高三(上)数学一轮复习------直线的倾斜角与斜率、直线的方程
- 格式:doc
- 大小:234.50 KB
- 文档页数:2
数 学H 单元 解析几何H1 直线的倾斜角与斜率、直线的方程 6.,,[2014·福建卷] 已知直线l 过圆x 2+(y -3)2=4的圆心,且与直线x +y +1=0垂直,则l 的方程是( )A .x +y -2=0B .x -y =2=0C .x +y -3=0D .x -y +3=06.D [解析] 由直线l 与直线x +y +1=0垂直,可设直线l 的方程为x -y +m =0. 又直线l 过圆x 2+(y -3)2=4的圆心(0,3),则m =3,所以直线l 的方程为x -y +3=0,故选D.20.、、[2014·全国新课标卷Ⅰ] 已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点.(1)求M 的轨迹方程;(2)当|OP |=|OM |时,求l 的方程及△POM 的面积. 20.解:(1)圆C 的方程可化为x 2+(y -4)2=16, 所以圆心为C (0,4),半径为4.设M (x ,y ),则CM =(x ,y -4),MP =(2-x ,2-y ). 由题设知CM ·MP =0,故x (2-x )+(y -4)(2-y )=0,即(x -1)2+(y -3)2=2. 由于点P 在圆C 的内部,所以M 的轨迹方程是(x -1)2+(y -3)2=2.(2)由(1)可知M 的轨迹是以点N (1,3)为圆心,2为半径的圆.由于|OP |=|OM |,故O 在线段PM 的垂直平分线上,又P 在圆N 上,从而ON ⊥PM . 因为ON 的斜率为3,所以直线l 的斜率为-13,故l 的方程为y =-13x +83.又|OM |=|OP |=2 2,O 到直线l 的距离为4105,故|PM |=4105,所以△POM 的面积为165.21.、、、[2014·重庆卷] 如图1-5,设椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,点D 在椭圆上,DF 1⊥F 1F 2,|F 1F 2||DF 1|=22,△DF 1F 2的面积为22.(1)求该椭圆的标准方程.(2)是否存在圆心在y 轴上的圆,使圆在x 轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求出圆的方程;若不存在,请说明理由.21.解:(1)设F 1(-c ,0),F 2(c ,0),其中c 2=a 2-b 2.由|F 1F 2||DF 1|=2 2得|DF 1|=|F 1F 2|2 2=22c .从而S △DF 1F 2=12|DF 1||F 1F 2|=22c 2=22,故c =1.从而|DF 1|=22.由DF 1⊥F 1F 2得|DF 2|2=|DF 1|2+|F 1F 2|2=92,因此|DF 2|=3 22,所以2a =|DF 1|+|DF 2|=2 2,故a =2,b 2=a 2-c 2=1.因此,所求椭圆的标准方程为x 22+y 2=1.(2)如图所示,设圆心在y 轴上的圆C 与椭圆x 22+y 2=1相交,P 1(x 1,y 1),P 2(x 2,y 2)是两个交点,y 1>0,y 2>0,F 1P 1,F 2P 2是圆C 的切线,且F 1P 1⊥F 2P 2.由圆和椭圆的对称性,易知,x 2=-x 1,y 1=y 2.由(1)知F 1(-1,0),F 2(1,0),所以F 1P 1=(x 1+1,y 1),F 2P 2→=(-x 1-1,y 1).再由F 1P 1⊥F 2P 2得-(x 1+1)2+y 21=0.由椭圆方程得1-x 212=(x 1+1)2,即3x 21+4x 1=0,解得x 1=-43或x 1=0. 当x 1=0时,P 1,P 2重合,题设要求的圆不存在.当x 1=-43时,过P 1,P 2分别与F 1P 1,F 2P 2垂直的直线的交点即为圆心C .设C (0,y 0),由CP 1⊥F 1P 1,得y 1-y 0x 1·y 1x 1+1=-1.而y 1=|x 1+1|=13,故y 0=53.圆C 的半径|CP 1|=⎝⎛⎭⎫-432+⎝⎛⎭⎫13-532=4 23.综上,存在满足题设条件的圆,其方程为x 2+⎝⎛⎭⎫y -532=329.H2 两直线的位置关系与点到直线的距离 6.,,[2014·福建卷] 已知直线l 过圆x 2+(y -3)2=4的圆心,且与直线x +y +1=0垂直,则l 的方程是( )A .x +y -2=0B .x -y =2=0C .x +y -3=0D .x -y +3=06.D [解析] 由直线l 与直线x +y +1=0垂直,可设直线l 的方程为x -y +m =0. 又直线l 过圆x 2+(y -3)2=4的圆心(0,3),则m =3,所以直线l 的方程为x -y +3=0,故选D.18.、、、[2014·江苏卷] 如图1-6所示,为保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆,且古桥两端O 和A 到该圆上任意一点的距离均不少于80 m .经测量,点A 位于点O 正北方向60 m 处,点C 位于点O 正东方向170 m 处(OC 为河岸),tan ∠BCO =43.(1)求新桥BC 的长.(2)当OM 多长时,圆形保护区的面积最大?图1-618.解: 方法一:(1)如图所示, 以O 为坐标原点, OC 所在直线为 x 轴, 建立平面直角坐标系xOy .由条件知A (0, 60), C (170,0),直线 BC 的斜率k BC =-tan ∠BCO =-43.又因为 AB ⊥BC, 所以直线AB 的斜率k AB =34.设点 B 的坐标为(a ,b ),则k BC =b -0a -170=-43, k AB =b -60a -0=34,解得a =80, b =120,所以BC =(170-80)2+(0-120)2=150.因此新桥BC 的长是150 m.(2)设保护区的边界圆M 的半径为r m, OM =d m (0≤d ≤60). 由条件知, 直线BC 的方程为y =-43(x -170),即4x +3y -680=0.由于圆M 与直线BC 相切, 故点 M (0, d )到直线BC 的距离是r ,即r =|3d - 680|42+32=680-3d 5.因为O 和A 到圆M 上任意一点的距离均不少于80 m ,所以⎩⎪⎨⎪⎧r -d ≥80,r -(60-d )≥80,即⎩⎨⎧680-3d5-d ≥80,680 - 3d5-(60-d )≥80,解得10≤d ≤35.故当d =10时, r =680 - 3d5最大, 即圆面积最大,所以当OM =10 m 时, 圆形保护区的面积最大. 方法二:(1)如图所示, 延长 OA, CB 交于点F .因为 tan ∠FCO =43,所以sin ∠FCO =45, cos ∠FCO =35.因为OA =60,OC =170,所以OF =OC tan ∠FCO =6803, CF =OC cos ∠FCO =8503, 从而AF =OF -OA =5003.因为OA ⊥OC, 所以cos ∠AFB =sin ∠FCO =45.又因为 AB ⊥BC ,所以BF =AF cos ∠AFB =4003, 从而BC =CF -BF =150.因此新桥BC 的长是150 m.(2)设保护区的边界圆 M 与BC 的切点为D ,连接 MD ,则MD ⊥BC ,且MD 是圆M 的半径,并设MD =r m ,OM =d m (0≤d ≤60).因为OA ⊥OC, 所以sin ∠CFO =cos ∠FCO .故由(1)知sin ∠CFO =MD MF =MD OF -OM =r 6803-d =35, 所以r =680-3d 5.因为O 和A 到圆M 上任意一点的距离均不少于80 m ,所以⎩⎪⎨⎪⎧r -d ≥80,r -(60-d )≥80,即⎩⎨⎧680-3d5-d ≥80,680-3d5-(60-d )≥80,解得10≤d ≤35.故当d =10时, r =680 - 3d5最大,即圆面积最大,所以当OM =10 m 时, 圆形保护区的面积最大. 22.、、[2014·全国卷] 已知抛物线C :y 2=2px (p >0)的焦点为F ,直线y =4与 y 轴的交点为P ,与C 的交点为Q ,且|QF |=54|PQ |.(1)求C 的方程;(2)过F 的直线l 与C 相交于A ,B 两点,若AB 的垂直平分线l ′与C 相交于M ,N 两点,且A ,M ,B ,N 四点在同一圆上,求l 的方程.22.解:(1)设Q (x 0,4),代入y 2=2px ,得x 0=8p ,所以|PQ |=8p ,|QF |=p 2+x 0=p 2+8p.由题设得p 2+8p =54×8p,解得p =-2(舍去)或p =2,所以C 的方程为y 2=4x .(2)依题意知l 与坐标轴不垂直,故可设l 的方程为x =my +1(m ≠0). 代入y 2=4x ,得y 2-4my -4=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4m ,y 1y 2=-4. 故线段AB 的中点为D (2m 2+1,2m ), |AB |=m 2+1|y 1-y 2|=4(m 2+1).又直线l ′的斜率为-m ,所以l ′的方程为x =-1m y +2m 2+3.将上式代入y 2=4x ,并整理得y 2+4m y -4(2m 2+3)=0.设M (x 3,y 3),N (x 4,y 4),则y 3+y 4=-4m ,y 3y 4=-4(2m 2+3).故线段MN 的中点为E ⎝⎛⎭⎫2m 2+2m 2+3,-2m , |MN |=1+1m 2|y 3-y 4|=4(m 2+1)2m 2+1m 2. 由于线段MN 垂直平分线段AB ,故A ,M ,B ,N 四点在同一圆上等价于|AE |=|BE |=12|MN |,从而14|AB |2+|DE |2=14|MN |2,即 4(m 2+1)2+⎝⎛⎭⎫2m +2m 2+⎝⎛⎭⎫2m 2+22=4(m 2+1)2(2m 2+1)m 4,化简得m 2-1=0,解得m =1或m =-1.所求直线l 的方程为x -y -1=0或x +y -1=0.21.、、、[2014·重庆卷] 如图1-5,设椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,点D 在椭圆上,DF 1⊥F 1F 2,|F 1F 2||DF 1|=22,△DF 1F 2的面积为22.(1)求该椭圆的标准方程.(2)是否存在圆心在y 轴上的圆,使圆在x 轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求出圆的方程;若不存在,请说明理由.21.解:(1)设F 1(-c ,0),F 2(c ,0),其中c 2=a 2-b 2. 由|F 1F 2||DF 1|=2 2得|DF 1|=|F 1F 2|2 2=22c . 从而S △DF 1F 2=12|DF 1||F 1F 2|=22c 2=22,故c =1.从而|DF 1|=22.由DF 1⊥F 1F 2得|DF 2|2=|DF 1|2+|F 1F 2|2=92,因此|DF 2|=3 22,所以2a =|DF 1|+|DF 2|=2 2,故a =2,b 2=a 2-c 2=1.因此,所求椭圆的标准方程为x 22+y 2=1.(2)如图所示,设圆心在y 轴上的圆C 与椭圆x 22+y 2=1相交,P 1(x 1,y 1),P 2(x 2,y 2)是两个交点,y 1>0,y 2>0,F 1P 1,F 2P 2是圆C 的切线,且F 1P 1⊥F 2P 2.由圆和椭圆的对称性,易知,x 2=-x 1,y 1=y 2.由(1)知F 1(-1,0),F 2(1,0),所以F 1P 1=(x 1+1,y 1),F 2P 2→=(-x 1-1,y 1).再由F 1P 1⊥F 2P 2得-(x 1+1)2+y 21=0.