当前位置:文档之家› 隧道设计衬砌计算范例(结构力学方法)

隧道设计衬砌计算范例(结构力学方法)

隧道设计衬砌计算范例(结构力学方法)
隧道设计衬砌计算范例(结构力学方法)

工程概况

川藏公路二郎山隧道位于四川省雅安天全县与甘孜泸定县交界的二郎山地段, 东距成都约 260km , 西至康定约 97 km , 这里山势险峻雄伟, 地质条件复杂, 气候环境恶劣, 自然灾害频繁, 原有公路坡陡弯急, 交通事故不断, 使其成为千里川藏线上的第一个咽喉险道, 严重影响了川藏线的运输能力, 制约了川藏少数民族地区的经济发展。

二郎山隧道工程自天全县龙胆溪川藏公路K2734+ 560 (K256+ 560)处回头, 沿龙胆溪两侧缓坡展线进洞, 穿越二郎山北支山脉——干海子山, 于泸定县别托村和平沟左岸出洞, 跨和平沟经别托村展线至K2768+ 600 (K265+ 216) 与原川藏公路相接, 总长 8166km , 其中二郎山隧道长4176 m , 别托隧道长104 m ,改建后可缩短运营里程2514 km , 使该路段公路达到三级公路标准, 满足了川藏线二郎山段的全天候行车。

工程地质条件

地形地貌

二郎山段山高坡陡,地形险要,在地貌上位于四川盆地向青藏高原过渡的盆地边缘山区分水岭地带,隶属于龙门山深切割高中地区。隧道中部地势较高。隧址区地形地貌与地层岩性及构造条件密切相关。由于区内地层为软硬相间的层状地层,构造为西倾的单斜构造,故地形呈现东陡西缓的单面山特征。隧道轴线穿越部位,山体浑厚,东西两侧发育的沟谷多受构造裂隙展布方向的控制。主沟龙胆溪、和平沟与支沟构成羽状或树枝状,横断面呈对称状和非对称状的“ v ”型沟谷,纵坡顺直比降大,局部受岩性构造影响,形成陡崖跌水。

水文气象

二郎山位于四川盆地亚热带季风湿润气候区与青藏高原大陆性干冷气候区的交接地带。由于山系屏障,二郎山东西两侧气候有显著差异。东坡潮湿多雨,西坡干燥多风,故有“康风雅雨”之称。全年分早季和雨季。夏、秋两季受东进的太平洋季风和南来的印度洋季风的控制,降雨量特别集中;冬春季节,则受

青藏高原寒冷气候影响,多风少雨,气候严寒。

据沪定、天全两县21年(1960-1980年)气候资料,多年平均气温分别为℃和℃,沪定略高于天全,多年平均降雨量分别为 mm和,多年平均蒸发量分别为和,每年8级以上大风日数分别为14天和3天,沪定相对大风更多、更强烈。据调查访问,二郎山东坡季节冰冻线约在海拔2200m以上,积雪线海拔1900m左右,积雪时限11月上旬至次年4月,西坡季节冰冻线约为海拔2600m-2800m季节积雪线海拔2300m-2500m左右。

二郎山东西两侧分别属于青衣江和眠江支流一大渡河两大水系。东坡龙胆溪为青衣江支流天全河发源地,西坡潘沟,属大渡河支流。本区溪沟均受大气降水(雨、雪)和地下水的补给,其中主要为大气降水补给。因而,亦具有一般山区沟河“易涨易落”之特点。

地质状况

隧道穿越地层以志留系、泥盆系浅海—滨海相碳酸盐和碎屑岩为主,出口端上覆地层为崩坡积层, 黄灰、黑灰色块石土或块石、碎石土, 由山前滑坡、崩塌等坡积、崩积物及少量坡面洪流形成的洪积物组成, 主要成份为岩屑砂砾、角砾、亚粘土等。

由于区内岩层软硬相间, 故地形呈东陡西缓的单面山特征, 东坡为逆向坡, 西坡为顺向坡。二郎山断裂带从隧址区西北侧通过, 距隧道出口约350~400m , 该断裂是龙门山断裂带的南西延长部分,为区内控制性主干断裂, 在其影响下区内沿其旁侧发育一系列次级分支羽状断裂, 在隧道轴线上共穿越断层11条, 多属压性—压扭性质, 断层带不宽, 影响带较小, 胶结较好。隧址区地震基本烈度为8 度。

隧址区初始应力条件

通过采用水压致裂法在7 个钻孔中的地应力测量, 得出隧道最大水平主应

力(σmax )的总体方向为N 74°W , 与隧道轴线夹角 31°左右, 隧址区地应力场具有以下分布特征:

(1)大约位于标高2200 m 处, 为山体应力与构造应力的分界线, 分界线以上垂直应力(Rv )占主导地位; 分界线以下水平主应力值明显增加并占主导地位, 隧道顶板正好位于分界线偏下。

(2)水平地应力(σHmax、σhmin )在垂直方向上的分布随深度增加而增大, 在横向上由隧道两端向山体内部逐渐增加, 即隧道中部地应力最大, σHmax = Pa。

(3)在同一深度内硬质岩类显示高应力值, 软岩类显示低应力值。

二郎山隧道(主洞)长4176 m , 以II、III类围岩为主,长3004 m,占%; IV 类围岩长821 m , 占%; V类围岩长351 m,占%。

2 隧道设计

设计标准

设计行车速度: 40 km/ h (三级公路) ;

隧道建筑限界: 隧道净宽 m m + 2× m) , 限高5 m

设计荷载: 汽车—20 级, 挂车—100;

设计小时交通量: 441辆/h;

行车方式: 单洞双向行驶;

卫生标准: 正常运营CO允许浓度为150×10- 6, 阻塞及救灾短时间内(15 min)

为250×10- 6;

烟雾允许浓度 m - 1。

平面线形、纵断面设计

平面线形

隧道的平面线形应根据地质、地形、路线走向、通风等因素确定隧道的平曲线线形。直线便于施工;曲线段施工难度较大,除测量上难度加大以外,例如模板台车载曲线段施工很困难,有超高时就更困难。

结合隧址区地形、地貌及工程地质与水文地质条件、地应力大小与方向、经济性, 确定出了隧道轴线位置, 同时还兼顾了两端接线的衔接,隧道平面线形确定为直线型。隧道设计里程 K259+ 036~ K263+ 212, 长 4 176 m,进口标高2 m , 出口标高 m。

纵断面设计

隧道内纵断面线形应考虑行车安全性、营运通风规模、施工作业效率和排水要求,隧道纵坡不应小于%,一般情况不应大于3%;受地形等跳警限制时,高速公路、一级公路的中、短隧道可适当加大,但不宜大于4%;短于100m的隧道纵坡可与该公路隧道外路线的指标相同。隧道内的纵坡形式,一般采用单向坡;当地下水发育的长隧道、特长隧道可采用双向坡。纵坡变更的凸形竖曲线和凹形竖曲线的最小半径和最小长度应符合规范规定(《公路隧道设计规范》JTGD70-2004,表)。

二郎山隧道属特长隧道,因此纵坡形式采用“人”字坡式,进口侧上坡, 坡度% (长2000 m ) , 出口侧下坡, 坡度% (长2176 m )。

横断面设计

建筑限界

隧道横断面设计主要是对隧道净空的设计。隧道净空是指隧道衬砌的内轮廓线所包围的空间。隧道净空是根据“建筑限界”确定的。“限界”是一种规定的轮廓线,这种轮廓线以内的空间是保证车辆安全运行所必需的,是建筑物不得侵

