,已知⊙P经过点O,且与直线l1相切于点B,求⊙P的直径长;(2)如图2,已知直线l2:y=3x-别交x轴和y轴于点C和点D,点Q是直线l2上的一个动点,以Q为圆心,22为半径画圆.①当点Q与点C重合时,求证:直线l1与⊙Q相切;②设⊙Q与直线l1相交于M,N两点,连结QM,QN.问:是否存在这样的点Q,使得△QMN是等腰直角三角形,若存在,求出点Q的坐标;若不存在,请说明理由.【例3】如图1,在Rt△ABC中,∠ACB=90°,AB=13,CD//AB,点E为射线CD上一动点(不与点C重合),联结AE交边BC于F,∠BAE的平分线交BC于点G.(1)当CE=3时,求S△CEF∶S△CAF的值;(2)设CE=x,AE=y,当CG=2GB时,求y与x之间的函数关系式;(3)当AC=5时,联结EG,若△AEG为直角三角形,求BG的长.图1【例4】综合与实践折纸是一项有趣的活动,同学们小时候都玩过折纸,可能折过小动物、小花、飞机、小船等,折纸活动也伴随着我们初中数学的学习.在折纸过程中,我们可以通过研究图形的性质和运动、确定图形位置等,进一步发展空间观念,在经历借助图形思考问题的过程中,我们会初步建立几何直观,折纸往往从矩形纸片开始,今天,就让我们带着数学的眼光来玩一玩折纸,看看折叠矩形的对角线之后能得到哪些数学结论.实践操作如图1,将矩形纸片ABCD沿对角线AC翻折,使点B′落在矩形ABCD所在平面内,B′C和AD相交于点E,连接B′D.解决问题(1)在图1中,①B′D和AC的位置关系为;②将△AEC剪下后展开,得到的图形是;(2)若图1中的矩形变为平行四边形时(AB≠BC),如图2所示,结论①和结论②是否成立,若成立,请挑选其中的一个结论加以证明,若不成立,请说明理由;(3)小红沿对角线折叠一张矩形纸片,发现所得图形是轴对称图形,沿对称轴再次折叠后,得到的仍是轴对称图形,则小红折叠的矩形纸片的长宽之比为;拓展应用(4)在图2中,若∠B=30°,AB=43,当△AB′D恰好为直角三角形时,BC的长度为.【例5】如图,已知二次函数y=ax2+bx+3 的图象与x轴分别交于A(1,0),B(3,0)两点,与y轴交于点C(1)求此二次函数解析式;(2)点D为抛物线的顶点,试判断△BCD的形状,并说明理由;(3)将直线BC向上平移t(t>0)个单位,平移后的直线与抛物线交于M,N两点(点M在y轴的右侧),当△AMN为直角三角形时,求t的值.【例6】如图,抛物线y=mx2+nx﹣3(m≠0)与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C,直线y=﹣x 与该抛物线交于E,F两点.(1)求点C坐标及抛物线的解析式.(2)P是直线EF下方抛物线上的一个动点,作PH⊥EF于点H,求PH的最大值.(3)以点C为圆心,1为半径作圆,⊙C上是否存在点D,使得△BCD是以CD为直角边的直角三角形?若存在,直接写出D点坐标;若不存在,请说明理由.【变式训练】1.如图,点M是直线y=2x+3上的动点,过点M作MN垂直于x轴于点N,y轴上是否存在点P,使得△MNP为等腰直角三角形,则符合条件的点P有(提示:直角三角形斜边上的中线等于斜边的一半)()A.2个B.3个C.4个D.5个2.如图,已知A、B两点的坐标分别为(8,0)、(0,8),点C、F分别是直线x=﹣5和x轴上的动点,CF=10,点D是线段CF的中点,连接AD交y轴于点E,当△ABE面积取得最小值时,tan∠BAD的值是()A.817B.717C.49D.593.如图,在△ABC中,AB=2,AO=BO,P是直线CO上的一个动点,∠AOC=60°,当△PAB是以BP为直角边的直角三角形时,AP的长为()A.,1,2 B.,,2 C.,,1 D.,24.如图,是的直径,弦,是弦的中点,.若动点以的速度从点出发沿着方向运动,设运动时间为,连结,当是直角三角形时,(s)的值为A.B.1 C.或1 D.或1 或5.