由椭圆方程得1-x 212=(x 1+1)2,即3x 21+4x 1=0,解得x 1=-43或x 1=0. 当x 1=0时,P 1,P 2重合,题设要求的圆不存在.当x 1=-43时,过P 1,P 2分别与F 1P 1,F 2P 2垂直的直线的交点即为圆心C .设C (0,y 0),由CP 1⊥F 1P 1,得y 1-y 0x 1·y 1x 1+1=-1.而y 1=|x 1+1|=13,故y 0=53.圆C 的半径|CP 1|=⎝⎛⎭⎫-432+⎝⎛⎭⎫13-532=4 23.综上,存在满足题设条件的圆,其方程为x 2+⎝⎛⎭⎫y -532=329.H3 圆的方程 6.,,[2014·福建卷] 已知直线l 过圆x 2+(y -3)2=4的圆心,且与直线x +y +1=0垂直,则l 的方程是( )A .x +y -2=0B .x -y =2=0C .x +y -3=0D .x -y +3=06.D [解析] 由直线l 与直线x +y +1=0垂直,可设直线l 的方程为x -y +m =0. 又直线l 过圆x 2+(y -3)2=4的圆心(0,3),则m =3,所以直线l 的方程为x -y +3=0,故选D.17.[2014·湖北卷] 已知圆O :x 2+y 2=1和点A (-2,0),若定点B (b ,0)(b ≠-2)和常数λ满足:对圆O 上任意一点M ,都有|MB |=λ|MA |,则(1)b =________; (2)λ=________.17.(1)-12 (2)12[解析] 设点M (cos θ,sin θ),则由|MB |=λ|MA |得(cos θ-b )2+sin 2θ=λ2[](cos θ+2)2+sin 2θ,即-2b cos θ+b 2+1=4λ2cos θ+5λ2对任意的θ都成立,所以⎩⎪⎨⎪⎧-2b =4λ2,b 2+1=5λ2.又由|MB |=λ|MA |,得λ>0,且b ≠-2,解得⎩⎨⎧b =-12,λ=12. 18.、、、[2014·江苏卷] 如图1-6所示,为保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆,且古桥两端O 和A 到该圆上任意一点的距离均不少于80 m .经测量,点A 位于点O 正北方向60 m 处,点C 位于点O 正东方向170 m 处(OC 为河岸),tan∠BCO =43.(1)求新桥BC 的长.(2)当OM 多长时,圆形保护区的面积最大?图1-618.解: 方法一:(1)如图所示, 以O 为坐标原点, OC 所在直线为 x 轴, 建立平面直角坐标系xOy .由条件知A (0, 60), C (170,0),直线 BC 的斜率k BC =-tan ∠BCO =-43.又因为 AB ⊥BC, 所以直线AB 的斜率k AB =34.设点 B 的坐标为(a ,b ),则k BC =b -0a -170=-43, k AB =b -60a -0=34,解得a =80, b =120,所以BC =(170-80)2+(0-120)2=150.因此新桥BC 的长是150 m.(2)设保护区的边界圆M 的半径为r m, OM =d m (0≤d ≤60). 由条件知, 直线BC 的方程为y =-43(x -170),即4x +3y -680=0.由于圆M 与直线BC 相切, 故点 M (0, d )到直线BC 的距离是r ,即r =|3d - 680|42+32=680-3d 5.因为O 和A 到圆M 上任意一点的距离均不少于80 m ,所以⎩⎪⎨⎪⎧r -d ≥80,r -(60-d )≥80,即⎩⎨⎧680-3d5-d ≥80,680 - 3d5-(60-d )≥80,解得10≤d ≤35.故当d =10时, r =680 - 3d5最大, 即圆面积最大,所以当OM =10 m 时, 圆形保护区的面积最大. 方法二:(1)如图所示, 延长 OA, CB 交于点F .因为 tan ∠FCO =43,所以sin ∠FCO =45, cos ∠FCO =35.因为OA =60,OC =170,所以OF =OC tan ∠FCO =6803, CF =OC cos ∠FCO =8503, 从而AF =OF -OA =5003.因为OA ⊥OC, 所以cos ∠AFB =sin ∠FCO =45.又因为 AB ⊥BC ,所以BF =AF cos ∠AFB =4003, 从而BC =CF -BF =150.因此新桥BC 的长是150 m.(2)设保护区的边界圆 M 与BC 的切点为D ,连接 MD ,则MD ⊥BC ,且MD 是圆M 的半径,并设MD =r m ,OM =d m (0≤d ≤60).因为OA ⊥OC, 所以sin ∠CFO =cos ∠FCO .故由(1)知sin ∠CFO =MD MF =MD OF -OM =r 6803-d =35, 所以r =680-3d 5.因为O 和A 到圆M 上任意一点的距离均不少于80 m ,所以⎩⎪⎨⎪⎧r -d ≥80,r -(60-d )≥80,即⎩⎨⎧680-3d5-d ≥80,680-3d5-(60-d )≥80,解得10≤d ≤35.故当d =10时, r =680 - 3d5最大,即圆面积最大,所以当OM =10 m 时, 圆形保护区的面积最大. 20.、、[2014·辽宁卷] 圆x 2+y 2=4的切线与x 轴正半轴、y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图1-5所示).(1)求点P 的坐标;(2)焦点在x 轴上的椭圆C 过点P ,且与直线l :y =x +3交于A ,B 两点,若△P AB 的面积为2,求C 的标准方程.20.解:(1)设切点坐标为(x 0,y 0)(x 0>0,y 0>0),则切线斜率为-x 0y 0,切线方程为y -y 0=-x 0y 0(x -x 0),即x 0x +y 0y =4,此时,两个坐标轴的正半轴与切线的交点分别为⎝⎛⎭⎫4x 0,0,⎝⎛⎭⎫0,4y 0,其围成的三角形的面积S =12·4x 0·4y 0=8x 0y 0.由x 20+y 20=4≥2x 0y 0知当且仅当x 0=y 0=2时x 0y 0有最大值,即S 有最小值,因此点P 的坐标为(2,2).(2)设C 的标准方程为x 2a 2+y 2b 2=1(a >b >0),点A (x 1,y 1),B (x 2,y 2).由点P 在C 上知2a2+2b2=1,并由⎩⎪⎨⎪⎧x 2a 2+y 2b 2=1,y =x +3,得b 2x 2+43x +6-2b 2=0. 又x 1,x 2是方程的根,所以⎩⎨⎧x 1+x 2=-43b2,x 1x 2=6-2b 2b2.由y 1=x 1+3,y 2=x 2+3,得|AB |=4 63|x 1-x 2|=2·48-24b 2+8b 4b 2.由点P 到直线l 的距离为32及S △P AB =12×32|AB |=2,得|AB |=4 63,即b 4-9b 2+18=0,解得b 2=6或3,因此b 2=6,a 2=3(舍)或b 2=3,a 2=6,从而所求C 的方程为x 26+y 23=1.20.、、[2014·全国新课标卷Ⅰ] 已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点.(1)求M 的轨迹方程;(2)当|OP |=|OM |时,求l 的方程及△POM 的面积. 20.解:(1)圆C 的方程可化为x 2+(y -4)2=16, 所以圆心为C (0,4),半径为4.设M (x ,y ),则CM =(x ,y -4),MP =(2-x ,2-y ). 由题设知CM ·MP =0,故x (2-x )+(y -4)(2-y )=0,即(x -1)2+(y -3)2=2. 由于点P 在圆C 的内部,所以M 的轨迹方程是(x -1)2+(y -3)2=2.(2)由(1)可知M 的轨迹是以点N (1,3)为圆心,2为半径的圆.由于|OP |=|OM |,故O 在线段PM 的垂直平分线上,又P 在圆N 上,从而ON ⊥PM . 因为ON 的斜率为3,所以直线l 的斜率为-13,故l 的方程为y =-13x +83.又|OM |=|OP |=2 2,O 到直线l 的距离为4105,故|PM |=4105,所以△POM 的面积为165.H4 直线与圆、圆与圆的位置关系 5.[2014·浙江卷] 已知圆x 2+y 2+2x -2y +a =0截直线x +y +2=0所得弦的长度为4,则实数a 的值是( )A .-2B .-4C .-6D .-85.B [解析] 圆的标准方程为(x +1)2+(y -1)2=2-a ,r 2=2-a ,则圆心(-1,1)到直线x +y +2=0的距离为|-1+1+2|2= 2.由22+(2)2=2-a ,得a =-4, 故选B.6.[2014·安徽卷] 过点P (-3,-1)的直线l 与圆x 2+y 2=1有公共点,则直线l 的倾斜角的取值范围是( )A.⎝⎛⎦⎤0,π6B.⎝⎛⎦⎤0,π3C.⎣⎡⎦⎤0,π6D.⎣⎡⎦⎤0,π36.D [解析] 易知直线l 的斜率存在,所以可设l :y +1=k (x +3),即kx -y +3k -1=0.因为直线l 圆x 2+y 2=1有公共点,所以圆心(0,0)到直线l 的距离|3k -1|1+k 2≤1,即k 2-3k ≤0,解得0≤k ≤3,故直线l 的倾斜角的取值范围是⎣⎡⎦⎤0,π3.7.[2014·北京卷] 已知圆C :(x -3)2+(y -4)2=1和两点A (-m ,0),B (m ,0)(m >0).若圆C 上存在点P ,使得∠APB =90°,则m 的最大值为( )A .7B .6C .5D .47.B [解析] 由图可知,圆C 上存在点P 使∠APB =90°,即圆C 与以AB 为直径的圆有公共点,所以32+42-1≤m ≤32+42+1,即4≤m ≤6.11.,[2014·福建卷] 已知圆C :(x -a )2+(y -b )2=1,平面区域Ω:⎩⎪⎨⎪⎧x +y -7≤0,x -y +3≥0,y ≥0.若圆心C ∈Ω,且圆C 与x 轴相切,则a 2+b 2的最大值为( )A .5B .29C .37D .4911.C [解析] 作出不等式组⎩⎪⎨⎪⎧x +y -7≤0,x -y +3≥0,y ≥0表示的平面区域Ω(如下图阴影部分所示,含边界),圆C :(x -a )2+(y -b )2=1的圆心坐标为(a ,b ),半径为1.由圆C 与x 轴相切,得b =1.解方程组⎩⎪⎨⎪⎧x +y -7=0,y =1,得⎩⎪⎨⎪⎧x =6,y =1,即直线x +y -7=0与直线y =1的交点坐标为(6,1),设此点为P .又点C ∈Ω,则当点C 与P 重合时,a 取得最大值, 所以,a 2+b 2的最大值为62+12=37,故选C.21.[2014·福建卷] 已知曲线Γ上的点到点F (0,1)的距离比它到直线y =-3的距离小2.(1)求曲线Γ的方程.(2)曲线Γ在点P 处的切线l 与x 轴交于点A ,直线y =3分别与直线l 及y 轴交于点M ,N .以MN 为直径作圆C ,过点A 作圆C 的切线,切点为B .试探究:当点P 在曲线Γ上运动(点P 与原点不重合)时,线段AB 的长度是否发生变化?证明你的结论.21.解:方法一:(1)设S (x ,y )为曲线Γ上任意一点.依题意,点S 到点F (0,1)的距离与它到直线y =-1的距离相等, 所以曲线Γ是以点F (0,1)为焦点,直线y =-1为准线的抛物线, 所以曲线Γ的方程为x 2=4y .(2)当点P 在曲线Γ上运动时,线段AB 的长度不变.证明如下:由(1)知抛物线Γ的方程为y =14x 2.设P (x 0,y 0)(x 0≠0),则y 0=14x 20,由y ′=12x ,得切线l 的斜率k =y ′|x =x 0=12x 0,所以切线l 的方程为y -y 0=12x 0(x -x 0),即y =12x 0x -14x 20.由⎩⎪⎨⎪⎧y =12x 0x -14x 20,y =0,得A ⎝⎛⎭⎫12x 0,0. 由⎩⎪⎨⎪⎧y =12x 0x -14x 20,y =3,得M ⎝⎛⎭⎫12x 0+6x 0,3. 