入的一种限界。公路隧道建筑限界包括车道、路肩、路缘带、人行道等的宽度及车道、人行道的净高。下图为公路隧道建筑限界横断面组成宽度。

根据《公路工程技术标准》, 隧道建筑限界采用净宽 m , 限高。隧道内轮廓经过比选确定采用单心圆断面, 隧道总高度。

紧急停车带

长、特长隧道应在行车方向的右侧设置紧急停车带。双向行车隧道,其紧急停车带应双侧交错设置。紧急停车带的宽度,包含右侧向宽度应取,长度应取

40m,其中有效长度不得小于30m。紧急停车带的设置间距不宜大于750m。停车带的路面横坡,长隧道可取水平,特长隧道可取%~%或水平。

二郎山隧道应设紧急停车带,双向交错布置,紧急停车带间距700m,有效长度30m,横向坡度取1%。紧急停车带的建筑限界、宽度和长度见图。

图建筑界(单位:cm)

a)宽度构成及建筑限界(单位:cm)

b)长度(单位:cm)

图紧急停车带的建筑限界、宽度和长度

内轮廓设计

隧道内轮廓设计除符合隧道建造限界的规定外,还应满足洞内路面、排水设施、装饰的需要,并为通风、照明、消防、监控、营运管理等设施提供安装控件,同时考虑围岩变形、施工方法影响的预留富裕量,使确定的断面形式及尺寸符合安全、经济、合理的原则。

二郎山隧道内轮廓采用单心圆方案,半径R1=,R2=1m,R3=,θ1=108°,

θ

2=67°,θ

3

=12°,IV、V级围岩设置仰拱,内轮廓线如图。

a)一般内轮廓线

b) 含紧急停车带内轮廓线

图内轮廓线(单位:m)

3 洞门设计

《公路隧道设计规范》(JTGD70-2004)对洞门有如下规定:

1.洞口位置应根据地形、地质条件,同时结合环境保护、洞外有关工程及施工条件、营运要求,通过经济、技术比较确定;

2.隧道应遵循“早进洞、晚出洞”的原则,不得大挖大刷,确保边坡及仰坡的稳定;

3.洞口边坡、仰坡顶面及其周围,应根据情况设置排水沟,并和路基排水系统综合考虑布置。

洞门位置选择

《公路隧道设计规范》(JTGD70-2004)规定洞口位置的确定应符合下列要求:1.洞口的边坡及仰坡必须保证稳定。有条件时,应贴壁进洞;条件限制时,边坡及仰坡的设计开挖最大高度可按表控制。

表洞口边、仰坡控制高度

注:设计开挖高度系从路基边缘算起

2.洞口位置应设于山坡稳定、地质条件好处。

3.位于悬崖陡壁下的洞口,不宜切削原山坡;应避免在不稳定的悬崖陡壁下进洞。

4.跨沟或沿沟进洞时,应考虑水文情况,结合防排水工程,充分比选确定。

5.漫坡地段的洞口位置,应结合洞外路堑地质、弃渣、排水及施工等因素综合分析确定。

6.洞口设计应考虑与附近的地面建筑及地下埋设物的相互影响,必要时采取防范措施。

7.洞口边坡、仰坡应根据实际情况加固防护措施,有条件时应优先采用绿化护坡。

8.当洞口处有塌方、落石、泥石流等时,应采取清刷、延伸洞口、设置明洞或支挡结构物等措施。

洞门形式选择标准

洞门形式的选择应适应地形、地质的需要,同时考虑施工方法和施工需要。一般地形等高线与线路中线斜交角度在45。~65。之间,地面横坡较陡,地质条件好,无落石掉块现象时,可选择斜交洞门;当斜交角度大于65。时,地面横坡较陡,或一侧地形凸出,可考虑用台阶洞门;当斜交角度小于45。时,地面横坡较陡,边仰坡刷方较高,有落石掉块掉块威胁运营安全时,考虑接长明洞。

洞门确定

二郎山隧道穿越地层以志留系、泥盆系浅海—滨海相碳酸盐和碎屑岩为主,出口端上覆地层为崩坡积层, 黄灰、黑灰色块石土或块石、碎石土, 由山前滑

坡、崩塌等坡积、崩积物及少量坡面洪流形成的洪积物组成, 主要成份为岩屑砂砾、角砾、亚粘土等。

因此洞门采用翼墙式洞门。

4隧道结构设计与计算

初期支护

二郎山隧道采用复合式衬砌支护,初期支护采用喷锚支护,由喷射混凝土、锚杆、钢筋网和钢架等支护形式组合使用,根据不同围岩级别区别组合。锚杆支护采用全长粘结锚杆。由工程类比法,结合《公路隧道设计规范》(JTG D70-2004),初期支护喷射混凝土材料采用C20级混凝土,支护参数取值如表。

表初期支护参数

二次衬砌

二次衬砌采用现浇模筑钢筋混凝土,混凝土采用C25级,钢筋采用HRB335级刚,利用荷载结构法进行衬砌内力计算和验算。二次衬砌厚度设置如表。

表二次衬砌混凝土厚度(单位:cm)

Ⅳ围岩衬砌内力计算

《规范》(JTGD70-2004)规定:I-V级围岩中,复合式衬砌的初期支护应主要按工程类比法设计。其中IV、V级围岩的支护参数应通过设计确定,计算方法为地层结构法。所以取IV级围岩为计算对象。

拟定衬砌尺寸

图 IV 围岩衬砌拟定图

内轮廓线半径8.41=r 外轮廓线半径3.51=R m , C25级防腐钢筋混凝土拱墙35cm ,预留变形量5cm ,C20喷射混凝土防腐混凝土厚14cm,

拱顶截面厚,墙底截面厚。

衬砌材料参数

围岩为IV 级,根据《公路隧道设计规范》表取值得:围岩重度3

kN/m 21=γ,围

岩的弹性抗力系数m /MPa 350=K ,

K

K 5.21a =。

衬砌材料采用钢筋混凝土,根据《公路隧道设计规范》表,表,表取值得:重度

3h m /kN 25=γ,弹性模量.5G Pa 29c =E ,轴线抗压强度标准值MPa 17ck =f ,轴

心抗拉强度标准值

.0MPa

2ctk =f 。

内轮廓半径m 80.41=γ,m 00.12=γ

内径所画圆曲线的终点截面与竖直轴的夹角 0706.1091=? 6036.1172=? 外轮廓半径m R 30.51=,m R 50.12= 拱轴线半径m 05.501=γ,m 25.102=γ

拱轴线各段圆弧中心角: 0706.1091=θ, 00.452=θ

荷载确定

1)围岩竖向均布压力:

ω1

s 2

45.0q -?= ()

式中:s---围岩类别,此处s=4; γ---围岩容重,此处γ=21KN/m 3

ω---跨度影响系数, ω=1+i(lm -5),毛洞跨度L m =+2×=,其中为一侧平均超挖量. L m =5~15m 时,i=,此处ω=1+×=。 所以,有q=×24-1×21×= 此处超挖回填层重忽略不计。 2)围岩水平均布压力: e ==×=

半拱轴线长度S 及分段轴心线长△S

计算半拱轴线长度S 级分块轴线长度△S 。(单位m )

m r S 608514.905.514.3180

0706.109180011

1=??==?

??πθ m r S 981250.025.114.3180

4518002

2=??==?

?

