小学三年级奥数课件:数阵图
- 格式:pptx
- 大小:1020.31 KB
- 文档页数:19
1. 了解数阵图的种类2. 学会一些解决数阵图的解题方法3. 能够解决和数论相关的数阵图问题.一、数阵图定义及分类:1. 定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.2. 数阵是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐射型数阵图和复合型数阵图. 3.二、解题方法:解决数阵类问题可以采取从局部到整体再到局部的方法入手: 第一步:区分数阵图中的普通点(或方格)和关键点(或方格);第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.数阵图与数论【例 1】 把0—9这十个数字填到右图的圆圈内,使得五条线上的数字和构成一个等差数列,而且这个等差数列的各项之和为55,那么这个等差数列的公差有 种可能的取值.【考点】数阵图与数论 【难度】3星 【题型】填空 【关键词】迎春杯,三年级,初赛,第8题 【解析】 设顶点分别为A 、B 、C 、D 、E ,有45+A +B +C +D +E =55,所以A +B +C +D +E =10,所以A 、B 、C 、D 、E 分别只能是0-4中的一个数字.则除之外的另外5个数(即边上的)为45-10=35.设所形成的等差数列的首项为a 1,公差为d .利用求和公式5(a 1+a 1+4d )2=55, 得a 1+2d =11,故大于等于0+1+5=6,且为奇数,只能取7、9或11,而对应的公差d 分别为2、1和0.经试验都能填出来所以共有3中情况,公差分别为2、1、0.【答案】2种可能【例 2】 将1~9填入下图的○中,使得任意两个相邻的数之和都不是3,5,7的倍数.例题精讲知识点拨教学目标5-1-3-3.数阵图【考点】数阵图与数论【难度】4星【题型】填空【解析】根据题意可知1的两边只能是3与7;2的两边只能是6与9;3的两边只能是1、5或8;4的两边只能是7与9.可以先将3—1—7--写出来,接下来7的后面只能是4,4的后面只能是9,9的后面只能是2,2的后面只能是6,可得:3—1—7—4—9—2—6--,还剩下5和8两个数.由于6814+=是7的倍数,所以接下来应该是5,这样可得:3—1—7—4—9—2—6—5—8—3.检验可知这样的填法符合题意.【答案】3—1—7—4—9—2—6—5—8—3【例3】在下面8个圆圈中分别填数字l,2,3,4,5,6,7,8(1已填出).从1开始顺时针走1步进入下一个圆圈,这个圆圈中若填n(n≤8)。
把8,9,10,11,12,14,16这7个数分别填入图中的圆圈中,使得每条直线上4个数的和都等于46.把1,2,4,5,6,8,10这7个数分别填入图中的圆圈中,使得每条直线上4个数的和都等于20.数阵图进阶第九讲第4级下·提高班·学生版第4级下·提高班·学生版把2,3,4,5,6,7,8这七个数分别填入图中的圆圈中,使两个正方形中四个数之和都等于19. 将5,9,13,14,17,21,25这7个数分别填入图中的圆圈中,使得每条直线上3个数的和都等于44.第4级下·提高班·学生版将5,6,9,11,14,15这6个数分别填入图中的圆圈里,使两个大圆上4个数的和都等于40.把1,5,9,10,16,21这6个数分别填入图中的○里,使每一个大圆上的四个数之和都等于36.第4级下·提高班·学生版1. 把5,6,7,8,9这5个数分别填在下图的内,使横行、竖列3个数的和都等于( )中的数.把1,3,4,5,6,8,11,15这8个数分别填入图中的圆圈里,使得每个大圆上5个数的和都等于33.第4级下·提高班·学生版2. 把3,5,7,9,11,13,15这7个数分别填入图中的圆圈内,使每条直线上的3个数的和都等于27.3. 把2,4,6,8,10,12,14,16,18这9个数分别填入下图的圆圈中,使得每条直线上的3个数的和都等于24.4.把2,3,4,5,6,7,8这七个数分别填入图中的圆圈内,使两个正方形中四个数之和都等于21.5.把1,2,4,5,6,11这6个数分别填入图中的○里,使每个圆圈上的四个数之和都等于22.第4级下·提高班·学生版第4级下·提高班·学生版6. 把2,5,6,8,10,12,14,22这8个数分别填入下图中,使得每个大圆上的5个数的和都等于49.思维跳板——剪指甲小华的爸爸1分钟可以剪好5个自己的指甲.那么,他在5分钟内可以剪好几个自己的指甲呢?。