若D点坐标(4,3),点P是x轴正半轴上的动点,点Q是反比例函数12(0)y xx=>图象上的动点,若△PDQ为等腰直角三角形,则点P的坐标是________.6.如图,长方形ABCD中,∠A=∠ABC=∠BCD=∠D=90°,AB=CD=6,AD=BC=10,点E为射线AD上的一个动点,若△ABE与△A′BE关于直线BE对称,当△A′BC为直角三角形时,AE的长为______.7.如图,AB 为O e 的直径,C 为O e 上一点,过B 点的切线交AC 的延长线于点D ,E 为弦AC 的中点,10AD =,6BD =,若点P 为直径AB 上的一个动点,连接EP ,当AEP ∆是直角三角形时,AP 的长为__________.8.如图,Rt △ABC 中,∠C=90°,AC=2,BC=5,点D 是BC 边上一点且CD=1,点P 是线段DB 上一动点,连接AP,以AP 为斜边在AP 的下方作等腰Rt △AOP .当P 从点D 出发运动至点B 停止时,点O 的运动路径长为_____.9.如图,AB 是⊙O 的直径,弦BC=6cm ,AC=8cm .若动点P 以2cm/s 的速度从B 点出发沿着B→A 的方向运动,点Q 以1cm/s 的速度从A 点出发沿着A→C 的方向运动,当点P 到达点A 时,点Q 也随之停止运动.设运动时间为t(s),当△APQ 是直角三角形时,t 的值为___________.10.定义:在平面直角坐标系中,对于任意两点A (a ,b ),B (c ,d ),若点T (x ,y )满足x =3+a c ,y =3+b d那么称点T 是点A ,B 的融合点.例如:A (﹣1,8),B (4,﹣2),当点T (x ,y )满足x =143-+=1,y =8(2)3+-=2时,则点T (1,2)是点A ,B 的融合点.(1)已知点A (﹣1,5),B (7,7),C (2,4),请说明其中一个点是另外两个点的融合点. (2)如图,点D (3,0),点E (t ,2t +3)是直线l 上任意一点,点T (x ,y )是点D ,E 的融合点. ①试确定y 与x 的关系式.②若直线ET 交x 轴于点H .当△DTH 为直角三角形时,求点E 的坐标.11.如图,在矩形ABCO 中,AO=3,tan ∠ACB=43,以O 为坐标原点,OC 为x 轴,OA 为y 轴建立平面直角坐标系.设D,E 分别是线段AC,OC 上的动点,它们同时出发,点D 以每秒3个单位的速度从点A 向点C 运动,点E 以每秒1个单位的速度从点C 向点O 运动,设运动时间为t 秒. (1)求直线AC 的解析式;(2)用含t 的代数式表示点D 的坐标; (3)当t 为何值时,△ODE 为直角三角形?(4)在什么条件下,以Rt △ODE 的三个顶点能确定一条对称轴平行于y 轴的抛物线?并请选择一种情况,求出所确定抛物线的解析式.12.如图,顶点为M 的抛物线23y ax bx =++与x 轴交于()3,0A ,()1,0B -两点,与y 轴交于点C .(1)求这条抛物线对应的函数表达式;(2)问在y 轴上是否存在一点P ,使得PAM ∆为直角三角形?若存在,求出点P 的坐标;若不存在,说明理由.(3)若在第一象限的抛物线下方有一动点D ,满足DA OA =,过D 作DG x ⊥轴于点G ,设ADG ∆的内心为I ,试求CI 的最小值.13.如图,在等腰Rt ABC V 中,90,142ACB AB ∠==o .点D,E 分别在边AB,BC 上,将线段ED 绕点E 按逆时针方向旋转90º得到EF .(1)如图1,若AD BD =,点E 与点C 重合,AF 与DC 相交于点O .求证:2BD DO =. (2)已知点G 为AF 的中点.①如图2,若,2AD BD CE ==,求DG 的长.②若6AD BD =,是否存在点E,使得DEG △是直角三角形?若存在,求CE 的长;若不存在,试说明理由. 14.