?πθ

m S S S 58976.1021=+=

分段长度:323721.18

==

?s

s m 各分块接缝(截面)中心几何要素

1.与竖直夹角

?=??=???=

?=026158.1518005.5323721.11800111π

πθr S a ?=?+?=?+=052316.30026158.15026158.15112θa a ?=?+?=?+=078474.45026158.15052316.30123θa a ?=?+?=?+=104632.60026158.15078474.45134θa a ?=?+?=?+=130790.75026158.15104632.60145θa a ?=?+?=?+=156948.90026158.15130790.75156θa a ?

=?+?=?+=183106.105026158.151569484.90167θa a m

S S S 981250.0608514.958976.10811=-=-?=??=??+?=???+

=0706.154180250.1981250.00706.109180218π

πθr S a 校核: 角度闭合差0=?,因墙底面水平,计算衬砌内力时用 908=?

2. 接缝中心点坐标计算

m r x 3093.1026158.15sin 05.5sin 1011=??==αm r x 5290.2052316.30sin 05.5sin 2012=??==αm r x 5758.3078474.45sin 05.5sin 3013=??==αm r x 3780.4104632.60sin 05.5sin 4014=??==αm

r x 8809.4130790.75sin 05.5sin 5015=??==α

m r x 0499.5156948.90sin 05.5sin 6016=??==αm r x 8737.4183106.105sin 05.5sin 7017=??==α m x 2132.48=

()()m r y 1727.0026158.15cos 105.5cos 11011=?-?=-=α()()m r y 6789.0052316.30cos 105.5cos 12012=?-?=-=α()()m r y 4840.1078474.45cos 105.5cos 13013=?-?=-=α()()m r y 5330.2104632.60cos 105.5cos 14014=?-?=-=α()()m r y 7541.3130790.75cos 105.5cos 15015=?-?=-=α()()m r y 0638.5156984.90cos 105.5cos 16016=?-?=-=α()()m r y 3726.6183106.105cos 105.5cos 17017=?-?=-=α m y 4271.78=

表2-3 各截面中心几何要素

半轴计算图如图2-5

图2-5 衬砌结构计算图示

计算位移

单位位移

用用辛普生法近似计算,按计算列表进行。单位位移的计算见表2-4。

单位位移值计算如下:

6

7

111107693.38000.86410

95.2323721.11-?=??=?≈=∑?

I E S ds E M h s

h δ 6

70

212112104025.1186793.26381095.2323721

.1-?=??=?≈?==∑?

I y E S ds IE M M h

s

h δδ 6

720

2

222109660.6222097.1388310

95.2323721.1-?=??=?≈=∑?

I y E S ds I E M h S

h δ

6

7

i 2105404.8985682.2002410

95.2323721.1)1(-?=??=+?=∑I y E s i ss δ 校核:

()6

6

22121110

5403.898109660.6224025.11827693.38--?=?+?+=++δδδ

闭合差△≈0计算结果正确。

表2-4 单位位移计算表

载位移——主动荷载在基本结构中引起的位移

A.每一楔块上的作用力 竖向力:

i i qb Q =

式中 b i ——衬砌外缘相邻两截面之间的水平投影长度,由图量得:

水平压力: i i eh E =

式中:h i ——衬砌外缘相邻两截面之间的竖直投影长度,由图2-5量得: 自重力:

h i

1

i i S 2

d d G γ???+-= 式中:d i ——接缝i 的衬砌截面厚度。 注:计算G 8时,应使第8个楔块的面积乘γh 。

作用在各楔块上的力均列人表2-5,各集中力均通过相应图形的形心。

表2-5 单元集中作用力

截面 b i (m) h i (m) d i (m) 0 0 0 0 0 0 1 2 3 4 5 6 7 0 8

B .外荷载在基本结构中产生的内力

楔块上备集中力对下一接缝的力臂由图2-5中量得,分别记为e g q a a a ,,。内力按下式计算(见图2-6)

图2-6 单元主动荷载

弯矩:w e q

1

1

p 1-i 0ip )(a W a E a

Q E y W Q x M M i i i i i

i i ---?-+?-=∑∑--)( (m kN ?)

轴力:∑∑-+=i

i

i

i E W Q N cos )(sin 0

p ?

式中:i x ?、i y ?—相邻两截面中心点的坐标增量,按下式计算:

1--=?i i i x x x 1--=?i i i y y y

表2-6 0

p i M 计算过程表(一)

表2-7 0

p i M 计算过程表(二)

表2-8 0

p i N 计算过程表

基本结构中,主动荷载产生弯矩的校核为:

358

.983460.102132.4260.10692.11842808-=??? ??-?-=??? ??--=B X B q

M q

432

.8746771.72

1

673.2922208-=??-=-=H e M e

531

.184577.05465.16)1306.08737.42132.4(5465.16)0415.00499.52132.4(5465.16)2113.08809.42132.4(5465.16)3667.03780.42132.4(5465.16)4970.05758.32132.4(5465.16)5932.05290.22132.4(5465.16)6490.03093.12132.4(5465.16)()()()()()()()

(8

877876686558544843383228211811808-=?++-?-+-?-+-?-+-?-+-?-+-?-+-?-=-+--+--+--+--+--+--+--=+--=∑g g g g g g g g gi i g a G a x x G a x x G a x x G a x x G a x x G a x x G a x x G a x x G M

321

.1939531

.81432.874058.114908080808-=---=++=g e q p M M M M

另一方面.从附表中得到08p M =— 闭合差:%22.0%1009969

.1934321

.19399969.1934=?-=

?

C.主动荷载位移

隧道专业毕业设计文献综述

隧道病害防治综述 摘要:在我国铁路隧道修建已有近100年的历史,许多隧道都已经进入高维修管理阶段,隧道的病害防治已越来越成为人们重视的问题,随着生产力的发展,越来越多的新技术被运用在隧道病害防治上。 关键词:隧道,隧道病害防治,新技术,衬砌 1 、前言 近年来随着我国公路建设的快速发展,由8.5万公里构成的“7918”高速公路网即将形成,有关部门正在规划和完善国家高速公路网络,以满足人们出行和经济发展的需求。由于高速公路线形的技术指标高,当其进入山区或重丘区时,就不可避免地需要采用隧道来穿越山岭。隧道是铁路、道路、水渠、各种管道等遇到岩、土、水体障碍时开凿的穿过山体或水底的内部通道,是“生命线”工程。据来自于各方面的统计资料表明,到2005年年底,我国大陆即已建成铁路隧道7500座,总延长4300公里,将在“十一五”(2006~2010年)发展期间为我国的经济建设与发展起到积极的推动作用。但是,我国地域自然条件差异较大,隧道穿越的山体工程地质条件、气候条件、水文地质和设计、施工、运营的条件复杂多变,早期修建的隧道经常各方面的病害,形成重大的安全隐患。文献《黄土岭隧道病害成因分析及处治设计》(作者:金文良,公路隧道,2011)]1[指出二十一世纪“我国将从土建大国变成修缮大国”,在我国铁路隧道修建已有近100年的历史,许多隧道都已经进入高维修管理阶段,维修管理费用将大幅度增长。本文以铁路隧道、公路隧道和地铁隧道为对象,对隧道中主要出现水害、冻害、衬砌裂损和腐蚀四种病害的防治进行综述。 2 、主题 2.1 隧道的水害及其防治 2.1.1隧道水害的类型及其成因 1、类型 (1)按部位和流量:拱部有渗水、滴水、漏水成线和成股射流四种,边墙有渗水、淌水两种,少数隧道有隧道涌水病害。它受漏水、涌水规模以及隧道结构、牵引类型、