23、数阵图【方阵】例1 将自然数1至9,分别填在图5.17的方格中,使得每行、每列以及两条对角线上的三个数之和都相等。
(长沙地区小学数学竞赛试题)讲析:中间一格所填的数,在计算时共算了4次,所以可先填中间一格的数。
(l+2+3+……+9)÷3=15,则符合要求的每三数之和为15。
显然,中间一数填“5”。
再将其它数字顺次填入,然后作对角线交换,再通过旋转(如图5.18),便得解答如下。
例2 从1至13这十三个数中挑出十二个数,填到图5.19的小方格中,使每一横行四个数之和相等,使每一竖列三个数之和又相等。
(“新苗杯”小学数学竞赛试题)讲析:据题意,所选的十二个数之和必须既能被 3整除,又能被 4整除,(三行四列)。
所以,能被12整除。
十三个数之和为91,91除以12,商7余7,因此,应去掉7。
每列为(91—7)÷4=21而1至13中,除7之外,共有六个奇数,它们的分布如图5.20所示。
三个奇数和为21的有两种:21=1+9+11=3+5+13。
经检验,三个奇数为3、5、13的不合要求,故不难得出答案,如图5.21所示。
例3 十个连续自然数中,9是第三大的数,把这十个数填到图5.22的十个方格中,每格填一个,要求图中三个2×2的正方形中四数之和相等。
那么,这个和数的最小值是______。
(1992年全国小学数学奥林匹克初赛试题)讲析:不难得出十个数为:2、3、4、5、6、7、8、9、10、11。
它们的和是65。
在三个2×2的正方形中,中间两个小正方形分别重复了两次。
设中间两个小正方形分别填上a和b,则(65+a+b)之和必须是 3的倍数。
所以,(a+b)之和至少是7。
故,和数的最小值是24。
【其他数阵】例1 如图5.23,横、竖各12个方格,每个方格都有一个数。
已知横行上任意三个相邻数之和为20,竖列上任意三个相邻数之和为21。
图中已填入3、5、8和“×”四个数,那么“×”代表的数是______。
例1:把1~5填入○里,使每条直线上三个圆圈的和等于10。
例1:把1~5填入○里,使每条直线上三个圆圈的和等于10。
例1:把1~5填入○里,使每条直线上三个圆圈的和等于10。
1010快乐学习 轻松做题例1:把1~5填入○里,使每条直线上三个圆圈的和等于10。
1010线和:10+10=20例1:把1~5填入○里,使每条直线上三个圆圈的和等于10。
1 2 3 4 51010线和:10+10=20例1:把1~5填入○里,使每条直线上三个圆圈的和等于10。
1 2 3 4 51010线和:10+10=20数和:1+2+3+4+5=15例1:把1~5填入○里,使每条直线上三个圆圈的和等于10。
1 2 3 4 51010线和:10+10=20数和:1+2+3+4+5=15重叠数:20-15=5例1:把1~5填入○里,使每条直线上三个圆圈的和等于10。
线和:10+10=20数和:1+2+3+4+5=15重叠数:20-15=5 1 2 3 4 551010例1:把1~5填入○里,使每条直线上三个圆圈的和等于10。
线和:10+10=20数和:1+2+3+4+5=15重叠数:20-15=5 1 2 3 4 51451010例1:把1~5填入○里,使每条直线上三个圆圈的和等于10。
线和:10+10=20数和:1+2+3+4+5=15重叠数:20-15=51 2 3 4 5123451010例1把1~5填入○里,使每条直线上三个圆圈的和等于10。