已知在平面直角坐标系xOy 中,直线1l 分别交x 轴和y 轴于点()()3,0,0,3A B -. (1)如图1,已知P e 经过点O ,且与直线1l 相切于点B ,求P e 的直径长;(2)如图2,已知直线2: 33l y x =-分别交x 轴和y 轴于点C 和点D ,点Q 是直线2l 上的一个动点,以Q 为圆心,22为半径画圆.①当点Q 与点C 重合时,求证: 直线1l 与Q e 相切;②设Q e 与直线1l 相交于,M N 两点, 连结,QM QN . 问:是否存在这样的点Q ,使得QMN ∆是等腰直角三角形,若存在,求出点Q 的坐标;若不存在,请说明理由.15.如图1,已知抛物线y =﹣23384x +x +3与x 轴交于A 和B 两点,(点A 在点B 的左侧),与y 轴交于点C .(1)求出直线BC 的解析式.(2)M 为线段BC 上方抛物线上一动点,过M 作x 轴的垂线交BC 于H ,过M 作MQ ⊥BC 于Q ,求出△MHQ 周长最大值并求出此时M 的坐标;当△MHQ 的周长最大时在对称轴上找一点R ,使|AR ﹣MR |最大,求出此时R 的坐标.(3)T 为线段BC 上一动点,将△OCT 沿边OT 翻折得到△OC ′T ,是否存在点T 使△OC ′T 与△OBC 的重叠部分为直角三角形,若存在请求出BT 的长,若不存在,请说明理由.16.在平面直角坐标系中,抛物线y=x 2+(k ﹣1)x ﹣k 与直线y=kx+1交于A,B 两点,点A 在点B 的左侧.(1)如图1,当k=1时,直接写出A,B 两点的坐标;(2)在(1)的条件下,点P 为抛物线上的一个动点,且在直线AB 下方,试求出△ABP 面积的最大值及此时点P 的坐标;(3)如图2,抛物线y=x 2+(k ﹣1)x ﹣k (k >0)与x 轴交于点C 、D 两点(点C 在点D 的左侧),在直线y=kx+1上是否存在唯一一点Q,使得∠OQC=90°?若存在,请求出此时k 的值;若不存在,请说明理由. 17.在平面直角坐标系中,抛物线223y x x =--+与x 轴交于A,B 两点(A 在B 的左侧),与y 轴交于点C,顶点为D .(1)请直接写出点A,C,D 的坐标;(2)如图(1),在x 轴上找一点E,使得△CDE 的周长最小,求点E 的坐标;(3)如图(2),F 为直线AC 上的动点,在抛物线上是否存在点P,使得△AFP 为等腰直角三角形?若存在,求出点P 的坐标,若不存在,请说明理由.18.如图,已知抛物线2(0)y ax bx c a =++≠的对称轴为直线1x =-,且抛物线与x 轴交于A 、B 两点,与y 轴交于C 点,其中(1,0)A ,(0,3)C .(1)若直线y mx n =+经过B 、C 两点,求直线BC 和抛物线的解析式;(2)在抛物线的对称轴1x =-上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标;(3)设点P 为抛物线的对称轴1x =-上的一个动点,求使BPC ∆为直角三角形的点P 的坐标.19.已知:如图,抛物线y=ax 2+bx+c 与坐标轴分别交于点A (0,6),B (6,0),C (﹣2,0),点P 是线段AB 上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P 运动到什么位置时,△PAB 的面积有最大值?(3)过点P 作x 轴的垂线,交线段AB 于点D,再过点P 做PE ∥x 轴交抛物线于点E,连结DE,请问是否存在点P 使△PDE 为等腰直角三角形?若存在,求出点P 的坐标;若不存在,说明理由.20.如图①,已知抛物线y=ax 2+bx+c 的图像经过点A (0,3)、B (1,0),其对称轴为直线l :x=2,过点A 作AC ∥x 轴交抛物线于点C,∠AOB 的平分线交线段AC 于点E,点P 是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P 在直线OE 下方的抛物线上,连结PE 、PO,当m 为何值时,四边形AOPE 面积最大,并求出其最大值;(3)如图②,F 是抛物线的对称轴l 上的一点,在抛物线上是否存在点P 使△POF 成为以点P 为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.21.