又N (0,3),所以圆心C ⎝⎛⎭⎫14x 0+3x 0,3, 半径r =12|MN |=⎪⎪⎪⎪14x 0+3x 0, |AB |=|AC |2-r 2 =⎣⎡⎦⎤12x 0-⎝⎛⎭⎫14x 0+3x 02+32-⎝⎛⎭⎫14x 0+3x 02= 6.所以点P 在曲线Γ上运动时,线段AB 的长度不变. 方法二:(1)设S (x ,y )为曲线Γ上任意一点,则|y -(-3)|-(x -0)2+(y -1)2=2.依题意,点S (x ,y )只能在直线y =-3的上方,所以y >-3,所以(x -0)2+(y -1)2=y +1, 化简得,曲线Γ的方程为x 2=4y . (2)同方法一. 6.[2014·湖南卷] 若圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-6x -8y +m =0外切,则m =( ) A .21 B .19 C .9 D .-11 6.C [解析] 依题意可得C 1(0,0),C 2(3,4),则|C 1C 2|=33+42=5.又r 1=1,r 2=25-m ,由r 1+r 2=25-m +1=5,解得m =9.9.[2014·江苏卷] 在平面直角坐标系xOy 中,直线x +2y -3=0被圆(x -2)2+(y +1)2=4截得的弦长为________.9.25 55 [解析] 由题意可得,圆心为(2,-1),r =2,圆心到直线的距离d =|2-2-3|12+22=355,所以弦长为2r 2-d 2=2 4-95=2555 .18.、、、[2014·江苏卷] 如图1-6所示,为保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆,且古桥两端O 和A 到该圆上任意一点的距离均不少于80 m .经测量,点A 位于点O 正北方向60 m 处,点C 位于点O 正东方向170 m 处(OC 为河岸),tan ∠BCO =43.(1)求新桥BC 的长.(2)当OM 多长时,圆形保护区的面积最大?图1-618.解: 方法一:(1)如图所示, 以O 为坐标原点, OC 所在直线为 x 轴, 建立平面直角坐标系xOy .由条件知A (0, 60), C (170,0),直线 BC 的斜率k BC =-tan ∠BCO =-43.又因为 AB ⊥BC, 所以直线AB 的斜率k AB =34.设点 B 的坐标为(a ,b ),则k BC =b -0a -170=-43, k AB =b -60a -0=34,解得a =80, b =120,所以BC =(170-80)2+(0-120)2=150.因此新桥BC 的长是150 m.(2)设保护区的边界圆M 的半径为r m, OM =d m (0≤d ≤60). 由条件知, 直线BC 的方程为y =-43(x -170),即4x +3y -680=0.由于圆M 与直线BC 相切, 故点 M (0, d )到直线BC 的距离是r ,即r =|3d - 680|42+32=680-3d 5.因为O 和A 到圆M 上任意一点的距离均不少于80 m ,所以⎩⎪⎨⎪⎧r -d ≥80,r -(60-d )≥80,即⎩⎨5680 - 3d5-(60-d )≥80,解得10≤d ≤35.故当d =10时, r =680 - 3d5最大, 即圆面积最大,所以当OM =10 m 时, 圆形保护区的面积最大. 方法二:(1)如图所示, 延长 OA, CB 交于点F .因为 tan ∠FCO =43,所以sin ∠FCO =45, cos ∠FCO =35.因为OA =60,OC =170,所以OF =OC tan ∠FCO =6803, CF =OC cos ∠FCO =8503, 从而AF =OF -OA =5003.因为OA ⊥OC, 所以cos ∠AFB =sin ∠FCO =45.又因为 AB ⊥BC ,所以BF =AF cos ∠AFB =4003, 从而BC =CF -BF =150.因此新桥BC 的长是150 m.(2)设保护区的边界圆 M 与BC 的切点为D ,连接 MD ,则MD ⊥BC ,且MD 是圆M 的半径,并设MD =r m ,OM =d m (0≤d ≤60).因为OA ⊥OC, 所以sin ∠CFO =cos ∠FCO .故由(1)知sin ∠CFO =MD MF =MD OF -OM =r 6803-d =35, 所以r =680-3d 5.因为O 和A 到圆M 上任意一点的距离均不少于80 m ,所以⎩⎪⎨⎪⎧r -d ≥80,r -(60-d )≥80,即⎩⎨5680-3d5-(60-d )≥80,解得10≤d ≤35.故当d =10时, r =680 - 3d5最大,即圆面积最大,所以当OM =10 m 时, 圆形保护区的面积最大. 16.、[2014·全国卷] 直线l 1和l 2是圆x 2+y 2=2的两条切线.若l 1与l 2的交点为(1,3),则l 1与l 2的夹角的正切值等于________.16.43 [解析] 如图所示,根据题意知,OA ⊥P A ,OA =2,OP =10,所以P A =OP 2-OA 2=2 2,所以tan ∠OP A =OA P A =22 2=12,故tan ∠APB =2tan ∠OP A 1-tan 2∠OP A =43,即l 1与l 2的夹角的正切值等于43.12.[2014·新课标全国卷Ⅱ] 设点M (x 0,1),若在圆O :x 2+y 2=1上存在点N ,使得∠OMN =45°,则x 0的取值范围是( )A. [-1,1]B. ⎣⎡⎦⎤-12,12C. [-2,2]D. ⎣⎡⎦⎤-22,22 12.A [解析] 点M (x 0,1)在直线y =1上,而直线y =1与圆x 2+y 2=1相切.据题意可设点N (0,1),如图,则只需∠OMN ≥45°即可,此时有tan ∠OMN =|ON ||MN |≥tan 45°,得0<|MN |≤|ON |=1,即0<|x 0|≤1,当M 位于点(0,1)时,显然在圆上存在点N 满足要求,综上可知-1≤x 0≤1.20.、、[2014·全国新课标卷Ⅰ] 已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点.(1)求M 的轨迹方程;(2)当|OP |=|OM |时,求l 的方程及△POM 的面积. 20.解:(1)圆C 的方程可化为x 2+(y -4)2=16, 所以圆心为C (0,4),半径为4.设M (x ,y ),则CM =(x ,y -4),MP =(2-x ,2-y ). 由题设知CM ·MP =0,故x (2-x )+(y -4)(2-y )=0,即(x -1)2+(y -3)2=2. 由于点P 在圆C 的内部,所以M 的轨迹方程是(x -1)2+(y -3)2=2.(2)由(1)可知M 的轨迹是以点N (1,3)为圆心,2为半径的圆.由于|OP |=|OM |,故O 在线段PM 的垂直平分线上,又P 在圆N 上,从而ON ⊥PM . 因为ON 的斜率为3,所以直线l 的斜率为-13,故l 的方程为y =-13x +83.又|OM |=|OP |=2 2,O 到直线l 的距离为4105,故|PM |=4105,所以△POM 的面积为165.14.[2014·山东卷] 圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________.14.(x -2)2+(y -1)2=4 [解析] 因为圆心在直线x -2y =0上,所以可设圆心坐标为(2b ,b ).又圆C 与y 轴的正半轴相切,所以b >0,圆的半径是2b .由勾股定理可得b 2+(3)2=4b 2,解得b =±1.又因为b >0,所以b =1,所以圆C 的圆心坐标为(2,1),半径是2,所以圆C 的标准方程是(x -2)2+(y -1)2=4.14.[2014·重庆卷] 已知直线x -y +a =0与圆心为C 的圆x 2+y 2+2x -4y -4=0相交于A ,B 两点,且AC ⊥BC ,则实数a 的值为________.14.0或6 [解析] ∵圆C 的标准方程为(x +1)2+(y -2)2=9,∴圆心为C (-1,2),半径为 3.∵AC ⊥BC ,∴|AB |=3 2.∵圆心到直线的距离d =|-1-2+a |2=|a -3|2,∴|AB |=2r 2-d 2=29-⎝ ⎛⎭⎪⎫|a -3|22=3 2,即(a -3)2=9,∴a =0或a =6. 9.、[2014·四川卷] 设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|P A |+|PB |的取值范围是( )A .[5,2 5 ]B .[10,2 5 ]C .[10,4 5 ]D .[25,4 5 ]9.B [解析] 由题意可知,定点A (0,0),B (1,3),且两条直线互相垂直, 则其交点P (x ,y )落在以AB 为直径的圆周上,所以|P A |2+|PB |2=|AB |2=10,即|P A |+|PB |≥|AB |=10. 又|P A |+|PB |=(|P A |+|PB |)2= |P A |2+2|P A ||PB |+|PB |2≤ 2(|P A |2+|PB |2)=2 5,所以|P A |+|PB |∈[10,2 5],故选B.21.、、、[2014·重庆卷] 如图1-5,设椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,点D 在椭圆上,DF 1⊥F 1F 2,|F 1F 2||DF 1|=22,△DF 1F 2的面积为22.(1)求该椭圆的标准方程.(2)是否存在圆心在y 轴上的圆,使圆在x 轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求出圆的方程;若不存在,请说明理由.21.解:(1)设F 1(-c ,0),F 2(c ,0),其中c 2=a 2-b 2. 由|F 1F 2||DF 1|=2 2得|DF 1|=|F 1F 2|2 2=22c . 从而S △DF 1F 2=12|DF 1||F 1F 2|=22c 2=22,故c =1.从而|DF 1|=22.由DF 1⊥F 1F 2得|DF 2|2=|DF 1|2+|F 1F 2|2=92,因此|DF 2|=3 22,所以2a =|DF 1|+|DF 2|=2 2,故a =2,b 2=a 2-c 2=1.因此,所求椭圆的标准方程为x 22+y 2=1.(2)如图所示,设圆心在y 轴上的圆C 与椭圆x 22+y 2=1相交,P 1(x 1,y 1),P 2(x 2,y 2)是两个交点,y 1>0,y 2>0,F 1P 1,F 2P 2是圆C 的切线,且F 1P 1⊥F 2P 2.由圆和椭圆的对称性,易知,x 2=-x 1,y 1=y 2.由(1)知F 1(-1,0),F 2(1,0),所以F 1P 1=(x 1+1,y 1),F 2P 2→=(-x 1-1,y 1).再由F 1P 1⊥F 2P 2得-(x 1+1)2+y 21=0.由椭圆方程得1-x 212=(x 1+1)2,即3x 21+4x 1=0,解得x 1=-43或x 1=0. 当x 1=0时,P 1,P 2重合,题设要求的圆不存在.当x 1=-43时,过P 1,P 2分别与F 1P 1,F 2P 2垂直的直线的交点即为圆心C .设C (0,y 0),由CP 1⊥F 1P 1,得y 1-y 0x 1·y 1x 1+1=-1.而y 1=|x 1+1|=13,故y 0=53.圆C 的半径|CP 1|=⎝⎛⎭⎫-432+⎝⎛⎭⎫13-532=4 23.综上,存在满足题设条件的圆,其方程为x 2+⎝⎛⎭⎫y -532=329.H5 椭圆及其几何性质21.、、、[2014·重庆卷] 如图1-5,设椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,点D 在椭圆上,DF 1⊥F 1F 2,|F 1F 2||DF 1|=22,△DF 1F 2的面积为22.(1)求该椭圆的标准方程.