1234510 10线和:10+10=20数和:1+2+3+4+5=15重叠数:20-15=5124351 2 3 4 5十字形数阵,中间位置放重叠数,四周大小配线和:8+8=16 888 8线和:8+8=16数和:1+2+3+4+5=151 2 3 4 58 8线和:8+8=16数和:1+2+3+4+5=15重叠数: 16-5=11 2 3 4 58 8线和:8+8=16数和:1+2+3+4+5=15重叠数: 16-5=11 2 3 4 5 18 8线和:8+8=16数和:1+2+3+4+5=15重叠数: 16-5=11 2 3 4 51253488线和:8+8=16数和:1+2+3+4+5=15重叠数: 16-5=11 2 3 4 51253412534线和:9+9=18999 9线和:9+9=18数和:1+2+3+4+5=15 1 2 3 4 59 9线和:9+9=18数和:1+2+3+4+5=15重叠数:18-15=31 2 3 4 53124539 9线和:9+9=18数和:1+2+3+4+5=15重叠数:18-15=31 2 3 4 5124539 9线和:9+9=18数和:1+2+3+4+5=15重叠数:18-15=31 2 3 4 512453把1~5填入○里,使每条直线上三个圆圈的和相等。
1. 了解数阵图的种类2. 学会一些解决数阵图的解题方法3. 能够解决和数论相关的数阵图问题.一、数阵图定义及分类:1. 定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.2. 数阵是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐射型数阵图和复合型数阵图. 3.二、解题方法:解决数阵类问题可以采取从局部到整体再到局部的方法入手: 第一步:区分数阵图中的普通点(或方格)和关键点(或方格);第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.数阵图与数论【例 1】 把0—9这十个数字填到右图的圆圈内,使得五条线上的数字和构成一个等差数列,而且这个等差数列的各项之和为55,那么这个等差数列的公差有 种可能的取值.【考点】数阵图与数论 【难度】3星 【题型】填空 【关键词】迎春杯,三年级,初赛,第8题 【解析】 设顶点分别为A 、B 、C 、D 、E ,有45+A +B +C +D +E =55,所以A +B +C +D +E =10,所以A 、B 、C 、D 、E 分别只能是0-4中的一个数字.则除之外的另外5个数(即边上的)为45-10=35.设所形成的等差数列的首项为a 1,公差为d .利用求和公式5(a 1+a 1+4d )2=55, 得a 1+2d =11,故大于等于0+1+5=6,且为奇数,只能取7、9或11,而对应的公差d 分别为2、1和0.经试验都能填出来所以共有3中情况,公差分别为2、1、0.【答案】2种可能例题精讲知识点拨教学目标5-1-3-3.数阵图【例 2】将1~9填入下图的○中,使得任意两个相邻的数之和都不是3,5,7的倍数.【考点】数阵图与数论【难度】4星【题型】填空【解析】根据题意可知1的两边只能是3与7;2的两边只能是6与9;3的两边只能是1、5或8;4的两边只能是7与9.可以先将3—1—7--写出来,接下来7的后面只能是4,4的后面只能是9,9的后面只能是2,2的后面只能是6,可得:3—1—7—4—9—2—6--,还剩下5和8两个数.由于6814+=是7的倍数,所以接下来应该是5,这样可得:3—1—7—4—9—2—6—5—8—3.检验可知这样的填法符合题意.【答案】3—1—7—4—9—2—6—5—8—3【例 3】在下面8个圆圈中分别填数字l,2,3,4,5,6,7,8(1已填出).从1开始顺时针走1步进入下一个圆圈,这个圆圈中若填n(n≤8)。
三年级奥数教程第13讲数阵图例1、把1~6这六个数字分别填入图13一l的六个圈内,使得每个正方形顶点上的数的和都为13.分析从1到6这六个数的和是21.而两个正方形8个顶点上的数之和是26(=13×2),比六个数的总和大5.这是因为中间两个圈内的数,都被算了两次,所以,多出来的5就是中间两个圈内的数的和.解在1到6六个数中,两个数的和为5,只可能是1+4、2+3.当中间两个圈内填1与4时,剩下的四个数,3与5、2与6配对即可以满足条件.当中间两个圈内填2与3时,剩下的四个数无法组成和相等的两对,因而无法满足条件.所以,得到如图13—2的填法.