结构动力计算习题

160 结构动力计算习题 一.选择题 8-1 体系的动力自由度是指( )。 A .体系中独立的质点位移个数 B .体系中结点的个数 C .体系中质点的个数 D .体系中独立的结点位移的个数 8-2 下列说法中错误的是( )。 A .质点是一个具有质量的几何点; B .大小、方向作用点随时间变化的荷载均为动荷载; C .阻尼是耗散能量的作用; D .加在质点上的惯性力,对质点来说并不存在 8-3 图示体系EI =常数,不计杆件分布质量,动力自由度相同的为( )。 题8-3图 A .(a )、(b )、(c ) B .(a )、(b ) C .(b )、(c ) D .(a )、(c ) 8-4图示体系不计杆件分布质量,动力自由度相同的为( )。 (b ) (c ) 题8-4图 A .(a )、(b )、(c ) B .(a )、(b ) C .(b )、(c ) D .(a )、(c ) 8-5 若要提高单自由度体系的自振频率,需要( )。 A .增大体系的刚度 B .增大体系的质量 C .增大体系的初速度 D .增大体系的初位移 8-6 不计阻尼影响时,下面说法中错误的是( )。 A .自振周期与初位移、初速度无关; B .自由振动中,当质点位移最大时,质点速度为零; C .自由振动中,质点位移与惯性力同时达到最大值; D .自由振动的振幅与质量、刚度无关 8-7 若结构的自振周期为T ,当受动荷载)(P t F =t F θsin 0作用时,其自振周期T ( )。 A .将延长 B .将缩短 C .不变 D .与荷载频率 θ的大小有关 8-8 若图(a )、(b )和(c )所示体系的自振周期分别为a T 、b T 和c T ,则它们的关系为( )。 (a) (b) (c) 题8-8图 A .a T >b T >c T B .a T >c T >b T C .a T

第三章 区间隧道衬砌结构设计分析

第3章区间隧道衬砌结构设计 3.1地下铁道线路上部建筑 钢轨、联接零件、道床、轨枕、防爬设备及道岔共同组成地下铁道线路上部建筑。地铁的特点有运量较大、快速迅捷、安全、准时、不污染环境,同时地铁可以修建在建筑物较多而且不便于发展地面交通的地方。 3.1.1 钢轨 选定钢轨类型的主要因素是年通过量、速度、选定的轴负载、延长检修周期、检修工作量和振动噪声。 (1)钢轨类型 综合国内外地铁钢轨类型和南昌轨道交通的实际情况,宜选用60kg/m的钢轨。 (2)钢轨铺设 中山西路站至子固路站区间为直线段,在地下铁道内由于阳光不受影响,温度变化相对较小,铺设无缝线路。对于无缝线路,采用换铺法进行施工,对于长轨条的焊接,采用基地焊接与工地焊接相结合的施工方式。基地焊选用接触焊,工地焊可以选用铝热焊或移动式气压焊。 3.1.2扣件 地下铁道的钢轨扣件有刚性扣件及弹性扣件两种,考虑到中子区间地段线路采用整体式道床,因此扣件采用全弹性分开式扣件。因为全弹性分开式扣件在垂直和横向均具有良好地弹性,相比而言更加适合整体式道床。 3.1.3道床 一般情况下有碎石道床和整体道床两种道床。整体道床的类型较多,随着轨枕方式的不同,有短轨枕式整体道床、长枕式整体道床、纵向浮置板式整体道床等。结合南昌铁路交通的实际情况,利用短轨枕整体道床设计区间,道床稳定、耐久性强、结构简单、造价低、施工简单。钢筋混凝土短轨枕的预制混凝土采用C50,嵌入在混凝土道床,采用C30混凝土道床,布设中心沟,在单层钢筋网的内,钢筋网作为一个杂散电流排水加固。 3.1.4道岔 道岔有单开道岔和双开道岔等形式。中山西路站至子固路站区间采用9号单开道岔。

隧道工程课程设计(包含内力图和衬砌及内轮廓设计图)

目录 题目:隧道工程课程设计............................................................................................................. - 3 - 一、设计依据................................................................................................................................. - 3 - 二、设计资料................................................................................................................................. - 3 - 三、隧道方案比选说明................................................................................................................. - 3 - 1.平面位置的确定................................................................................................................... - 3 - 2.纵断面设计........................................................................................................................... - 4 - 3.横断面设计........................................................................................................................... - 4 - 四、二次衬砌结构计算................................................................................................................. - 4 - 1.基本参数............................................................................................................................... - 4 - 2.荷载确定............................................................................................................................... - 5 - 3.计算衬砌几何要素............................................................................................................... - 5 - 4.载位移—主动荷载在基本结构中引起的位移................................................................... - 7 - 5.外荷载在基本结构中产生的内力....................................................................................... - 8 - 6.主动荷载位移..................................................................................................................... - 10 - 7.载位移—单位弹性抗力及相应的摩擦力引起的位移..................................................... - 11 - 四、墙底(弹性地基梁上的刚性梁)位移............................................................................... - 14 - 五、解力法方程........................................................................................................................... - 15 - 六、计算主动荷载和被动荷载分别产生的衬砌内力............................................................... - 16 - 七、最大抗力值的求解............................................................................................................... - 17 - 八、计算衬砌总内力................................................................................................................... - 18 - 1.相对转角的校核................................................................................................................. - 19 - 2.相对水平位移的校核按下式计算..................................................................................... - 19 - 九、衬砌截面强度检算............................................................................................................... - 20 - 1.拱顶..................................................................................................................................... - 20 - 2.墙底偏心检查..................................................................................................................... - 20 - 十、内力图- 21 - (21) - 1 -

隧道及地下工程“设计”类毕业设计指导书2

隧道及地下工程“设计”类毕业设计指导书 1 设计原则及有关技术指标 1.1主要构件设计使用年限为100年。根据承载能力极限状态和正常使用极限状态的要求,采取有效措施,保证结构强度、刚度,满足结构耐久性要求。 1.2 根据工程地质和水文地质条件,结合周围地面建筑物、地下构筑物状况,通过对技术、经济、环保及使用功能的综合比较,合理选择结构形式。 1.3结构设计应满足施工、运营、环境保护、防灾等要求。 1.4 结构的净空尺寸除应满足建筑限界要求外,尚应考虑施工误差、测量误差、结构变形和沉陷等因素。 1.5 断面形状和衬砌形式应根据工程地质及水文地质、埋深、施工方法等条件,从地层稳定、结构受力合理和环境保护等方面综合确定。 1.6隧道结构按结构“破损阶段”法,以材料极限强度进行设计。 1.7 施工引起的地层沉降应控制在环境条件允许的范围内。 1.8 隧道建设应尽量考虑减少施工中和建成后对环境造成的不利影响。 1.9设计中除参照本指导书外,尚应符合《铁路隧道设计规范》或《地铁设计规范》等相关国家现行的有关强制性标准的规定。 1.10隧道主体工程等级为一级、防水等级为二级,耐火等级为一级。 1.11隧道结构的抗震等级按二级考虑,按抗震烈度8度设防。 1.12 结构设计在满足强度、刚度和稳定性的基础上,应根据地下水水位和地下水腐蚀性等情况,满足防水和防腐蚀设计的要求。当结构处于有腐蚀性地下水时应采取抗侵蚀措施,混凝土抗侵蚀系数不低于0.8。 1.13 在永久荷载基本荷载组合作用下,应按荷载效应标准组合并考虑长期作用影响进行结构构件裂缝验算。二类环境混凝土构件的裂缝宽度(迎土面)应不大于0.2mm,一类环境(非迎土面及内部混凝土构件)混凝土构件的裂缝宽度均应不大于0.3mm。当计及地震、人防或其它偶然荷载作用时,可不验算结构的裂缝宽度。 1.14 混凝土和钢筋混凝土结构中用混凝土的极限强度应按表1-1采用。区间隧道衬砌采用钢筋混凝土时其混凝土强度不应低于C30。 表1-1 混凝土的极限强度(MPa)