(2)是否存在圆心在y 轴上的圆,使圆在x 轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求出圆的方程;若不存在,请说明理由.21.解:(1)设F 1(-c ,0),F 2(c ,0),其中c 2=a 2-b 2. 由|F 1F 2||DF 1|=2 2得|DF 1|=|F 1F 2|2 2=22c . 从而S △DF 1F 2=12|DF 1||F 1F 2|=22c 2=22,故c =1.从而|DF 1|=22.由DF 1⊥F 1F 2得|DF 2|2=|DF 1|2+|F 1F 2|2=92,因此|DF 2|=3 22,所以2a =|DF 1|+|DF 2|=2 2,故a =2,b 2=a 2-c 2=1.因此,所求椭圆的标准方程为x 22+y 2=1.(2)如图所示,设圆心在y 轴上的圆C 与椭圆x 22+y 2=1相交,P 1(x 1,y 1),P 2(x 2,y 2)是两个交点,y 1>0,y 2>0,F 1P 1,F 2P 2是圆C 的切线,且F 1P 1⊥F 2P 2.由圆和椭圆的对称性,易知,x 2=-x 1,y 1=y 2.由(1)知F 1(-1,0),F 2(1,0),所以F 1P 1=(x 1+1,y 1),F 2P 2→=(-x 1-1,y 1).再由F 1P 1⊥F 2P 2得-(x 1+1)2+y 21=0.由椭圆方程得1-x 212=(x 1+1)2,即3x 21+4x 1=0,解得x 1=-43或x 1=0. 当x 1=0时,P 1,P 2重合,题设要求的圆不存在.当x 1=-43时,过P 1,P 2分别与F 1P 1,F 2P 2垂直的直线的交点即为圆心C .设C (0,y 0),由CP 1⊥F 1P 1,得y 1-y 0x 1·y 1x 1+1=-1.而y 1=|x 1+1|=13,故y 0=53.圆C 的半径|CP 1|=⎝⎛⎭⎫-432+⎝⎛⎭⎫13-532=4 23.综上,存在满足题设条件的圆,其方程为x 2+⎝⎛⎭⎫y -532=329.20.、[2014·安徽卷] 设函数f (x )=1+(1+a )x -x 2-x 3,其中a >0. (1)讨论f (x )在其定义域上的单调性;(2)当x ∈[0,1]时,求f (x )取得最大值和最小值时的x 的值. 20.解: (1)f (x )的定义域为(-∞,+∞), f ′(x )=1+a -2x -3x 2.令f ′(x )=0,得x 1=-1-4+3a3,x 2=-1+4+3a 3,且x 1<x 2,所以f ′(x )=-3(x -x 1)(x -x 2). 当x <x 1或x >x 2时,f ′(x )<0; 当x 1<x <x 2时,f ′(x )>0.故f (x )在⎝ ⎛⎭⎪⎫-∞,-1-4+3a 3和 ⎝ ⎛⎭⎪⎫-1+4+3a 3,+∞内单调递减,在⎝⎛⎭⎪⎫-1-4+3a 3,-1+4+3a 3内单调递增.(2)因为a >0,所以x 1<0,x 2>0,①当a ≥4时,x 2≥1,由(1)知,f (x )在[0,1]上单调递增,所以f (x )在x =0和x =1处分别取得最小值和最大值.②当0<a <4时,x 2<1,由(1)知,f (x )在[0,x 2]上单调递增,在[x 2,1]上单调递减,因此f (x )在x =x 2=-1+4+3a3处取得最大值.又f (0)=1,f (1)=a ,所以当0<a <1时,f (x )在x =1处取得最小值;当a =1时,f (x )在x =0和x =1处同时取得最小值; 当1<a <4时,f (x )在x =0处取得最小值. 19.[2014·北京卷] 已知椭圆C :x 2+2y 2=4. (1)求椭圆C 的离心率;(2)设O 为原点,若点A 在直线y =2上,点B 在椭圆C 上,且OA ⊥OB ,求线段AB 长度的最小值.19.解:(1)由题意,椭圆C 的标准方程为x 24+y 22=1.所以a 2=4,b 2=2,从而c 2=a 2-b 2=2. 因此a =2,c = 2.故椭圆C 的离心率e =c a =22.(2)设点A ,B 的坐标分别为(t ,2),(x 0,y 0), 其中x 0≠0.因为OA ⊥OB ,所以OA →·OB →=0, 即tx 0+2y 0=0,解得t =-2y 0x 0.又x 20+2y 20=4,所以 |AB |2=(x 0-t )2+(y 0-2)2=⎝⎛⎭⎫x 0+2y 0x 02+(y 0-2)2 =x 20+y 20+4y 20x 20+4=x 20+4-x 202+2(4-x 20)x 2+4 =x 202+8x 20+4 (0<x 20≤4). 因为x 202+8x 20≥4(0<x 20≤4),当x 20=4时等号成立,所以|AB |2≥8. 故线段AB 长度的最小值为2 2.20.、[2014·广东卷] 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个焦点为(5,0),离心率为53.(1)求椭圆C 的标准方程;(2)若动点P (x 0,y 0)为椭圆C 外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.20.、、[2014·湖南卷] 如图1-5所示,O 为坐标原点,双曲线C 1:x 2a 21-y 2b 21=1(a 1>0,b 1>0)和椭圆C 2:y 2a 22+x 2b 22=1(a 2>b 2>0)均过点P ⎝⎛⎭⎫233,1,且以C 1的两个顶点和C 2的两个焦点为顶点的四边形是面积为2的正方形.(1)求C 1,C 2的方程.(2)是否存在直线l ,使得l 与C 1交于A ,B 两点,与C 2只有一个公共点,且|OA →+OB →|=|AB | ?证明你的结论.20.解: (1)设C 2的焦距为2c 2,由题意知,2c 2=2,2a 1=2,从而a 1=1,c 2=1.因为点P ⎝⎛⎭⎫233,1在双曲线x 2-y 2b 21=1上,所以⎝⎛⎭⎫2332-1b 21=1,故b 21=3. 由椭圆的定义知2a 2=⎝⎛⎭⎫2332+(1-1)2+⎝⎛⎭⎫2332+(1+1)2=2 3.于是a 2=3,b 22=a 22-c 22=2.故C 1,C 2的方程分别为x 2-y 23=1,y 23+x 22=1.(2)不存在符合题设条件的直线.(i)若直线l 垂直于x 轴,因为l 与C 2只有一个公共点,所以直线l 的方程为x =2或x =- 2.当x =2时,易知A (2,3),B (2,-3),所以 |OA →+OB →|=22,|AB →|=2 3.此时,|OA →+OB →|≠|AB →|.当 x =-2时,同理可知,|OA →+OB →|≠|AB →|.(ii)若直线l 不垂直于x 轴,设l 的方程为y =kx +m ,由⎩⎪⎨⎪⎧y =kx +m ,x 2-y 23=1得(3-k 2)x 2-2kmx -m 2-3=0. 当l 与C 1相交于A ,B 两点时,设A (x 1,y 1),B (x 2,y 2),则x 1,x 2是上述方程的两个实根,从而x 1+x 2=2km3-k 2,x 1x 2=m 2+3k 2-3.于是y 1y 2=k 2x 1x 2+km (x 1+x 2)+m 2=3k 2-3m 2k 2-3.由⎩⎪⎨⎪⎧y =kx +m ,y 23+x 22=1得(2k 2+3)x 2+4kmx +2m 2-6=0. 因为直线l 与C 2只有一个公共点,所以上述方程的判别式Δ=16k 2m 2-8(2k 2+3)(m 2-3)=0.化简,得2k 2=m 2-3.因此OA →·OB →=x 1x 2+y 1y 2=m 2+3k 2-3+3k 2-3m 2k 2-3=-k 2-3k 2-3≠0,于是OA →2+OB →2+2OA →·OB →≠OA →2+OB →2-2OA →·OB →,即|OA →+OB →|2≠|OA →-OB →|2. 故|OA →+OB →|≠|AB →|.综合(i),(ii)可知,不存在符合题设条件的直线.17.、[2014·江苏卷] 如图1-5所示,在平面直角坐标系xOy 中,F 1,F 2分别是椭圆x 2a2+y 2b 2=1(a >b >0)的左、右焦点,顶点B 的坐标为(0,b ),连接BF 2并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连接F 1C .(1)若点C 的坐标为⎝⎛⎭⎫43,13,且BF 2=2,求椭圆的方程; (2)若F 1C ⊥AB ,求椭圆离心率e 的值.图1-517.解: 设椭圆的焦距为2c, 则 F 1(-c, 0), F 2(c, 0).(1)因为B (0, b ), 所以BF 2=b 2+c 2=a .又BF 2=2, 故a = 2. 因为点C ⎝⎛⎭⎫43,13在椭圆上,所以169a 2+19b 2=1,解得b 2=1. 故所求椭圆的方程为x 22+y 2=1.(2)因为B (0, b ), F 2(c, 0)在直线 AB 上,所以直线 AB 的方程为 x c +yb=1.解方程组⎩⎨⎧x c +yb=1,x 2a 2+y 2b 2=1,得⎩⎪⎨⎪⎧x 1=2a 2c a 2+c2,y 1=b (c 2-a 2)a 2+c2,⎩⎪⎨⎪⎧x 2=0,y 2=b ,所以点 A 的坐标为⎝ ⎛⎭⎪⎫2a 2c a 2+c 2,b (c 2-a 2)a 2+c 2.又AC 垂直于x 轴, 由椭圆的对称性,可得点 C 的坐标为⎝ ⎛⎭⎪⎫2a 2c a 2+c 2,b (a 2-c 2)a 2+c 2.因为直线 F 1C 的斜率为b (a 2-c 2)a 2+c 2-02a 2c a 2+c 2-(-c )=b (a 2-c 2)3a 2c +c3,直线AB 的斜率为-bc ,且F 1C ⊥AB ,所以b (a 2-c 2)3a 2c +c3·⎝⎛⎭⎫-b c =-1.又b 2=a 2-c 2,整理得a 2=5c 2,故e 2=15, 因此e =55. 14.[2014·江西卷] 设椭圆C :x 2a 2+y 2b2=1(a >b >0)的左右焦点分别为F 1,F 2,过F 2作x轴的垂线与C 相交于A ,B 两点,F 1B 与y 轴相交于点D .若AD ⊥F 1B ,则椭圆C 的离心率等于________.14.33[解析] 由题意A ⎝⎛⎭⎫c ,b 2a ,B ⎝⎛⎭⎫c ,-b 2a ,F 1(-c ,0),则直线F 1B 的方程为y -0=-b 2a 2c(x +c ). 令x =0,得y =-b 22a,即D ⎝⎛⎭⎫0,-b 22a ,则向量DA =⎝⎛⎭⎫c ,3b 22a ,F 1B →=⎝⎛⎭⎫2c ,-b 2a .因为AD ⊥F 1B ,所以DA →·F 1B →=2c 2-3b 42a2=0,即2ac =3b 2=3(a 2-c 2),整理得(3e -1)(e +3)=0,所以e =33(e >0).故椭圆C 的离心率为33.20.、、[2014·辽宁卷] 圆x 2+y 2=4的切线与x 轴正半轴、y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图1-5所示).(1)求点P 的坐标;(2)焦点在x 轴上的椭圆C 过点P ,且与直线l :y =x +3交于A ,B 两点,若△P AB 的面积为2,求C 的标准方程.20.解:(1)设切点坐标为(x 0,y 0)(x 0>0,y 0>0),则切线斜率为-x 0y 0,切线方程为y -y 0=-x 0y 0(x -x 0),即x 0x +y 0y =4,此时,两个坐标轴的正半轴与切线的交点分别为⎝⎛⎭⎫4x 0,0,⎝⎛⎭⎫0,4y 0,其围成的三角形的面积S =12·4x 0·4y 0=8x 0y 0.由x 20+y 20=4≥2x 0y 0知当且仅当x 0=y 0=2时x 0y 0有最大值,即S 有最小值,因此点P 的坐标为(2,2).(2)设C 的标准方程为x 2a 2+y 2b 2=1(a >b >0),点A (x 1,y 1),B (x 2,y 2).