随堂练习1将3、4、6这三个数填入图13—3的三个圆圈内,使得每条边上的三个数的和等于11.例2、将2到7这六个数,填入图13—4的圈中,使得每条线上的三个数的和相等.分析与解将三条线上的三个数都相加,中间的1被加了3次,所以三条线上三个数的和为1+2+…+6+7+1+1=30.从而每条线上的和是10(=30÷3),即每条线上剩余两个圆圈内数的和是9(=10—1).由 2+7=4+5=3+6=9.可以得到如图13—5的解.随堂练习2 将1到7这七个数填入图13—6,使得每条线上的三个数的和相等.例3、将1到9这九个数填入图13—7,使得从中心出发的每条线段上的三个数的和相等.分析与解先来确定中心的数.设这个数为a,则4条线上12个数(中心的数出现4次,其余的数各出现一次)的和1+2+…+9+a+a+a是4的倍数,即45+3×a是4的倍数.所以a只可能是1、5、9.(1)当a=1时,2与9、4与7、8与3、5与6两两搭配填入同一条线的两个圈内即可.(2)当a=5时,l与9、2与8、3与7、4与6搭配.(3)当a=9时,1与8、2与7、3与6、4与5搭配.这样得到如图13—8所示的三个解.随堂练习3 将1~8填入图13—9,使两个正方形顶点上的数的和相等,并且用斜线连接的4对数的和也都相等.例4、将1到5这五个数填入图13-10,使得圆周上四个数的和与每条直线上的三个数的和都相等.分析与解设处于中心圈内的数是a,因为竖线上的三个数的和等于圆周上的四个数的和,所以a等于它左、右两个数的和.同理,a等于它上、下两个数的和.从而a是最大的数5.其余四个数,2与3搭配,1与4搭配,写在同一条线上.得到的解如图13—11所示.随堂练习4 在图13一12中圆圈内填上7、8、10、12,使得每个圆内的四个数的和相等.例5、将1~6这六个数填入图13~13的六个圆圈内,使得每条边上的三个数的和相等.分析与解用字母a、b、c表示三个顶点上的数.如果l、6都在边上,那么a、b、c中有两个数的差是5(=6—1).这不可能.所以可设以a=1或6.如果a=1,那么由2+6=3+5.3+6=4+5.可得图13—14的(1),(2).如果a=6,同样可得图13—14的 (3),(4).随堂练习5 将l到16填入图13—15,使得每条线段上四个数的和相等,两个八边形八个顶点上的数的和也相等.例6、将1~16填入图13—16的正方形,使每行、每列、每条对角线的和都相等.图13—16分析与解本题也就是造一个四阶幻方.四阶幻方的造法很多,解也不惟一.下面介绍一种最简的做法,可以称为调整法.先将1~16依照次序先左后右,先上后下逐一填入图13—17(1)中得1234114154115144 567896712126799101112510118810115 13141516132316133216⑴⑵⑶图13—17四阶幻方中每行和、每列和、每条对角线的和都是 (1+2+…+16)÷4=(1+16)×16÷2÷4=34.现在图13—17(1)的两条对角线的和都已经是34,合乎要求.所以对角线上的数不要再动.先来调整行.将第一行的2、3分别与第四行的14、15对调,第二行的5、8分别与第三行的9、12对调,得图13—17(2),这个图中,不但每条对角线的和是34,每一行的和也都是34.再调整列.将图13—17(2)第一列的9、5分别与第四列的12、8对调,第二列的14、2分别与15、3对调,得图13—17(3),这个图就是一个合乎要求的幻方.随堂练习6 比较例6所得的幻方与随堂练习5的答案.有何联系?读一读……………………………………………………可能与必然上节末,说到一个游戏“数独”.数独怎么填呢?比如先看第一行,在上节末的图中,有6个空格,应填1、2、4、7、8、9这6个数字.每个空格填的数有6种可能,难以确定.如果看第二列,只有2个空格,应填2、7,每个空格有2种可能,但还不能惟一确定.可能性太多,需要逐个枚举讨论,比较麻烦.所以应先考虑可能较小的方格.最好能发现一些方格,只有一种填法,也就是说这些方格填什么数是必然的.将这些方格先填好,对填其他方格会有帮助.同时考虑几个方面的要求,可以得到必然的填法.比如中间的3×3的正方形,只有3个空格,应填2、6、8.