《结构力学习题集》(下)-结构的动力计算习题及答案

第九章 结构的动力计算 一、判断题: 1、结构计算中,大小、方向随时间变化的荷载必须按动荷载考虑。 2、仅在恢复力作用下的振动称为自由振动。 3、单自由度体系其它参数不变,只有刚度EI 增大到原来的2倍,则周期比原来的周期减小1/2。 4、结构在动力荷载作用下,其动内力与动位移仅与动力荷载的变化规律有关。 5、图示刚架不计分布质量和直杆轴向变形,图a 刚架的振动自由度为2,图b 刚架的振动自由度也为2。 (a)(b) 6、图示组合结构,不计杆件的质量,其动力自由度为5个。 7、忽略直杆的轴向变形,图示结构的动力自由度为4个。 8、由于阻尼的存在,任何振动都不会长期继续下去。 9、设ωω,D 分别为同一体系在不考虑阻尼和考虑阻尼时的自振频率,ω与ωD 的关系为ωω=D 。

二、计算题: 10、图示梁自重不计,求自振频率ω。 EI l W l/4 11、图示梁自重不计,杆件无弯曲变形,弹性支座刚度为k,求自振频率ω。 EI W o o l/2l/2 k 12、求图示体系的自振频率ω。 m l EI EI l 0.5l 0.5 2 13、求图示体系的自振频率ω。EI = 常数。 m l l0.5 14、求图示结构的自振频率ω。 m l l l l EI=常数

15、求图示体系的自振频率ω。EI =常数,杆长均为l 。 m 16、求图示体系的自振频率ω。杆长均为l 。 EA=o o EI m EI EI 17、求图示结构的自振频率和振型。 m m EI EI EI l /2 l /2 l /2 18、图示梁自重不计,W EI ==??2002104kN kN m 2 ,,求自振圆频率ω。 EI W A B C 2m 2m 19、图示排架重量W 集中于横梁上,横梁EA =∞,求自振周期ω。 h EI EI W

毕业设计之隧道衬砌

毕业设计之隧道衬砌 翠峰山隧道衬砌设计 5.1 概述 隧道洞身的衬砌结构根据隧道围岩地质条件、施工条件和使用要求大致可以分为以下几种类型:喷锚衬砌、整体式衬砌和复合式衬砌。规范规定,高速公路的隧道应采用复合式衬砌。隧道衬砌设计应综合考虑地质条件、断面形状、支护结构、施工条件等,并应充分利用围岩的自承能力。衬砌应有足够的强度和稳定性,保证隧道长期安全使用。 注:1、隧道高度h=内轮廓线高度+衬砌厚度+预留变形量; 2、隧道跨度b=内轮廓线宽度+衬砌厚度+预留变形量。 5.2深埋衬砌内力计算 5.2.1深、浅埋的判断 隧道进、出口段埋深较浅,需按浅埋隧道进行设计。由明洞计算可知: h q =0. 45?2S -1[1+i (B -5)] (5.1) 式中:s —围岩的级别,取s =4; B —隧道宽度 i —以B =5.0m的垂直均布压力增减率,因B =11.8m>5m,所以i =0.1。 带入数据得: h q =6.264 对于Ⅳ级围岩: H p =2.5h q =2.5?6.264=15.66 深埋:h >H p ;浅埋:h q <h ≤H p ;超浅埋:h ≤h q 。 5.2.2围岩压力计算 基本参数:围岩为Ⅳ级,容重γ=20kN /m 3,围岩的弹性抗力系数K =0.5?106 kN /m 3,衬砌材料为C25钢筋混凝土,弹性模量E h =2.95?107KPa 。 1、围岩垂直均布压力 根据《公路隧道设计规范》(JTG D70-2019) 的有关计算公式及已知的围岩参数,代入公式: q =0.45?2S -1?γ?ω

(5.2) 式中: S —围岩的级别,取S=4; γ—围岩容重,根据基本参数γ=23 KN/m3;ω—宽度影响系数,由式ω=1+i(B-5)=1.76计算; B —隧道宽度,B=2?(5.7+0.5+0.5)=12.4m; i —以B=5.0m的垂直均布压力增减率。因B=12.6m>5m,所以i=0.1。所以围岩竖向荷载: q =0.45?24-1?20?1.74=125.28KN /m 2 2、围岩水平均布压力 5 e =0. 2q (5.3) 式中:Ⅳ类围岩压力的均布水平力e =(0.15~0.3)q ,这里取值0.25 代入数据得: 2 5125. =28K 3N 1. 3m 2 0. 2? / 5.2.3衬砌几何要素 计算图示如下 q 12 3 4 5 6 7 R 7 8 R 图5.1 衬砌结构计算图示 1、衬砌几何尺寸 内轮廓线半径:r 1=5. 70m , r 2=8. 20m ;拱轴线半径:r 1' =5.95m ,r 2' =8.45m ;

公路隧道仰拱及洞身衬砌施工毕业设计论文

北京交通大学 毕业论文 公路隧道仰拱及洞身衬砌施工 指导教师 学生姓名 专业名称 班级学号 2015年5月

毕业论文承诺书与版权使用授权书 本人所呈交的毕业论文是本人在指导教师指导下独立研究、写作的成果。除了文中特别加以标注和致谢之处外,论文中不包含其他人已经发表或撰写过的研究成果,也不包含为获得北京交通大学或其他教育机构的学位或证书而使用过的材料。与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意。 本毕业论文是本人在读期间所完成的学业的组成部分,同意学校将本论文的部分或全部内容编入有关书籍、数据库保存,并向有关学术部门和国家相关教育主管部门呈交复印件、电子文档,允许采用复制、印刷等方式将论文文本提供给读者查阅和借阅。 论文作者签名:_________________ ______年_______月______日 指导教师签名:_________________ _______年_______月______日

目录 一、工程简介 二、公路隧道仰拱及洞身衬砌施工 1、施工组织管理及人员配置 2、施工机械设备 3、施工场地布置 4、施工工艺流程 4.1、隧道仰拱施工 4.2、隧道二次衬砌 5、工程质量管理体系及保证措施 6、安全生产管理体系及保证措施 7、环境保护、水土保持保证体系及保证措施 8、文明施工、文物保护措施 实习总结 参考文献 附录1 附录2