由点P 在C 上知2a2+2b2=1,并由⎩⎪⎨⎪⎧x 2a 2+y 2b 2=1,y =x +3,得b 2x 2+43x +6-2b 2=0. 又x 1,x 2是方程的根,所以⎩⎨⎧x 1+x 2=-43b2,x 1x 2=6-2b 2b2.由y 1=x 1+3,y 2=x 2+3,得|AB |=4 63|x 1-x 2|=2·48-24b 2+8b 4b 2.由点P 到直线l 的距离为32及S △P AB =12×32|AB |=2,得|AB |=4 63,即b 4-9b 2+18=0,解得b 2=6或3,因此b 2=6,a 2=3(舍)或b 2=3,a 2=6,从而所求C 的方程为x 26+y 23=1.9.[2014·全国卷] 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1,F 2,离心率为33,过F 2的直线l 交C 于A ,B 两点.若△AF 1B 的周长为4 3,则C 的方程为( )A.x 23+y 22=1B.x 23+y 2=1 C.x 212+y 28=1 D.x 212+y 24=1 9.A [解析] 根据题意,因为△AF 1B 的周长为43,所以|AF 1|+|AB |+|BF 1|=|AF 1|+|AF 2|+|BF 1|+|BF 2|=4a =43,所以a = 3.又因为椭圆的离心率e =c a =33,所以c =1,b 2=a 2-c 2=3-1=2,所以椭圆C 的方程为x 23+y 22=1.20.[2014·新课标全国卷Ⅱ] 设F 1,F 2分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,M 是C 上一点且MF 2与x 轴垂直.直线MF 1与C 的另一个交点为N .(1)若直线MN 的斜率为34,求C 的离心率;(2)若直线MN 在y 轴上的截距为2,且|MN |=5|F 1N |,求a ,b .20.解:(1)根据c =a 2-b 2及题设知M ⎝⎛⎭⎫c ,b2a ,2b 2=3ac . 将b 2=a 2-c 2代入2b 2=3ac , 解得c a =12,ca =-2(舍去).故C 的离心率为12.(2)由题意知,原点O 为F 1F 2的中点,MF 2∥y 轴,所以直线MF 1与y 轴的交点D (0,2)是线段MF 1的中点,故b 2a=4,即b 2=4a .①由|MN |=5|F 1N |得|DF 1|=2|F 1N |. 设N (x 1,y 1),由题意知y 1<0,则⎩⎪⎨⎪⎧2(-c -x 1)=c ,-2y 1=2,即⎩⎪⎨⎪⎧x 1=-32c ,y 1=-1. 代入C 的方程,得9c 24a 2+1b2=1.②将①及c =a 2-b 2代入②得9(a 2-4a )4a 2+14a=1,解得a =7,b 2=4a =28,故a =7,b =27.21.,,[2014·山东卷] 在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,直线y =x 被椭圆C 截得的线段长为4105. (1)求椭圆C 的方程.(2)过原点的直线与椭圆C 交于A ,B 两点(A ,B 不是椭圆C 的顶点).点D 在椭圆C 上,且AD ⊥AB ,直线BD 与x 轴、y 轴分别交于M ,N 两点.(i)设直线BD ,AM 的斜率分别为k 1,k 2,证明存在常数λ使得k 1=λk 2,并求出λ的值;(ii)求△OMN 面积的最大值.21.解:(1)由题意知,a 2-b 2a =32,可得a 2=4b 2.椭圆C 的方程可简化为x 2+4y 2=a 2. 将y =x 代入可得x =±5a 5. 因此2×25a 5=4105,即a =2,所以b =1,所以椭圆C 的方程为x 24+y 2=1.(2)(i)设A (x 1,y 1)(x 1y 1≠0),D (x 2,y 2),则B (-x 1,-y 1). 因为直线AB 的斜率k AB =y 1x 1,且AB ⊥AD ,所以直线AD 的斜率k =-x 1y 1.设直线AD 的方程为y =kx +m , 由题意知k ≠0,m ≠0.由⎩⎪⎨⎪⎧y =kx +m ,x 24+y 2=1,消去y ,得(1+4k 2)x 2+8mkx +4m 2-4=0, 所以x 1+x 2=-8mk 1+4k 2,因此y 1+y 2=k (x 1+x 2)+2m =2m1+4k 2. 由题意知x 1≠-x 2, 所以k 1=y 1+y 2x 1+x 2=-14k =y 14x 1.所以直线BD 的方程为y +y 1=y 14x 1(x +x 1). 令y =0,得x =3x 1,即M (3x 1,0). 可得k 2=-y 12x 1.所以k 1=-12k 2,即λ=-12.因此,存在常数λ=-12使得结论成立.(ii)直线BD 的方程y +y 1=y 14x 1(x +x 1),令x =0,得y =-34y 1,即N ⎝⎛⎭⎫0,-34y 1. 由(i)知M (3x 1,0),所以△OMN 的面积S =12×3|x 1|×34|y 1|=98|x 1||y 1|. 因为|x 1||y 1|≤x 214+y 21=1,当且仅当|x 1|2=|y 1|=22时,等号成立, 此时S 取得最大值98,所以△OMN 面积的最大值为98.20.、[2014·陕西卷] 已知椭圆x 2a 2+y 2b 2=1(a >b >0)经过点(0,3),离心率为12,左、右焦点分别为F 1(-c ,0),F 2(c ,0).(1)求椭圆的方程;(2)若直线l :y =-12x +m 与椭圆交于A ,B 两点,与以F 1F 2为直径的圆交于C ,D 两点,且满足|AB ||CD |=534,求直线l 的方程.图1-520.解: (1)由题设知⎩⎪⎨⎪⎧b =3,c a =12,b 2=a 2-c 2,解得⎩⎪⎨⎪⎧a =2,b =3,c =1,∴椭圆的方程为x 24+y 23=1.(2)由题设,以F 1F 2为直径的圆的方程为x 2+y 2=1,∴圆心(0,0)到直线l 的距离d =2|m |5.由d <1,得|m |<52,(*) ∴|CD |=21-d 2=21-45m 2=255-4m 2. 设A (x 1,y 1),B (x 2,y 2),由⎩⎨⎧y =-12x +m ,x 24+y 23=1得x 2-mx +m 2-3=0,由根与系数的关系得x 1+x 2=m ,x 1x 2=m 2-3, ∴|AB |=⎣⎡⎦⎤1+⎝⎛⎭⎫-122[]m 2-4(m 2-3)=1524-m 2.由|AB ||CD |=534,得4-m 25-4m 2=1,解得m =±33,满足(*).∴直线l 的方程为y =-12x +33或y =-12x -33.20.、[2014·四川卷] 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F (-2,0),离心率为63. (1)求椭圆C 的标准方程;(2)设O 为坐标原点,T 为直线x =-3上一点,过F 作TF 的垂线交椭圆于P ,Q .当四边形OPTQ 是平行四边形时,求四边形OPTQ 的面积.20.解:(1)由已知可得,c a =63,c =2,所以a = 6.又由a 2=b 2+c 2,解得b =2,所以椭圆C 的标准方程是x 26+y 22=1.(2)设T 点的坐标为(-3,m ),则直线TF 的斜率k TF =m -0-3-(-2)=-m .当m ≠0时,直线PQ 的斜率k PQ =1m,直线PQ 的方程是x =my -2.当m =0时,直线PQ 的方程是x =-2,也符合x =my -2的形式.设P (x 1,y 1),Q (x 2,y 2),将直线PQ 的方程与椭圆C 的方程联立,得⎩⎪⎨⎪⎧x =my -2,x 26+y 22=1,消去x ,得(m 2+3)y 2-4my -2=0, 其判别式Δ=16m 2+8(m 2+3)>0.所以y 1+y 2=4mm 2+3,y 1y 2=-2m 2+3,x 1+x 2=m (y 1+y 2)-4=-12m 2+3.因为四边形OPTQ 是平行四边形,所以OP →=QT →,即(x 1,y 1)=(-3-x 2,m -y 2).所以⎩⎪⎨⎪⎧x 1+x 2=-12m 2+3=-3,y 1+y 2=4mm 2+3=m .解得m =±1.此时,四边形OPTQ 的面积S 四边形OPTQ =2S △OPQ =2×12·|OF |·|y 1-y 2|=2 ⎝⎛⎭⎫4m m 2+32-4·-2m 2+3=2 3. 18.、[2014·天津卷] 设椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,右顶点为A ,上顶点为B .已知|AB |=32|F 1F 2|.(1)求椭圆的离心率;(2)设P 为椭圆上异于其顶点的一点,以线段PB 为直径的圆经过点F 1,经过点F 2的直线l 与该圆相切于点M ,|MF 2|=22,求椭圆的方程.18.解:(1)设椭圆右焦点F 2的坐标为(c ,0).由|AB |=32|F 1F 2|,可得a 2+b 2=3c 2.又b 2=a 2-c 2,则c 2a 2=12,所以椭圆的离心率e =22.(2)由(1)知a 2=2c 2,b 2=c 2,。
授课主题直线的倾斜角、斜率与直线的方程教学目标1.在平面直角坐标系中,结合具体图形掌握确定直线位置的几何要素. 2.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.3.掌握确定直线的几何要素,掌握直线方程的三种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系. 4.掌握两点间的距离公式.教学内容1. 平面直角坐标系中的基本公式(1)两点间的距离公式:已知平面直角坐标系中的两点A (x 1,y 1),B (x 2,y 2),则d (A ,B )=x 2-x 12+y 2-y 12.(2)中点公式:已知平面直角坐标系中的两点A (x 1,y 1),B (x 2,y 2),点M (x ,y )是线段AB 的中点,则x =x 1+x 22,y =y 1+y 22.2. 直线的倾斜角(1)定义:x 轴正向与直线向上的方向所成的角叫做这条直线的倾斜角,规定与x 轴平行或重合的直线的倾斜角为零度角.(2)倾斜角的范围:[0°,180°). 3. 直线的斜率(1)定义:直线y =kx +b 中的系数k 叫做这条直线的斜率,垂直于x 轴的直线斜率不存在;(2)计算公式:若由A (x 1,y 1),B (x 2,y 2)确定的直线不垂直于x 轴,则k =y 2-y 1x 2-x 1 (x 1≠x 2).若直线的倾斜角为θ (θ≠π2),则k =tan_θ.4. 直线方程的形式及适用条件名称 几何条件 方程 局限性 点斜式过点(x 0,y 0),斜率为ky -y 0=k (x -x 0)不含垂直于x 轴的直线斜截式斜率为k ,纵截距为by =kx +b不含垂直于x 轴的直线两点式过两点(x 1,y 1),(x 2,y 2),(x 1≠x 2,y 1≠y 2) y -y 1y 2-y 1=x -x 1x 2-x 1 (x 2≠x 1,y 2≠y 1) 不包括垂直于坐标轴的直线 截距式在x 轴、y 轴上的截距分别为a ,b (a ,b ≠0)x a +y b =1 不包括垂直于坐标轴和过原点的直线 一般式Ax +By +C =0平面直角坐标系内的直线都适用题型一 直线的倾斜角与斜率例1、直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,则直线l 斜率的取值范围为________.方法点拨:数形结合,由斜率公式求得k P A ,k PB . 答案 (-∞,-3]∪[1,+∞) 解析 如图,∵k AP =1-02-1=1, k BP =3-00-1=-3,∴k ∈(-∞,-3]∪[1,+∞). 方法技巧求直线倾斜角与斜率问题的求解策略1.求直线倾斜角或斜率的取值范围时,常借助正切函数y =tan x 在[0,π)上的单调性求解,这里特别要注意,当α∈⎣⎡⎭⎫0,π2时,斜率k ∈[0,+∞);当α=π2时,斜率不存在;当α∈⎝⎛⎭⎫π2,π时,斜率k ∈(-∞,0). 