再结合第四行已经有8,第六行也已经有8,所以8必须填在中央.接下去,因为第四行已经有6,所以6必须填在第六行,2填在第四行.现在再看第四行,只剩2个空格,应填9与3.第九列有9,所以第四行的9只能(必然)在第三列,3在第九列.同样,右中3×3的正方形中,9必然在第六行.第六行第一列必填2.左中3×3的正方形中,5必在第一列,7在第三列.第八列3必填在第九行,9必填在第二行.右上3×3的正方形中,7必填在第七列.右下3×3的正方形中,5必在第八行第七列,2必在第八行,1在第九列第七行,6在第七行第七列.右中3×3的正方形中,6在第九列,2在第七列.左下3×3的正方形中,2、3、8、6的填法都是必然的.左上3×3的正方形中,按行依次填2、1、4、7、6.右上3×3的正方形中,填4、8.中上3×3的正方形中填8、9、6、2、7、4.中下3×3的正方形中填9、3、6、4、1、7.填法都是必然的。
第十二讲数阵图把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.数阵是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图,即封闭型数阵图、辐射型数阵图和复合型数阵图.为了让同学们学会解数阵图的分析思考方法,我们举例说明.例1 将1~8这八个自然数分别填入下图中的八个○内,使四边形每条边上的三个数之和都等于14,且数字1出现在四边形的一个顶点上.应如何填?分析为了叙述方便,先在各圆圈内填上字母,如上图(2).由条件得出以下四个算式:a+b+c=14(1)c+d+e=14 (2)e+f+g=14 (3)a+h+g=14 (4)由(1)+(3),得:a+b+c+e+f+g=28,(a+b+c+d+e+f+g+h)-(d+h)=28,d+h=(1+2+3+4+5+6+7+8)-28=8,由(2)+(4),同样可得b+f=8,又1,2,3,4,5,6,7,8中有1+7=2+6=3+5=8.又1要出现在顶点上,d+h与b+f只能有2+6和3+5两种填法.又由对称性,不妨设b=2,f=6,d=3,h=5.a,c,e,g可取到1,4,7,8若a=1,则c=14-(1+2)=11,不在1,4,7,8中,不行.若c=1,则a=14-(1+2)=11,不行.若e=1,则c=14-(1+3)=10,不行.若g=1,则a=8,c=4,e=7.解:例1为封闭型数阵,由它的分析思考过程可以看出,确定各边顶点所应填的数为封闭型数阵的解题突破口.例2 请你把1~7这七个自然数,分别填在下图(1)的圆圈内,使每条直线上的三个数的和都相等.应怎样填?分析为叙述方便,先在圆圈中标上字母,如上图(2).设a+b+e=a+c+f=a+d+g=k,则(a+b+e)+(a+c+f)+(a+d+g)=3k3a+b+c+d+e+f+g=3k2a+(a+b+c+d+e+f+g)=3k2a+(1+2+3+4+5+6+7)=3k2a+28=3ka为1、4或7.若a=1,则k=10,直线上另外两个数的和为9.在2、3、4、5、6、7中,2+7=3+6=4+5=9,因此得到一个解为:a=1,b=2,c=3,d=4,e=7,f=6,g=5.若a=4,则k=12,直线上另外两个数的和为8.在1、2、3、5、6、7中,1+7=2+6=3+5=8,因此得到第二个解为:a=4,b=1,c=2,d=3,e=7,f=6,g=5.若a=7,则k=14,直线上另外两个数的和为7.在1、2、3、4、5、6中,1+6=2+5=3+4=7,因此得到第三个解为:a=7,b=1, c=2,d=3,e=6,f=5,g=4.解:共得到三个解:如下图.例2为辐射型数阵图,填辐射型数阵图的关键在于确定中心数a和每条直线上几个圆圈内数的和k.例3 如下图(1)所示,在每个小圆圈内填上一个数,使得每一条直线上的三个数的和都等于大圆圈上三个数的和.分析为叙述方便,先在每个圆圈内标上字母,如图(2).则有a+4+9=a+b+c(1)b+8+9=a+b+c(2)c+17+9=a+b+c(3)(1)+(2)+(3)(a+b+c)+56=3(a+b+c)a+b+c=28则 a=28-(4+9)=15b=28-(8+9)=11c=28-(17+9)=2。