一、工程简介 1、工程概况 本工程位于浙江省温州市乐清市淡溪镇,双角尖隧道为分离式隧道,左洞进口桩号为ZK119+370,位于R=3670m的曲线上,出口桩号为ZK121+810,位于R=1400m 的曲线上,隧道纵坡进口为-0.9%(2390.506米),出口为-2.95%(49.494米),隧道全长2440米(进口明洞17米,出口明洞17米,S-Va196米,S-Vc20米, S-IVa55米, S-IVb650米, S-IVc315米,S-IIIa1170米)。右洞进口桩号为K119+430,位于R=3650m的曲线上,出口桩号为K121+805,位于R=1650m的曲线上,隧道纵坡进口为-0.9%(2320米),出口为-2.95%(55米),隧道全长2375米(进口明洞13米,出口明洞15米,S-Va95米,S-Vc82米, S-IVb605米, S-IVc300米,S-IIIa1265米)。 地质特点:隧道进口段为强风化泥岩,薄-中厚层状,节理裂隙极发育。出口段为强-中化灰岩,中厚层状,节理裂隙极发育,洞身发育中~微风化泥岩、灰岩,局部夹页岩,围岩级别为Ⅴ、IV、III级,灰岩段溶蚀现象发育。地下水位位于洞室以上,施工时洞室内会产生滴水及小股流水,遇裂隙密集段会产生涌水或突水、突泥。双角尖隧道进口段地质主要以强风化泥岩、薄-中厚层状,节理裂隙极发育。出口段为强-中风化灰岩,中厚层状,节理裂隙极发育。 2、自然特征 地形地貌 双角尖隧道穿越丘陵地貌,山体较矮,最大海拔高程493米。 地质条件 双角尖隧道(ZK119+370~ZK121+810、K119+430~K121+805),基岩地层主要由二叠系灰岩与志留系泥岩、泥灰岩构成,基岩地层为向斜构造,双角尖隧道横穿双角尖山向斜的东、西两翼,双角尖隧道出口处的隧道仰坡存在顺层滑动问题,双角尖隧道亦存在可溶岩与非可溶岩接触面,界面的可溶岩部位岩溶和地下径流十分发育,另外双角尖隧道存在含煤地层,可能有瓦斯气体。

隧道设计衬砌计算实例讲解(结构力学方法)

隧道设计衬砌计算范例(结构力学方法) 1.1工程概况 川藏公路二郎山隧道位于四川省雅安天全县与甘孜泸定县交界的二郎山地段, 东距成都约260km , 西至康定约97 km , 这里山势险峻雄伟, 地质条件复杂, 气候环境恶劣, 自然灾害频繁, 原有公路坡陡弯急, 交通事故不断, 使其成为千里川藏线上的第一个咽喉险道, 严重影响了川藏线的运输能力, 制约了川藏少数民族地区的经济发展。 二郎山隧道工程自天全县龙胆溪川藏公路K2734+ 560 (K256+ 560)处回头, 沿龙胆溪两侧缓坡展线进洞, 穿越二郎山北支山脉——干海子山, 于泸定县别托村和平沟左岸出洞, 跨和平沟经别托村展线至K2768+ 600 (K265+ 216) 与原川藏公路相接, 总长8166km , 其中二郎山隧道长4176 m , 别托隧道长104 m ,改建后可缩短运营里程2514 km , 使该路段公路达到三级公路标准, 满足了川藏线二郎山段的全天候行车。 1.2工程地质条件 1.2.1 地形地貌 二郎山段山高坡陡,地形险要,在地貌上位于四川盆地向青藏高原过渡的盆地边缘山区分水岭地带,隶属于龙门山深切割高中地区。隧道中部地势较高。隧址区地形地貌与地层岩性及构造条件密切相关。由于区内地层为软硬相间的层状地层,构造为西倾的单斜构造,故地形呈现东陡西缓的单面山特征。隧道轴线穿越部位,山体浑厚,东西两侧发育的沟谷多受构造裂隙展布方向的控制。主沟龙胆溪、和平沟与支沟构成羽状或树枝状,横断面呈对称状和非对称状的“v ”型沟谷,纵坡顺直比降大,局部受岩性构造影响,形成陡崖跌水。 1.2.2 水文气象 二郎山位于四川盆地亚热带季风湿润气候区与青藏高原大陆性干冷气候区的交接地带。由于山系屏障,二郎山东西两侧气候有显著差异。东坡潮湿多雨,西坡干燥多风,故有“康风雅雨”之称。全年分早季和雨季。夏、秋两季受东进的太平洋季风和南来的印度洋季风的控制,降雨量特别集中;冬春季节,则受青藏高原寒冷气候影响,多风少雨,气候严寒。

二、隧道洞门及衬砌设计

《地下工程》课程设计报告二设计题目:隧道洞门及衬砌设计 院系:河海学院 专业:地质工程 年级:2011 级班 姓名: 指导教师:翁其能 重庆交通大学河海学院 2014年6月25 日

说明: 本次《地下工程》课程设计任务书,依据重庆交通大学的课程设计有关要求、地质工程专业的课程设计指导办法编制,主要用于河海学院学院地质工程专业《地下工程》课程设计的任务安排,是地质工程专业学生完成课程设计的依据文件之一。进行《地下工程》课程设计的学生应认真阅读、理解本设计任务书,完成本任务书所要求的课程设计任务。 本次《地下工程》课程设计任务书按照有关要求包括以下二个部分。 第一部分:课程设计的目的、内容、任务与工作准备 第二部分:课程设计成果及要求 第一部分课程设计的目的、内容、任务与工作准备一、课程设计的题目及意义 本次课程设计为《地下工程》课程设计。 课程设计的题目为:隧道洞门及衬砌设计。 课程设计的意义:结合学生课堂学习内容,根据地下工程的实际要求,加深对所学知识的认识,提高应用所学知识解决实际问题的能力。 二、课程设计的目的 本次课程设计要通过资料收集、方案选择、结构受力分析、结构设计等过程,达到加深对《地下工程》所学知识认识的目的,并对《地下工程》所学的知识进行总结和应用,学会理论联系实际,解决实际问题的能力。并通过课程设计环节,锻炼实际工作能力。 三、课程设计的内容 本次课程设计包括两个方面内容——隧道洞身的设计和隧道洞门的设计。课程设计内容应具备:隧道横断面设计,隧道衬砌的设计,隧道洞室防排水设计,隧道开挖及防排水方案,洞门的相关设计,相关图纸。 四、课程设计的任务 1.通过资料收集、整理,确定所选项目的设计依据、工程概况等。 2.洞身包括衬砌的计算。

隧道衬砌计算

第五章隧道衬砌结构检算 5.1结构检算一般规定 为了保证隧道衬砌结构的安全,需对衬砌进行检算。隧道结构应按破损阶段法对构件截面强度进行验算。结构抗裂有要求时,对混凝土应进行抗裂验算。5.2 隧道结构计算方法 本隧道结构计算采用荷载结构法。其基本原理为:隧道开挖后地层的作用主要是对衬砌结构产生荷载,衬砌结构应能安全可靠地承受地层压力等荷载的作用。计算时先按地层分类法或由实用公式确定地层压力,然后按照弹性地基上结构物的计算方法计算衬砌结构的内力,并进行结构截面设计。 5.3 隧道结构计算模型 本隧道衬砌结构验算采用荷载—结构法进行验算,计算软件为ANSYS10.0。 取单位长度(1m)的隧道结构进行分析,建模时进行了如下简化处理或假定: ①衬砌结构简化为二维弹性梁单元(beam3),梁的轴线为二次衬砌厚度中线位置。 ②围岩的约束采用弹簧单元(COMBIN14),弹簧单元以铰接的方式支撑在衬砌梁单元之间的节点上,该单元不能承受弯矩,只有在受压时承受轴力,受拉时失效。计算时通过多次迭代,逐步杀死受拉的COMBIN14单元,只保留受压的COMBIN14单元。