2.先画出满足条件的图形,找到直线所过的点,然后求定点与端点决定的直线的斜率.见典例.【冲关针对训练】已知线段PQ 两端点的坐标分别为P (-1,1)和Q (2,2),若直线l :x +my +m =0与线段PQ 有交点,则实数m 的取值范围是________.答案 -23≤m ≤12解析 如图所示,直线l :x +my +m =0过定点A (0,-1),当m ≠0时,k QA =32,k P A =-2,k l =-1m ,∴-1m ≤-2或-1m ≥32,解得0<m ≤12或-23≤m <0;当m =0时,直线l 的方程为x =0,与线段PQ 有交点. ∴实数m 的取值范围为-23≤m ≤12.题型二 直线方程的求法又∵2a +1b ≥22ab ⇒12ab ≥4,当且仅当2a =1b =12,即a =4,b =2时,△AOB 面积S =12ab 有最小值为4. 此时,直线l 的方程是x 4+y2=1,即x +2y -4=0.(2)设所求直线l 的方程为y -1=k (x -2). 则可得A ⎝⎛⎭⎫2k -1k ,0,B (0,1-2k )(k <0),∴截距之和为2k -1k +1-2k =3-2k -1k ≥3+2(-2k )·⎝⎛⎭⎫-1k =3+2 2. 此时-2k =-1k ⇒k =-22.故截距之和最小值为3+22,此时l 的方程为y -1=-22(x -2),即x +2y -2-2=0. 方法技巧与直线方程有关问题的常见类型及解题策略1.求解与直线方程有关的最值问题,先设出直线方程,建立目标函数,再利用基本不等式求解最值或用函数的单调性解决.2.求参数值或范围.注意点在直线上,则点的坐标适合直线的方程,再结合函数的单调性或基本不等式求解. 【冲关针对训练】已知直线l 过点M (1,1),且与x 轴,y 轴的正半轴分别相交于A ,B 两点,O 为坐标原点.求:(1)当|OA |+|OB |取得最小值时,直线l 的方程; (2)当|MA |2+|MB |2取得最小值时,直线l 的方程. 解 (1)设A (a,0),B (0,b )(a >0,b >0). 设直线l 的方程为x a +y b =1,则1a +1b=1,所以|OA |+|OB |=a +b =(a +b )⎝⎛⎭⎫1a +1b =2+a b +ba≥2+2a b ·ba=4, 当且仅当“a =b =2”时取等号,此时直线l 的方程为x +y -2=0. (2)设直线l 的斜率为k ,则k <0, 直线l 的方程为y -1=k (x -1), 则A ⎝⎛⎭⎫1-1k ,0,B (0,1-k ), 所以|MA |2+|MB |2=⎝⎛⎭⎫1-1+1k 2+12+12+(1-1+k )2=2+k 2+1k2≥2+2k 2·1k2=4. 当且仅当k 2=1k2,即k =-1时取等号,此时直线l 的方程为y -1=-(x -1),即x +y -2=0.1.(2017·大庆模拟)两直线x m -y n =a 与x n -ym=a (其中a 是不为零的常数)的图象可能是( )答案 B解析 直线方程x m -y n =a 可化为y =n m x -na ,直线x n -y m =a 可化为y =mn x -ma ,由此可知两条直线的斜率同号.故选B.2.(2017·豫南九校联考)若θ是直线l 的倾斜角,且sin θ+cos θ=55,则l 的斜率为( ) A .-12B .-12或-2C.12或2 D .-2答案 D解析 ∵sin θ+cos θ=55,① ∴(sin θ+cos θ)2=1+sin2θ=15,∴2sin θcos θ=-45,∴(sin θ-cos θ)2=95,易知sin θ>0,cos θ<0, ∴sin θ-cos θ=355,②由①②解得⎩⎨⎧sin θ=255,cos θ=-55,∴tan θ=-2,即l 的斜率为-2,故选D.3.(2018·江西南昌模拟)已知过定点P (2,0)的直线l 与曲线y =2-x 2相交于A ,B 两点,O 为坐标原点,当△AOB 的面积取到最大值时,直线l 的倾斜角为( )A .150°B .135°C .120°D .105°答案 A解析 由y =2-x 2得x 2+y 2=2(y ≥0),它表示以原点O 为圆心,2为半径的圆的一部分,如图所示. 由题意知直线l 的斜率存在,设过点P (2,0)的直线l 的方程为y =k (x -2),则圆心到此直线的距离d =|2k |1+k 2,弦长|AB |=22-⎝ ⎛⎭⎪⎫|2k |1+k 22=22-2k 21+k 2,所以S △AOB=12×|2k |1+k 2×22-2k 21+k 2≤(2k )2+2-2k 22(1+k 2)=1,当且仅当(2k )2=2-2k 2,即k 2=13时等号成立,结合图可知k =-33⎝⎛⎭⎫k =33舍去,故所求直线l 的倾斜角为150°.故选A.4.(2014·四川高考)设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|P A |·|PB |的最大值是________.答案 5解析 易知A (0,0),B (1,3),且P A ⊥PB ,∴|P A |2+|PB |2=|AB |2=10,∴|P A |·|PB |≤|P A |2+|PB |22=5(当且仅当|P A |=|PB |=5时取“=”).一、选择题1.(2018·朝阳模拟)直线x +3y +1=0的倾斜角为( )A.π6 B.π3 C.2π3 D.5π6答案 D解析 直线斜率为-33,即tan α=-33,0≤α<π,∴α=5π6,故选D. 2.(2017·正定质检)直线x cos140°+y sin40°+1=0的倾斜角是( )A .40°B .50°C .130°D .140°答案 B解析 将直线x cos140°+y sin40°+1=0化成x cos40°-y sin40°-1=0,其斜率为k =cos40°sin40°=tan50°,倾斜角为50°.故选B.3.(2018·哈尔滨模拟)函数y =a sin x -b cos x 的一条对称轴为x =π4,则直线l :ax -by +c =0的倾斜角为( )A.π4B.π3 C.2π3 D.3π4答案 DA .1B .2C .4D .8答案 C解析 ∵直线ax +by =ab (a >0,b >0)过点(1,1),∴a +b =ab ,即1a +1b =1,∴a +b =(a +b )⎝⎛⎭⎫1a +1b =2+b a +ab ≥2+2b a ·ab=4,当且仅当a =b =2时上式等号成立.∴直线在x 轴,y 轴上的截距之和的最小值为4.故选C. 9.(2017·烟台期末)直线mx +n2y -1=0在y 轴上的截距是-1,且它的倾斜角是直线3x -y -33=0的倾斜角的2倍,则( )A .m =-3,n =-2B .m =3,n =2C .m =3,n =-2D .m =-3,n =2答案 A解析 根据题意,设直线mx +n2y -1=0为直线l ,另一直线的方程为3x -y -33=0, 变形可得y =3(x -3),其斜率k =3,则其倾斜角为60°,而直线l 的倾斜角是直线3x -y -33=0的倾斜角的2倍,则直线l 的倾斜角为120°,且斜率k =tan120°=-3,又由l 在y 轴上的截距是-1, 则其方程为y =-3x -1;又由其一般式方程为mx +n2y -1=0,分析可得m =-3,n =-2.故选A.10.若点(m ,n )在直线4x +3y -10=0上,则m 2+n 2的最小值是( )A .2B .2 2C .4D .2 3答案 C解析 因为点(m ,n )在直线4x +3y -10=0上,所以4m +3n -10=0. 欲求m 2+n 2的最小值可先求(m -0)2+(n -0)2的最小值.而(m -0)2+(n -0)2表示4m +3n -10=0上的点(m ,n )到原点的距离,如图.当过原点和点(m ,n )的直线与直线4m +3n -10=0垂直时,原点到点(m ,n )的距离最小,最小值为2. 故m 2+n 2的最小值为4.故选C. 二、填空题11.已知P (-3,2),Q (3,4)及直线ax +y +3=0.若沿PQ →的方向延长线段PQ 与直线有交点(不含Q 点),则a 的取值范围是________.答案 ⎝⎛⎭⎫-73,-13解析 直线l :ax +y +3=0是过点A (0,-3)的直线系,斜率为参变数-a ,易知PQ ,QA ,l 的斜率分别为:k PQ=13,k AQ =73,k l =-a .若l 与PQ 延长线相交,由图可知k PQ <k l <k AQ ,解得-73<a <-13. 12.(2018·石家庄期末)一直线过点A (-3,4),且在两轴上的截距之和为12,则此直线方程是________.答案 x +3y -9=0或y =4x +16解析 设横截距为a ,则纵截距为12-a ,直线方程为x a +y 12-a =1,把A (-3,4)代入,得-3a +412-a =1,解得a =-4,a =9.a =9时,直线方程为x 9+y3=1,整理可得x +3y -9=0.a =-4时,直线方程为x -4+y16=1,整理可得4x -y +16=0.综上所述,此直线方程是x +3y -9=0或4x -y +16=0.13.过直线l :y =x 上的点P (2,2)作直线m ,若直线l ,m 与x 轴围成的三角形的面积为2,则直线m 的方程为________.答案 x -2y +2=0或x =2解析 ①若直线m 的斜率不存在,则直线m 的方程为x =2,直线m ,直线l 和x 轴围成的三角形面积为2,符合题意;②若直线m 的斜率k =0,则直线m 与x 轴没有交点,不符合题意;③若直线m 的斜率k ≠0,设其方程为y -2=k (x -2),令y =0,得x =2-2k ,依题意有12×⎪⎪⎪⎪2-2k ×2=2,即⎪⎪⎪⎪1-1k =1,解得k =12,所以直线m 的方程为y -2=12(x -2),即x -2y +2=0.综上知,直线m 的方程为x -2y +2=0或x =2. 14.在下列叙述中:1112 ∴无论k 取何值,直线总经过定点(-2,1).(2)由方程知,当k ≠0时,直线在x 轴上的截距为-1+2k k,在y 轴上的截距为1+2k ,要使直线不经过第四象限,则必须有⎩⎪⎨⎪⎧ -1+2k k ≤-2,1+2k ≥1,解得k >0;当k =0时,直线为y =1,符合题意,故k 的取值范围为[0,+∞). (3)由题意可知k ≠0,再由l 的方程,得A ⎝⎛⎭⎫-1+2k k ,0,B (0,1+2k ). 依题意得⎩⎪⎨⎪⎧-1+2k k <0,1+2k >0,解得k >0. ∵S =12·|OA |·|OB |=12·⎪⎪⎪⎪1+2k k ·|1+2k |=12·(1+2k )2k =12⎝⎛⎭⎫4k +1k +4≥12×(2×2+4)=4, “=”成立的条件是k >0且4k =1k ,即k =12, ∴S min =4,此时直线l 的方程为x -2y +4=0.方法与技巧1. 要正确理解倾斜角的定义,明确倾斜角的取值范围,熟记斜率公式:k =y 2-y 1x 2-x 1,该公式与两点顺序无关,已知两点坐标(x 1≠x 2)时,根据该公式可求出经过两点的直线的斜率.当x 1=x 2,y 1≠y 2时,直线的斜率不存在,此时直线的倾斜角为90°.2. 求斜率可用k =tan α(α≠90°),其中α为倾斜角,由此可见倾斜角与斜率相互联系不可分割,牢记:“斜率变化分两段,90°是分界,遇到斜率要谨记,存在与否需讨论”.3. 求直线方程中一种重要的方法就是先设直线方程,再求直线方程中的系数,这种方法叫待定系数法. 失误与防范1. 求直线方程时要注意判断直线斜率是否存在;每条直线都有倾斜角,但不一定每条直线都存在斜率.2. 根据斜率求倾斜角,一是要注意倾斜角的范围;二是要考虑正切函数的单调性.3. 利用一般式方程Ax +By +C =0求它的方向向量为(-B ,A )不可记错,但同时注意方向向量是不唯一的.1. 如图中的直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则( )A .k 1<k 2<k 3B .k 3<k 1<k 2C .k 3<k 2<k 1D .k 1<k 3<k 2 答案 D 解析 直线l 1的倾斜角α1是钝角,故k 1<0,直线l 2与l 3的倾斜角α2与α3均为锐角,且α2>α3,所以0<k 3<k 2,因此k 1<k 3<k 2,故选D.13。