如图,在平面直角坐标系xOy 中,A 、B 为x 轴上两点,C 、D 为y 轴上的两点,经过点A 、C 、B 的抛物线的一部分C 1与经过点A 、D 、B 的抛物线的一部分C 2组合成一条封闭曲线,我们把这条封闭曲线称为“蛋线”.已知点C 的坐标为(0,),点M 是抛物线C 2:2y mx 2mx 3m =--(m <0)的顶点.(1)求A 、B 两点的坐标;(2)“蛋线”在第四象限上是否存在一点P,使得△PBC 的面积最大?若存在,求出△PBC 面积的最大值;若不存在,请说明理由;(3)当△BDM 为直角三角形时,求m 的值.22.如图,矩形OABC 中,点O 为原点,点A 的坐标为(0,8),点C 的坐标为(6,0).抛物线249y x bx c =-++经过A 、C 两点,与AB 边交于点D .(1)求抛物线的函数表达式;(2)点P 为线段BC 上一个动点(不与点C 重合),点Q 为线段AC 上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ 的面积为S .①求S 关于m 的函数表达式,并求出m 为何值时,S 取得最大值;②当S 最大时,在抛物线249y x bx c =-++的对称轴l 上若存在点F,使△FDQ 为直角三角形,请直接写出所有符合条件的F 的坐标;若不存在,请说明理由.。
1.如图所示,在平面直角坐标系中xOy中,抛物线y=ax2﹣2ax﹣3a(a<0)与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴负半轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)求A、B两点的坐标及抛物线的对称轴;(2)求直线l的函数表达式(其中k、b用含a的式子表示);(3)点E是直线l上方的抛物线上的动点,若△ACE的面积的最大值为,求a的值;(4)设P是抛物线对称轴上的一点,点Q在抛物线上,以点A、D、P、Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.2.如图,抛物线y=﹣x2+x+2与x轴交于点A,B,与y轴交于点C.(1)试求A,B,C的坐标;(2)将△ABC绕AB中点M旋转180°,得到△BAD.①求点D的坐标;②判断四边形ADBC的形状,并说明理由;(3)在该抛物线对称轴上是否存在点P,使△BMP与△BAD相似?若存在,请直接写出所有满足条件的P点的坐标;若不存在,请说明理由.3. 如图,抛物线()20y ax bx c a =++≠与直线1y x =+相交于()()1,0,4,A B m -两点,且抛物线经过点()5,0C .(1)求抛物线的解析式;(2)点P 是抛物线上的一个动点(不与点A 、点B 重合),过点P 作直线PD x ⊥轴于点D ,交直线AB 于点E .①当2PE ED =时,求P 点坐标;② 是否存在点P 使BEC ∆为等腰三角形,若存在请直接写出点P 的坐标,若不存在,请说明理由.4. 如图,在平面直角坐标系中,矩形OABC 的顶点A ,C 分别在x 轴,y 轴的正半轴上,且OA=4,OC=3,若抛物线经过O ,A 两点,且顶点在BC 边上,对称轴交BE 于点F ,点D ,E 的坐标分别为(3,0),(0,1).(1)求抛物线的解析式;(2)猜想△EDB 的形状并加以证明;(3)点M 在对称轴右侧的抛物线上,点N 在x 轴上,请问是否存在以点A ,F ,M ,N 为顶点的四边形是平行四边形?若存在,请求出所有符合条件的点M 的坐标;若不存在,请说明理由.5.