图5-1 受拉弹簧单元的迭代处理过程 ③衬砌结构上的荷载通过等效换算,以竖直和水平集中力的模式直接施加到梁单元节点上。 ④衬砌结构自重通过施加加速度来实现,不再单独施加节点力。 ⑤衬砌结构材料采用理想线弹性材料。 ⑥衬砌结构单元划分长度小于0.5m。 隧道结构计算模型及荷载施加后如图5-2所示。

5.4 结构检算及配筋 本隧道主要验算明洞段、Ⅴ级围岩段和Ⅳ级围岩段衬砌结构。根据隧道规范深、浅埋判定方法可知,Ⅴ级围岩段分为超浅埋段、浅埋段和深埋段。Ⅳ级围岩段为深埋段。根据所给的材料基本参数和修改后的程序,得出各工况下的结构变形图、轴力图、建立图和弯矩图。从得出的结果可知,Ⅴ级围岩深埋段,所受内力均较大,故对此工况进行结构检算。 5.4.1 材料基本参数 (1)Ⅴ级围岩 围岩重度318.5/kN m γ=,弹性抗力系数300/k MPa m =,计算摩擦角 045?=o ,泊松比u=0.4。 (2) C25钢筋混凝土 容重325/kN m γ=,截面尺寸 1.00.6b h m m ?=?,弹性模量29.5Pa E G =。轴心抗压强度:12.5cd a f MP =;弯曲抗压强度:13.5cmd a f MP =;轴心抗拉强度: 1.33cd a f MP =;泊松比u=0.2; (3) HPB235钢筋物理力学参数 密度:37800/s kg m ρ=; 抗拉抗压强度:188std scd a f f MP ==; 弹性模量: 210s a E GP =; 5.4.2 结构内力图和变形图(Ⅴ级围岩深埋段) 5.4.3 结构安全系数 从上面的轴力图和弯矩图可知,需要对截面8、11、21、47、73进行检算, 而根据对称性可知只需要对截面8、11、47进行检算。 (1)配筋前检算 混凝土和砌体矩形截面轴心及偏心受压构件的抗压强度应按下式计算: a KN R bh ?α≤ (式5-1)

结构力学计算题及答案

《结构力学》计算题61.求下图所示刚架的弯矩图。 a a 62.用结点法或截面法求图示桁架各杆的轴力。 63.请用叠加法作下图所示静定梁的M图。 64.作图示三铰刚架的弯矩图。 65.作图示刚架的弯矩图。

66. 用机动法作下图中E M 、L QB F 、R QB F 的影响线。 1m 2m 2m Fp 1 =1m E B A 2m C D 67. 作图示结构F M 、QF F 的影响线。 68. 用机动法作图示结构影响线L QB F F M ,。 69. 用机动法作图示结构R QB C F M ,的影响线。 70. 作图示结构QB F 、E M 、QE F 的影响线。

71. 用力法作下图所示刚架的弯矩图。 l B D P A C l l EI =常数 72. 用力法求作下图所示刚架的M 图。 73. 利用力法计算图示结构,作弯矩图。 74. 用力法求作下图所示结构的M 图,EI=常数。 75. 用力法计算下图所示刚架,作M 图。

76. 77. 78. 79. 80. 81. 82.

83. 84. 85.

答案 取整体为研究对象,由 0A M =,得 2220yB xB aF aF qa +-= (1)(2分) 取BC 部分为研究对象,由 0C M =∑,得 yB xB aF aF =,即yB xB F F =(2)(2分) 由(1)、(2)联立解得2 3 xB yB F F qa ==(2分) 由 0x F =∑有 20xA xB F qa F +-= 解得 4 3xA F qa =-(1分) 由0y F =∑有 0yA yB F F += 解得 2 3 yA yB F F qa =-=-(1分) 则222 4222333 D yB xB M aF aF qa qa qa =-=-=()(2分) 弯矩图(3分) 62. 解:(1)判断零杆(12根)。(4分) (2)节点法进行内力计算,结果如图。每个内力3分(3×3=9分) 63. 解:

天恒山隧道毕业设计

天恒山隧道毕业设计 摘要 随着科技的不断进步,现代隧道无论是从结构计算,还是从施工方法都较以前有了较大的飞跃。本设计课题为公路隧道,注重的是结构计算,重点研究新奥法施工。 公路隧道近些年在高等级公路中应用广泛。因为其在山岭地区可用做克服地形或高程障碍,改善线形,提高车速,缩短里程,节约燃料,节省时间,减少对植被的破坏,保护生态环境;还可用做克服落石、坍方、雪崩、雪堆等危害。在城市可减少用地,构成立体交叉,解决交叉路口的拥挤阻塞,疏导交通,保护环境,提高社会综合效益。在江河、海峡、港湾地区,可不影响水路通航。 新奥法施工隧道的主要特点是:通过多种量测手段,对开挖后隧道围岩进行动态监测,并以此知道隧道支护结构的设计与施工。其核心目的是为了“保护围岩,调动和发挥围岩的自承能力”。 关键词隧道;新奥法;围岩压力 目录 摘要I Abstract II 第1章绪论 1 1.1 概述 1 隧道及其分类1

隧道的作用及其优点 1 隧道工程及其发展 1 新奥法施工 2 1.2 目的和意义 2 第2章设计要求 4 2.1 技术要求 4 主要技术标准4 材料 5 设计规范 5 2.2 设计基本资料 5 第3章初步设计 6 3.1 围岩分类 6 3.2 隧道平面布置 6 隧道平面布置方案比选 6 隧道平面线形7 隧道纵坡 7 3.3 隧道净空断面 7 第4章结构内力计算9 4.1 荷载确定9 计算垂直均布压力:9 划分浅埋和深埋隧道的分界:9 4.2 衬砌几何要素 11

衬砌几何尺寸11 半拱轴线长度及分段轴长 12 各分块接缝(截面)中心几何要素12 4.3 计算位移13 单位位移 13 主动荷载引起的位移15 单位弹性抗力及相应的摩擦力引起的位移 24 墙底(弹性地基上的刚性梁)位移33 4.4 解力法方程33 4.5 主动荷载及被动荷载()产生的衬砌内力36 4.6 最大抗力值的求解38 4.7 计算衬砌总内力40 4.8 衬砌截面强度验、检算44 第5章衬砌结构及附属设施45 5.1 衬砌结构方案 45 明洞45 暗洞衬砌结构45 衬砌支护参数46 二次衬砌 48 5.2 洞门48 5.3 隧道防排水49 防水工程 49

隧道说明书修改样本

8) 通风设计图 9) 防排水设计图 10) 监测测点布置图 5、撰写毕业设计说明书: 使用”兰州理工大学毕业设计( 论文) ”统一封面及格式; 论文内容包括目录、正文、参考资料等, 并按规定的顺序装订( 详见《毕业设计( 论文) 过程记录》( 理工类) 的末页) , 若用计算机进行计算要附上计算程序。中文摘要约200字, 关键词3-5个。 三、各阶段时间安排 四、参考文献 [1]《公路隧道设计规范》(JTG D70- )

[2]《公路隧道施工技术规范》(JTJ F60- ) [3]《公路隧道通风照明技术规范》( JTJ026.1-1999) [4]《公路工程技术标准》(JTGB01- ) [5]《公路隧道勘测规程》( JTJ 063—85) [6]《隧道结构力学计算(高等学校试用教材)》王永东主编, 北京: 人民交通出版社, .9 [7]《隧道工程》王毅才, 北京: 人民交通出版社, .7 [8]《公路勘测设计》孙家驷等著, 重庆: 重庆大学出版社, 1995.5 [9]《道路勘测设计》张雨化, 北京: 人民交通出版社, .7 [10]陕西省公路勘察设计院及中交第一勘察设计院的隧道设计图纸。 [11]Response of a shield-driven tunnel to deep excavations in soft clay. Ge, Xuewu. Hong Kong University of Science and Technology (People's Republic of China) , PHD, [12] A numerical simulation in longitudinal ventilation system of long highway tunnel.. Lin, Wenchin. University of Minnesota, PHD, 1995