高三数学第一轮知识点:直线与方程第1篇:高三数学第一轮知识点:直线与方程导语:直线与方程就是直线的方程,在几何问题的研究中,我们常常直接依据几何图形中点,直线,平面间的关系研究几何图形的*质。
以下是小编整理高三数学第一轮知识点的资料,欢迎阅读参考。
(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。
特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。
因此,倾斜角的取值范围是0180(2)直线的斜率①定义:倾斜角不是90的直线,它的倾斜角的正切叫做这条直线的斜率。
直线的斜率常用k表示。
即。
斜率反映直线与轴的倾斜程度。
当时,。
当时,;当时,不存在。
②过两点的直线的斜率公式:注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90(2)k与p1、p2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
(3)直线方程①点斜式:直线斜率k,且过点注意:当直线的斜率为0时,k=0,直线的方程是y=y1。
当直线的斜率为90时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。
②斜截式:,直线斜率为k,直线在y轴上的截距为b③两点式:()直线两点,④截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴未完,继续阅读 >第2篇:高三数学一轮直线与方程的知识点一、直线与方程(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。
特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。
因此,倾斜角的取值范围是0180(2)直线的斜率①定义:倾斜角不是90的直线,它的倾斜角的正切叫做这条直线的斜率。
直线的斜率常用k表示。
即。
斜率反映直线与轴的倾斜程度。
当时,。
当时,;当时,不存在。
②过两点的直线的斜率公式:注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90(2)k与p1、p2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
新高考数学一轮复习考点知识专题讲解与练习第七章平面解析几何考点知识总结38 直线的倾斜角与斜率、直线的方程高考概览高考在本考点的常考题型为选择题,分值为5分,中、低等难度考纲研读1.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式2.能根据两条直线的斜率判断这两条直线平行或垂直3.掌握确定直线位置的几何要素4.掌握直线方程的几种形式(点斜式、两点式及一般式等),了解斜截式与一次函数的关系一、基础小题1.直线x sin π7+y cosπ7=0的倾斜角α是()A.-π7B.π7 C.5π7D.6π7答案D解析 ∵tan α=-sin π7cos π7=-tan π7=tan 6π7,α∈[0,π),∴α=6π7.2.已知直线l 过点(0,3)且与直线x +y -1=0垂直,则直线l 的方程是( )A .x +y -3=0B .x -y +3=0C .x +y -2=0D .x -y -2=0答案 B解析 因为直线l 与直线x +y -1=0垂直,所以k l =1,所以直线l 的方程为y =x +3,即x -y +3=0.故选B.3.已知直线l 经过两点O (0,0),A (1,3),直线m 的倾斜角是直线l 的倾斜角的两倍,则直线m 的斜率是( )A .-3B .-33 C.33 D . 3答案 A解析 依题意k OA =3-01-0=3,所以直线l 的倾斜角为π3,所以直线m 的倾斜角为2π3,所以直线m 的斜率为tan 2π3=- 3.故选A.4.在同一平面直角坐标系中,直线l 1:ax +y +b =0和直线l 2:bx +y +a =0的图象有可能是( )答案 B解析 当a ≠0,b ≠0时,两直线在x 轴上的截距符号相同.故选B.5.直线ax +by +c =0同时要经过第一、二、四象限,则a ,b ,c 应满足( )A .ab >0,bc <0B .ab >0,bc >0C .ab <0,bc >0D .ab <0,bc <0答案 A解析 由于直线ax +by +c =0经过第一、二、四象限,所以直线存在斜率,将直线方程变形为y =-a b x -c b .易知-a b <0且-c b >0,故ab >0,bc <0.6.设点P 是曲线y =x 3-3x +23上的任意一点,则该点处切线的倾斜角α的取值范围是( )A.⎣⎢⎡⎦⎥⎤0,π2∪⎣⎢⎡⎭⎪⎫5π6,π B .⎣⎢⎡⎭⎪⎫2π3,π C.⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫2π3,π D .⎝ ⎛⎦⎥⎤π2,5π6 答案 C解析 因为y ′=3x 2-3≥-3,即切线斜率k ≥-3,所以切线的倾斜角α的取值范围是⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫2π3,π. 7.直线x -2y +b =0与两坐标轴所围成的三角形的面积不大于1,那么b 的取值范围是( )A .[-2,2]B .(-∞,-2]∪[2,+∞)C .[-2,0)∪(0,2]D.(-∞,+∞)答案C解析令x=0,得y=b2,令y=0,得x=-b,所以所求三角形的面积为12⎪⎪⎪⎪⎪⎪b2|-b|=14b2,且b≠0,14b2≤1,所以b2≤4,所以b的取值范围是[-2,0)∪(0,2].8.(多选)已知直线l过点P(2,4),在x轴和y轴上的截距相等,则直线l的方程可能为()A.x-y+2=0 B.x+y-6=0C.x=2 D.2x-y=0答案BD解析当直线过原点时,斜率等于4-02-0=2,故直线的方程为y=2x,即2x-y=0.当直线不过原点时,设直线的方程为x+y+m=0,把P(2,4)代入直线的方程得m=-6,故求得的直线方程为x+y-6=0.综上,满足条件的直线方程为x+y-6=0或2x-y=0.故选BD.9.(多选)已知直线l过点P(1,2),且A(2,3),B(4,-5)到l的距离相等,则直线l 的方程是()A.4x+y-6=0 B.x+4y-6=0C.3x+2y-7=0 D.2x+3y-7=0答案AC解析由已知条件可知直线l平行于直线AB或过线段AB的中点,当直线l∥AB时,因为AB 的斜率为3+52-4=-4,所以直线l 的方程是y -2=-4(x -1),即4x +y -6=0;当直线l 经过线段AB 的中点(3,-1)时,直线l 的方程是y +12+1=x -31-3,即3x +2y -7=0,所以所求直线l 的方程为3x +2y -7=0或4x +y -6=0.故选AC.10.已知两点A (3,2),B (8,12),则直线AB 的一般式方程为________.答案 2x -y -4=0解析 ∵A (3,2),B (8,12),∴过A ,B 的直线方程为y -212-2=x -38-3,整理,得2x -y -4=0.11.过点A (2,1),B (m,3)的直线的倾斜角α的范围是⎝ ⎛⎭⎪⎫π4,3π4,则实数m 的取值范围是________.答案 (0,4)解析 当m =2时,直线的倾斜角为π2,满足题意;当m ≠2时,直线AB 的斜率为3-1m -2,所以3-1m -2>tan π4=1或3-1m -2<tan 3π4=-1,所以4-m m -2>0或m m -2<0,解得2<m <4或0<m <2.综上,实数m 的取值范围是0<m <4.12.已知直线l 1:ax -2y =2a -4,l 2:2x +a 2y =2a 2+4,当0<a <2时,直线l 1,l 2与两坐标轴围成一个四边形,当四边形的面积最小时,实数a =________,四边形面积的最小值是________.答案 12154解析 直线l 1可写成a (x -2)=2(y -2),直线l 2可写成2(x -2)=a 2(2-y ),所以直线l 1,l 2恒过定点P (2,2),直线l 1的纵截距为2-a ,直线l 2的横截距为a 2+2,所以四边形的面积S =12×2×(2-a )+12×2×(a 2+2)=a 2-a +4=⎝ ⎛⎭⎪⎫a -122+154.当a =12时,四边形的面积最小,最小值为154.二、高考小题本考点在近三年高考中未涉及此题型.三、模拟小题13.(2022·安徽六安二中期末)已知直线l 的倾斜角为α,若cos α=-45,则直线l 的斜率为( )A.34 B .43 C .-34 D .-43答案 C解析 ∵0≤α<π,cos α=-45,∴sin α=35,tan α=-34.故选C.14.(2022·湖北宜昌高三阶段考试)已知直线a 1x +b 1y +1=0和直线a 2x +b 2y +1=0都过点A (2,1),则过点P 1(a 1,b 1)和点P 2(a 2,b 2)的直线的方程是( )A .2x +y -1=0B .2x +y +1=0C .2x -y +1=0D .x +2y +1=0答案 B解析 把A (2,1)坐标代入两条直线a 1x +b 1y +1=0和a 2x +b 2y +1=0,得2a 1+b 1+1=0,2a 2+b 2+1=0,∴2(a 1-a 2)=b 2-b 1,过点P 1(a 1,b 1),P 2(a 2,b 2)的直线的方程是y -b 1b 2-b 1=x -a 1a 2-a 1,∴y -b 1=-2(x -a 1),则2x +y -(2a 1+b 1)=0,∵2a 1+b 1+1=0,∴2a 1+b 1=-1,∴所求直线的方程为2x +y +1=0.故选B.15.(2022·温州模拟)已知点M 是直线l :2x -y -4=0与x 轴的交点,将直线l 绕点M 按逆时针方向旋转45°,得到的直线的方程是( )A .x +y -3=0B .x -3y -2=0C .3x -y +6=0D .3x +y -6=0答案 D解析 直线l :2x -y -4=0与x 轴的交点为M (2,0).设直线l 的倾斜角为α,则tan α=2,则tan(α+45°)=tan α+tan45°1-tan αtan45°=2+11-2=-3,故得到的直线的方程是y -0=-3(x -2),可化为3x +y -6=0.故选D.16.(2022·广东惠州质检)直线l 经过点A (1,2),在x 轴上的截距的取值范围是(-3,3),则其斜率k 的取值范围是( )A .-1<k <15B .-1<k <12C .k >15或k <-1D .k <-1或k >12答案 D解析 设直线l 的斜率为k ,则直线方程为y -2=k (x -1),直线l 在x 轴上的截距为1-2k .令-3<1-2k <3,解不等式得k <-1或k >12.17.(多选)(2022·江苏省江阴高级中学期中)下列说法正确的是( )A.直线y=ax-3a+2(a∈R)必过定点(3,2)B.直线y=3x-2在y轴上的截距为-2C.直线3x+y+1=0的倾斜角为60°D.