问题提出(1)如图①,△ABC是等边三角形,AB=12,若点O是△ABC的内心,则OA的长为;问题探究(2)如图②,在矩形ABCD中,AB=12,AD=18,如果点P是AD边上一点,且AP=3,那么BC边上是否存在一点Q,使得线段PQ将矩形ABCD的面积平分?若存在,求出PQ的长;若不存在,请说明理由.问题解决(3)某城市街角有一草坪,草坪是由△ABM草地和弦AB与其所对的劣弧围成的草地组成,如图③所示.管理员王师傅在M处的水管上安装了一喷灌龙头,以后,他想只用喷灌龙头来给这块草坪浇水,并且在用喷灌龙头浇水时,既要能确保草坪的每个角落都能浇上水,又能节约用水,于是,他让喷灌龙头的转角正好等于∠AMB(即每次喷灌时喷灌龙头由MA转到MB,然后再转回,这样往复喷灌.)同时,再合理设计好喷灌龙头喷水的射程就可以了.如图③,已测出AB=24m,MB=10m,△AMB的面积为96m2;过弦AB的中点D作DE⊥AB交 AB于点E,又测得DE=8m.请你根据以上信息,帮助王师傅计算喷灌龙头的射程至少多少米时,才能实现他的想法?为什么?(结果保留根号或精确到0.01米)6.如图,抛物线y=x2+bx+c经过点B(3,0),C(0,﹣2),直线l:y=﹣x﹣交y轴于点E,且与抛物线交于A,D两点,P为抛物线上一动点(不与A,D重合).www-2-1-cnjy-com(1)求抛物线的解析式;(2)当点P在直线l下方时,过点P作PM∥x轴交l于点M,PN∥y轴交l于点N,求PM+PN的最大值.(3)设F为直线l上的点,以E,C,P,F为顶点的四边形能否构成平行四边形?若能,求出点F 的坐标;若不能,请说明理由.7.如图,抛物线y=ax2+bx﹣2的对称轴是直线x=1,与x轴交于A,B两点,与y轴交于点C,点A的坐标为(﹣2,0),点P为抛物线上的一个动点,过点P作PD⊥x轴于点D,交直线BC于点E.(1)求抛物线解析式;(2)若点P在第一象限内,当OD=4PE时,求四边形POBE的面积;(3)在(2)的条件下,若点M为直线BC上一点,点N为平面直角坐标系内一点,是否存在这样的点M和点N,使得以点B,D,M,N为顶点的四边形是菱形?若存在上,直接写出点N的坐标;若不存在,请说明理由.8.如图,抛物线y=ax2﹣2x+c(a≠0)与x轴、y轴分别交于点A,B,C三点,已知点A(﹣2,0),点C(0,﹣8),点D是抛物线的顶点.(1)求抛物线的解析式及顶点D的坐标;(2)如图1,抛物线的对称轴与x轴交于点E,第四象限的抛物线上有一点P,将△EBP沿直线EP 折叠,使点B的对应点B'落在抛物线的对称轴上,求点P的坐标;www-2-1-cnjy-com(3)如图2,设BC交抛物线的对称轴于点F,作直线CD,点M是直线CD上的动点,点N是平面内一点,当以点B,F,M,N为顶点的四边形是菱形时,请直接写出点M的坐标.9. 如图,二次函数2(0)y ax bx c a =++≠的图象交x 轴于A B 、两点,交y 轴于点D ,点B 的坐标为(3,0),顶点C 的坐标为(1,4).(1)求二次函数的解析式和直线BD 的解析式;(2)点P 是直线BD 上的一个动点,过点P 作x 轴的垂线,交抛物线于点M ,当点P 在第一象限时,求线段PM 长度的最大值;(3)在抛物线上是否存在异于B D 、的点Q ,使BDQ ∆中BD 边上的高为Q 的坐标;若不存在请说明理由.10. 在平面直角坐标系xOy 中,抛物线22++=bx ax y 过点)0,2(-A ,,与y 轴交于点C .(1)求抛物线22++=bx ax y 的函数表达式;(2)若点D 在抛物线22++=bx ax y 的对称轴上,求ACD ∆的周长的最小值;(3)在抛物线22++=bx ax y 的对称轴上是否存在点P ,使A C P ∆是直角三角形?若存在,直接写出点P 的坐标,若不存在,请说明理由.11. 如图,抛物线y=﹣x 2+bx+c 与x 轴分别交于A (﹣1,0),B (5,0)两点.