隧道衬砌计算

隧道衬砌结构检算 5.1结构检算一般规定 为了保证隧道衬砌结构的安全,需对衬砌进行检算。隧道结构应按破损阶段法对构件截面强度进行验算。结构抗裂有要求时,对混凝土应进行抗裂验算。5.2 隧道结构计算方法 本隧道结构计算采用荷载结构法。其基本原理为:隧道开挖后地层的作用主要是对衬砌结构产生荷载,衬砌结构应能安全可靠地承受地层压力等荷载的作用。计算时先按地层分类法或由实用公式确定地层压力,然后按照弹性地基上结构物的计算方法计算衬砌结构的内力,并进行结构截面设计。 5.3 隧道结构计算模型 本隧道衬砌结构验算采用荷载—结构法进行验算,计算软件为ANSYS10.0。 取单位长度(1m)的隧道结构进行分析,建模时进行了如下简化处理或假定: ①衬砌结构简化为二维弹性梁单元(beam3),梁的轴线为二次衬砌厚度中线位置。 ②围岩的约束采用弹簧单元(COMBIN14),弹簧单元以铰接的方式支撑在衬砌梁单元之间的节点上,该单元不能承受弯矩,只有在受压时承受轴力,受拉时失效。计算时通过多次迭代,逐步杀死受拉的COMBIN14单元,只保留受压的COMBIN14单元。

图5-1 受拉弹簧单元的迭代处理过程 ③衬砌结构上的荷载通过等效换算,以竖直和水平集中力的模式直接施加到梁单元节点上。 ④衬砌结构自重通过施加加速度来实现,不再单独施加节点力。 ⑤衬砌结构材料采用理想线弹性材料。 ⑥衬砌结构单元划分长度小于0.5m。 隧道结构计算模型及荷载施加后如图5-2所示。

5.4 结构检算及配筋 本隧道主要验算明洞段、Ⅴ级围岩段和Ⅳ级围岩段衬砌结构。根据隧道规范深、浅埋判定方法可知,Ⅴ级围岩段分为超浅埋段、浅埋段和深埋段。Ⅳ级围岩段为深埋段。根据所给的材料基本参数和修改后的程序,得出各工况下的结构变形图、轴力图、建立图和弯矩图。从得出的结果可知,Ⅴ级围岩深埋段,所受内力均较大,故对此工况进行结构检算。 5.4.1 材料基本参数 (1)Ⅴ级围岩 围岩重度318.5/kN m γ=,弹性抗力系数300/k M P a m =,计算摩擦角 045?= ,泊松比u=0.4。 (2) C25钢筋混凝土 容重325/kN m γ=,截面尺寸 1.00.6b h m m ?=?,弹性模量29.5P a E G =。轴心抗压强度:12.5cd a f M P =;弯曲抗压强度:13.5cm d a f M P =;轴心抗拉强度: 1.33cd a f M P =;泊松比 u=0.2; (3) HPB235钢筋物理力学参数 密度:37800/s kg m ρ=; 抗拉抗压强度:188std scd a f f M P ==; 弹性模量: 210s a E GP =; 5.4.2 结构内力图和变形图(Ⅴ级围岩深埋段) 5.4.3 结构安全系数 从上面的轴力图和弯矩图可知,需要对截面8、11、21、47、73进行检算, 而根据对称性可知只需要对截面8、11、47进行检算。 (1)配筋前检算 混凝土和砌体矩形截面轴心及偏心受压构件的抗压强度应按下式计算: a K N R bh ?α≤ (式5-1)

结构力学习题库

15 结构的动力计算判断题 体系的振动自由度等于集中质量数。() 图示体系具有1个振动自由度。() 图示体系具有2个振动自由度。() 图示体系具有3个振动自由度。()

图示体系具有2个振动自由度。() 图示体系具有2个振动自由度。() 结构的自振频率除与体系的质量分布状况、杆件刚度有关外,还与干扰力有关。()自由振动是指不受外界干扰力作用的振动。() 自由振动是由初位移和初速度引起的,缺一不可。()

有阻尼单自由度体系的阻尼比越大,自振频率越小。() 临界阻尼现象是指起振后振动次数很少且振幅很快衰减为零的振动。()惯性力并不是实际加在运动质量上的力。() 计算一个结构的自振周期时,考虑阻尼比不考虑所得的结果要大。()临界阻尼振动时质点缓慢地回到平衡位置且不过平衡点。() 阻尼力总是与质点加速的方向相反。()

在某些情形下建立振动微分方程式时,不考虑重力的影响是因为重力为恒力。() 图示结构的自振频率为w,在干扰力P(t)=P sin qt作用下,不管频率q怎样改变,动位移y(t)的方向总是和P(t)的方向相同。() 计算图示振动体系的最大动内力和动位移时可以采用同一个动力系数。() 不论干扰力是否直接作用在单自由度体系的质量m上,都可用同一个动力系数计算任一点的最大动位移。() 单自由度体系受迫振动的最大动位移的计算公式y max=my j中,y j是质量m的重量所引起的静位移。

() 多自由度体系作自由振动,一般包括所有的振型,不可能出现仅含某一主振型的振动。()解得图(a)所示两个自由度体系的两个主振型为图(b)和图(c),此解答是正确的。() 图(a)与图(b)所示梁的自由振动频率w A、w B相比,w A>w B。() 填空题 动力荷载是指_____________________荷载。

隧道结构力学分析计算书

有限元基础理论与 ANSYS应用 —隧道结构力学分析 专业: 姓名: 学号: 指导教师: 2014年12月

隧道结构力学分析

目录 目录 (2) 1. 问题的描述........................................................ 错误!未定义书签。 2. 建模.................................................................... 错误!未定义书签。 2.1 定义材料....................................................................... 错误!未定义书签。 2.2 建立几何模型............................................................... 错误!未定义书签。 2.3 单元网格划分 (5) 3. 加载与求解 (6) 3.1 施加重力加速度 (6) 3.2 施加集中力、荷载位移边界条件 (6) 4. 后处理 (8) 4.1 初次查看变形结果 (8) 4. 2 除去受拉弹簧网格.............. (9) 4.3 除去弹簧单元网格 (10) 4. 4 查看内力和变形结果 (11) 4. 5 绘制变形图 (12) 5. 计算结果对比分析 (14) 6. 结语 (14) 7. 在做题过程中遇到的问题及解决方法 (16) 8. 附录 (16)

山岭隧道结构力学分析 1.问题的描述 已知双线铁路隧道总宽为13.3米,高为11.08米,以III级围岩深埋段为例,隧道而衬厚度为35cm,带仰拱,采用钢筋混凝土C30=25kN/m3,弹性模量为31GPa,泊松比为0.2,。该段该隧道的埋深为5米,围岩平均重度为23kN/m3,侧压力系数为0.3,计算围岩高度为6.588m,地层弹性抗力系数为500MPa/m。 试分析结构的应力和变形 图1双线铁路隧道断面(cm)

相关主题
文本预览
相关文档 最新文档