过点(-1,2)且垂直于直线x-2y+3=0的直线的方程为2x+y=0答案ABD解析y=ax-3a+2(a∈R)可化为y-2=a(x-3),则直线y=ax-3a+2(a∈R)必过点(3,2),故A正确;令x=0,则y=-2,即直线y=3x-2在y轴上的截距为-2,故B 正确;3x+y+1=0可化为y=-3x-1,则该直线的斜率为-3,即倾斜角为120°,故C错误;设过点(-1,2)且垂直于直线x-2y+3=0的直线方程为2x+y+m=0,将点(-1,2)代入,得-2+2+m=0,解得m=0,则过点(-1,2)且垂直于直线x-2y+3=0的直线的方程为2x+y=0,故D正确.故选ABD.18.(多选)(2022·河北省张家口市月考)已知直线l:(a2+a+1)x-y+1=0,其中a ∈R,下列说法正确的是()A.当a=-1时,直线l与直线x+y=0垂直B.若直线l与直线x-y=0平行,则a=0C.直线l过定点(0,1)D.当a=0时,直线l在两坐标轴上的截距相等答案AC解析对于A,当a=-1时,直线l的方程为x-y+1=0,显然与x+y=0垂直,所以正确;对于B,若直线l与直线x-y=0平行,可知(a2+a+1)×(-1)=1×(-1),解得a=0或a=-1,所以不正确;对于C,当x=0时,有y=1,所以直线l过定点(0,1),所以正确;对于D,当a=0时,直线l的方程为x-y+1=0,在x轴、y轴上的截距分别是-1,1,所以不正确.故选AC.19.(2022·新高考八省联考)若正方形一条对角线所在直线的斜率为2,则该正方形的两条邻边所在直线的斜率分别为________,________.答案13-3解析如图,在正方形OABC中,对角线OB所在直线的斜率为2,建立如图所示的平面直角坐标系.设对角线OB所在直线的倾斜角为θ,则tanθ=2,由正方形的性质可知,直线OA的倾斜角为θ-45°,直线OC的倾斜角为θ+45°,故k OA=tan(θ-45°)=tanθ-tan45°1+tanθtan45°=2-1 1+2=13,k OC=tan(θ+45°)=tanθ+tan45°1-tanθtan45°=2+11-2=-3.20.(2022·广西南宁高三摸底考试)设点A(-1,0),B(1,0),直线2x+y-b=0与线段AB相交,则b的最小值是________,最大值是________.答案-22解析b为直线y=-2x+b在y轴上的截距,如图,当直线y=-2x+b过点A(-1,0)和点B(1,0)时,b分别取得最小值和最大值.故b的最小值为-2,最大值为2.21.(2022·银川模拟)直线l 的倾斜角是直线4x +3y -1=0的倾斜角的一半,若l 不过坐标原点,则l 在x 轴与y 轴上的截距之比为________.答案 -12 解析 设直线l 的倾斜角为θ.所以tan2θ=-43.2tan θ1-tan 2θ=-43,所以tan θ=2或tan θ=-12,由2θ∈[0,π)知,θ∈⎣⎢⎡⎭⎪⎫0,π2.所以tan θ=2.设l 在x 轴上的截距为a ,在y 轴上的截距为b ,所以tan θ=-b a ,即a b =-1tan θ=-12. 22.(2022·湖南株洲高三模拟)已知A (-1,0),B (0,2),直线l :2x -2ay +3+a =0上存在点P ,满足|P A |+|PB |=5,则l 的倾斜角的取值范围是________________.答案 ⎝ ⎛⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π 解析 直线l :2x -2ay +3+a =0可化为a (-2y +1)+2x +3=0,则直线l 必过定点Q ⎝ ⎛⎭⎪⎫-32,12.又|AB |=5,|P A |+|PB |=5,∴点P 在线段AB 上,∴直线l 与线段AB 必有一个交点P .∵k QA =12-0-32+1=-1,k QB =2-120+32=1,∴直线QA ,OB 的倾斜角分别为3π4,π4.又直线l 不能表示斜率为0的直线,∴如图所示,直线l 位于QA 与QB 之间⎝ ⎛⎭⎪⎫包含边界,不含y =12,∴直线l 的倾斜角的取值范围是⎝ ⎛⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π.一、高考大题本考点在近三年高考中未涉及此题型.二、模拟大题1.(2022·内蒙古赤峰二中模拟)已知△ABC 的三个顶点坐标分别为A (-2,-4),B (2,4),C (5,-1).(1)求边AB 上的中线所在直线的一般式方程;(2)求边AB 上的高所在直线的一般式方程.解 (1)∵A (-2,-4),B (2,4),∴AB 的中点为O (0,0),∴边AB 上的中线CO 的斜率为k =-15,∴边AB 上的中线所在直线的一般式方程为x +5y =0.(2)∵A (-2,-4),B (2,4)∴k AB=4-(-4)2-(-2)=2,故边AB上的高所在直线的斜率为k=-12,由点斜式得,边AB上的高所在直线方程为y+1=-12(x-5),∴边AB上的高所在直线的一般式方程为x+2y-3=0.2.(2022·山东菏泽三中模拟)已知直线y=-33x+5的倾斜角是直线l的倾斜角的5倍,分别求满足下列条件的直线l的方程.(1)过点P(3,-4);(2)在x轴上的截距为-2;(3)在y轴上的截距为3.解设直线y=-33x+5的倾斜角为α,则斜率k=tanα=-33,∴α=150°,故所求直线l的倾斜角为30°,斜率k′=33.(1)过点P(3,-4),由点斜式方程得y+4=33(x-3),∴y=33x-3-4.(2)在x轴上的截距为-2,即直线l过点(-2,0),由点斜式方程得y -0=33(x +2),∴y =33x +233.(3)在y 轴上的截距为3,由斜截式方程得y =33x +3.3. (2022·安徽亳州模拟)如图,射线OA ,OB 分别与x 轴正半轴成45°和30°角,过点P (1,0)作直线AB 分别交OA ,OB 于A ,B 两点,当AB 的中点C 恰好落在直线y =12x上时,求直线AB 的方程.解 由题意可得k OA =tan45°=1,k OB =tan(180°-30°)=-33,所以直线l OA :y =x ,直线l OB :y =-33x .设A (m ,m ),B (-3n ,n ),所以AB 的中点为C ⎝ ⎛⎭⎪⎫m -3n 2,m +n 2, 由点C 在直线y =12x 上,且A ,P ,B 三点共线,得⎩⎨⎧m +n 2=12·m -3n 2,m -0m -1=n -0-3n -1,解得m =3,所以A (3,3).又P (1,0),所以k AB =k AP =33-1=3+32, 所以l AB :y =3+32(x -1),即直线AB 的方程为(3+3)x -2y -3-3=0.4.(2022·云南丽江质检)已知直线l :kx -y +1+2k =0(k ∈R ).(1)证明:直线l 恒过定点;(2)若直线不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于点A ,交y 轴正半轴于点B ,△AOB 的面积为S (O 为坐标原点),求S 的最小值并求此时直线l 的方程.解 (1)证明:直线l 的方程可化为k (x +2)+(1-y )=0,令⎩⎨⎧ x +2=0,1-y =0,解得⎩⎨⎧x =-2,y =1.所以无论k 取何值,直线l 恒过定点(-2,1).(2)由方程知,当k ≠0时直线在x 轴上的截距为-1+2k k ,在y 轴上的截距为1+2k ,要使直线不经过第四象限,则必须有⎩⎨⎧ -1+2k k ≤-2,1+2k ≥1,解得k >0;当k =0时,直线为y =1,符合题意. 综上所述,k 的取值范围是[0,+∞).(3)由题意可知k ≠0,再由l 的方程,得 A ⎝ ⎛⎭⎪⎫-1+2k k ,0,B (0,1+2k ).依题意得⎩⎨⎧ -1+2k k <0,1+2k >0,解得k >0.由S =12|OA |·|OB |=12⎪⎪⎪⎪⎪⎪1+2k k ·|1+2k |=12·(1+2k )2k =12⎝ ⎛⎭⎪⎫4k +1k +4≥12×(2×2+4)=4,当且仅当k >0且4k =1k ,即k =12时,“=”成立. 所以S min =4,此时直线l 的方程为x -2y +4=0.。
高三(上)数学(86) 一轮复习------直线的倾斜角与斜率、直线的方程 班 姓名
1、下列命题正确的是( )
A.若α是直线的倾斜角,则 1800<<α
B.若k 是直线的斜率,则R k ∈且0≠k
C.任何直线都有倾斜角,但不一定有斜率
D.任何直线都有斜率,但不一定有倾斜角 2、已知直线的点斜式方程为))4(33-=+x y ,
则这条直线经过的已知点的坐标、倾斜角分别 是( ) A.3
),3,4(π
- B.3
),
3,4(π
-
C.6
),
3,4(π D.6),3,4(π
-
3、已知}{n a 是等差数列,55,1554==S a ,则过
点),4(),,3(43a Q a P 的直线斜率为( )
A.4
B.
4
1
C.4-
D.14- 4、若0,0>>BC AB ,则直线0=++C By Ax
经过的象限是( )
A.第一、二、三象限
B.第二、三、四象限
C.第一、三、四象限
D.第一、二、四象限 5、已知),3(m P 在过点)1,2(-M 和)4,3(-N 的直
线上,则m 的值为( )
A.5
B.2
C.2-
D.6- 6、若直线042=--y x 绕着它与x 轴的交点逆时
针旋转4
π
,则所得的直线方程为( )
A.063=-+y x
B.023=--y x
C.063=+-y x
D.02=--y x 7、若直线0=++C By Ax 经过两点)3,2(),1,1(,
则C
B A
C B A +-++的值为( ) A.0 B.1 C.2 D.无法确定
8、直线l 过点)2,1(A ,在x 轴上的截距的取值范围
是)3,3(-,则其斜率的取值范围是( ) A.)51,1(- B.),1()2
1,(+∞-∞
C.),5
1
()1,(+∞--∞ D.),21()1,(+∞--∞
9、若01:111=++y b x a l 和=++1:222y b x a l
0都过点)1,2(A ,则过),(111b a P 和),(222b a P
的直线方程是( )
A.012=++y x
B.012=+-y x
C.012=-+y x
D.012=++y x
10、若直线的斜率为
4
3
,且与两坐标轴围成的三角形面积为6,则直线方程为( ) A.01243=-+y x
B.01243=+-y x
C.0743=+-y x
D.01243=+-y x 或01243=--y x 11、直线01=-+By Ax 在y 轴上的截距为1-,
且它的倾斜角是直线333=-y x 的倾斜角的2倍,则=A ,=B . 12、已知)0,(),1,(),2,1(b C a B A ---三点共线,其中
0,0>>b a ,则a 与b 的关系式为 ,
b
a 2
1+的最小值是 . 13、已知点A 在直线012=-+y x 上,点B 在直
线032=++y x 上,记线段AB 的中点为
),(00y x P ,且满足200+>x y ,则
x y 的取值范围为 .
14、设R m ∈,过定点A 的动直线0=+my x 和过
定点B 的动直线03=+--m y mx 交于点),(y x P ,则||||PB PA •的最大值是 . 15、已知函数]2
,
0[,2sin )(π
∈-=x x x x f ,过点
),0(m P 作曲线)(x f y =的切线,斜率恒大于零,则m 的取值范围为 . 16、设直线:l )(02)1(R a a y x a ∈=-+++.
(1)若l 在两坐标轴上截距相等,求l 的方程; (2)若l 不经过第二象限,求实数a 的取值范
围.
17、ABC ∆的三个顶点分别为)0,3(-A ,)1,2(B ,)3,2(-C ,求:
(1)BC 边所在直线的方程;
(2)BC 边上中线AD 所在直线的方程; (3)BC 边的垂直平分线DE 所在直线的方
程.
18、过点)1,2(P 作直线l ,与x 轴正半轴,y 轴正
半轴分别交于B A ,两点,求:
(1)AOB ∆面积的最小值及此时直线l 的方
程;
(2)直线l 在两坐标轴上截距之和的最小值及
此时直线l 的方程;
(3)5:3||:||=PB AP 时,直线l 的方程.。