(1)求抛物线的解析式;(2)在第二象限内取一点C ,作CD 垂直X 轴于点D ,链接AC ,且AD=5,CD=8,将Rt △ACD 沿x 轴向右平移m 个单位,当点C 落在抛物线上时,求m 的值;(3)在(2)的条件下,当点C 第一次落在抛物线上记为点E ,点P 是抛物线对称轴上一点.试探究:在抛物线上是否存在点Q ,使以点B 、E 、P 、Q 为顶点的四边形是平行四边形?若存在,请出点Q 的坐标;若不存在,请说明理由.12. 如图,在平面直角坐标系中,抛物线12++=bx ax y 交y 轴于点A ,交x 轴正半轴于点)0,4(B ,与过A 点的直线相交于另一点)25,3(D ,过点D 作x DC ⊥轴,垂足为C . (1)求抛物线的表达式;(2)点P 在线段OC 上(不与点O 、C 重合),过P 作x PN ⊥轴,交直线AD 于M ,交抛物线于点N ,连接CM ,求PCM ∆面积的最大值;(3)若P 是x 轴正半轴上的一动点,设OP 的长为,是否存在,使以点N D C M 、、、为顶点的四边形是平行四边形?若存在,求出的值;若不存在,请说明理由.13.如图,抛物线y=ax2+bx﹣3经过点A(2,﹣3),与x轴负半轴交于点B,与y轴交于点C,且OC=3OB.(1)求抛物线的解析式;(2)点D在y轴上,且∠BDO=∠BAC,求点D的坐标;(3)点M在抛物线上,点N在抛物线的对称轴上,是否存在以点A,B,M,N为顶点的四边形是平行四边形?若存在,求出所有符合条件的点M的坐标;若不存在,请说明理由.14.如图所示,在平面直角坐标系中,⊙C经过坐标原点O,且与x轴,y轴分别相交于M(4,0),N(0,3)两点.已知抛物线开口向上,与⊙C交于N,H,P三点,P为抛物线的顶点,抛物线的对称轴经过点C且垂直x轴于点D.(1)求线段CD的长及顶点P的坐标;(2)求抛物线的函数表达式;(3)设抛物线交x轴于A,B两点,在抛物线上是否存在点Q,使得S四边形OPMN =8S△QAB,且△QAB∽△OBN成立?若存在,请求出Q点的坐标;若不存在,请说明理由.15. 如图,是将抛物线y=﹣x 2平移后得到的抛物线,其对称轴为x=1,与x 轴的一个交点为A (﹣1,0),另一个交点为B ,与y 轴的交点为C .(1)求抛物线的函数表达式;(2)若点N 为抛物线上一点,且BC ⊥NC ,求点N 的坐标;(3)点P 是抛物线上一点,点Q 是一次函数y=x+的图象上一点,若四边形OAPQ 为平行四边形,这样的点P 、Q 是否存在?若存在,分别求出点P ,Q 的坐标;若不存在,说明理由.21世纪教育网版权所有16. 如图1,抛物线c bx ax y ++=2经过平行四边形ABCD 的顶点)30(,A 、)01(,-B 、)32(,D ,抛物线与x 轴的另一交点为E .经过点E 的直线l 将平行四边形ABCD 分割为面积相等的两部分,与抛物线交于另一点P .点P 为直线l 上方抛物线上一动点,设点P 的横坐标为t .(1)求抛物线的解析式;(2)当t 何值时,PFE ∆的面积最大?并求最大值的立方根;(3)是否存在点P 使PAE ∆为直角三角形?若存在,求出t 的值;若不存在,说明理由.17.如图1,抛物线y=ax2+bx+2与x轴交于A,B两点,与y轴交于点C,AB=4,矩形OBDC的边CD=1,延长DC交抛物线于点E.21世纪教育网版权所有(1)求抛物线的解析式;(2)如图2,点P是直线EO上方抛物线上的一个动点,过点P作y轴的平行线交直线EO于点G,作PH⊥EO,垂足为H.设PH的长为l,点P的横坐标为m,求l与m的函数关系式(不必写出m的取值范围),并求出l的最大值;(3)如果点N是抛物线对称轴上的一点,抛物线上是否存在点M,使得以M,A,C,N为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的点M的坐标;若不存在,请说明理由.。