把8,9,10,11,12,14,16这7个数分别填入图中的圆圈中,使得每条直线上4个数的和都等于46.把1,2,4,5,6,8,10这7个数分别填入图中的圆圈中,使得每条直线上4个数的和都等于20.数阵图进阶第九讲第4级下·提高班·学生版第4级下·提高班·学生版把2,3,4,5,6,7,8这七个数分别填入图中的圆圈中,使两个正方形中四个数之和都等于19. 将5,9,13,14,17,21,25这7个数分别填入图中的圆圈中,使得每条直线上3个数的和都等于44.第4级下·提高班·学生版将5,6,9,11,14,15这6个数分别填入图中的圆圈里,使两个大圆上4个数的和都等于40.把1,5,9,10,16,21这6个数分别填入图中的○里,使每一个大圆上的四个数之和都等于36.第4级下·提高班·学生版1. 把5,6,7,8,9这5个数分别填在下图的内,使横行、竖列3个数的和都等于( )中的数.把1,3,4,5,6,8,11,15这8个数分别填入图中的圆圈里,使得每个大圆上5个数的和都等于33.第4级下·提高班·学生版2. 把3,5,7,9,11,13,15这7个数分别填入图中的圆圈内,使每条直线上的3个数的和都等于27.3. 把2,4,6,8,10,12,14,16,18这9个数分别填入下图的圆圈中,使得每条直线上的3个数的和都等于24.4.把2,3,4,5,6,7,8这七个数分别填入图中的圆圈内,使两个正方形中四个数之和都等于21.5.把1,2,4,5,6,11这6个数分别填入图中的○里,使每个圆圈上的四个数之和都等于22.第4级下·提高班·学生版第4级下·提高班·学生版6. 把2,5,6,8,10,12,14,22这8个数分别填入下图中,使得每个大圆上的5个数的和都等于49.思维跳板——剪指甲小华的爸爸1分钟可以剪好5个自己的指甲.那么,他在5分钟内可以剪好几个自己的指甲呢?。
数阵图数阵图:就是将一些数按照一定要求排列而成的某种图形。
分为:封闭型、辐射型、复合型。
例如:特点:直线上的数字和相等。
名词:边和,重叠数(阵眼)(★★)将1~7这七个数字,分别填入图中各个○内,使每条线段上的三个○内数的和都等于14。
(★★★)把1~9这9个数分别填入下图的圆圈中,使得每条直线上的3个数的和都相等。
(★★★)将1~8这8个数分别填入下图中,使两个大圆上4个数的和都相等,那么这个和最大=______。
(★★★)请将1、2、4、6这四个数填入到下图中各空白区域内,使得每个圆圈里的四个数字和都等于15。
【铺垫】(★★)把1至8分别填入图的八个方格内,使得各列上两个数之和都相等,各行四个数之和也相等。
(★★★★★)请将数字1、2、3、4、5、6、7填在下图,使得每个圆圈上的三个数字之和与每条直线上的三个数之和相等。
【超常大挑战】(★★★★★)有一个长方形的城堡,四周有10个掩体。
守城的士兵有10件武器,各种武器的威力如下表。
为了使城堡四边上的武器威力总数都相同,并且尽量大,应如何在十个掩体中配备武器?【知识大总结】数阵图1.特点,新名词。
2.口诀1:数边和,看重叠,列等式,整除关系推一推等式:边和×次数=数字和+重叠数×(次数-1)本质:找边和与数字和、重叠数三者关系难点:重叠数有几个,各自用了多少次。
3.口诀2:掐头、去尾、取中间,首尾配对组相等。
适用:等差数列填入到放射型数阵图中。
4.复合型数阵图,先满足部分,保证不破坏已有边和前提下,微调,满足全部。
【今日讲题】例2,例3,例5【讲题心得】___________________________________________________________________________________________ ___________________________________________________________________________________________ __________________________________________________________________________________________。