2019版高考数学文科一轮复习(北京卷B版)课件:4.1 三角函数的概念、同角三角函数的基本关系及诱导公式
- 格式:pptx
- 大小:1.75 MB
- 文档页数:13
[推荐学习]2019年高考数学一轮复习学案+训练+课件(北师大版文科):-第3章-三角函数、解三角形第五节两角和与差及二倍角的三角函数[考纲传真] 1.会用向量的数量积推导出两角差的余弦公式.2.会用两角差的余弦公式推导出两角差的正弦、正切公式.3.会用两角差的余弦公式推导出两角和的正弦、余弦、正切公式和二倍角的正弦、余弦、正切公式,了解它们的内在联系.4.能运用上述公式进行简单的三角恒等变换(包括导出积化和差、和差化积、半角公式,但不要求记忆).(对应学生用书第48页)[基础知识填充]1.两角和与差的正弦、余弦、正切公式(1)sin(α±β)=sin_αcos_β±cos_αsin_β;(2)cos(α±β)=cos_αcos_β∓sin_αsin_β;②cos 2α=12(1+cos 2α).(3)公式的逆用:①1±sin 2α=(sin α±cos α)2;②sin α±cos α=2sin ⎝⎛⎭⎪⎫α±π4.2.辅助角公式a sin α+b cos α=a 2+b 2sin(α+φ)⎝⎛⎭⎪⎫其中tan φ=b a .[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.( )(2)在锐角△ABC 中,sin A sin B 和cos A cosB 大小不确定.( )(3)公式tan(α+β)=tan α+tan β1-tan αtan β可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意角α,β都成立.( )(4)公式a sin x+b cos x=a2+b2sin(x+φ)中φ的取值与a,b的值无关.( )[答案](1)√(2)×(3)×(4)×2.(教材改编)sin 20°cos 10°-cos 160°sin 10°=( )A.-32B.32C.-12D.12D[sin 20°cos 10°-cos 160°sin 10°=sin 20°cos 10°+cos 20°sin 10°=sin(20°+10°)=sin 30°=12,故选D.]3.(2017·全国卷Ⅲ)已知sin α-cos α=43,则sin 2α=( )A .-79B .-29C .29D .79A [∵sin α-cos α=43,∴(sin α-cos α)2=1-2sin αcos α=1-sin 2α=169,∴sin 2α=-79.故选A .]4.(2017·云南二次统一检测)函数 f (x )=3sin x +cos x 的最小值为________.【导学号:00090103】-2 [函数f (x )=2sin ⎝⎛⎭⎪⎫x +π6的最小值是-2.]5.若锐角α,β满足(1+3tan α)(1+3tanβ)=4,则α+β=________.π3[由(1+3tan α)(1+3tan β)=4,可得tan α+tan β1-tan αtan β=3,即tan(α+β)= 3.又α+β∈(0,π),∴α+β=π3.](对应学生用书第49页)三角函数式的化简(1)化简:sin 2-2cossin⎝⎛⎭⎪⎫α-π4=________.(2)化简:2cos4x-2cos2x+122tan⎝⎛⎭⎪⎫π4-x sin2⎝⎛⎭⎪⎫π4+x.(1)22cos α[原式=2sin αcos α-2cos2α2 2sin α-cos α=22cos α.](2)原式=-2sin2x cos2x+122sin⎝⎛⎭⎪⎫π4-x cos2⎝⎛⎭⎪⎫π4-xcos⎝⎛⎭⎪⎫π4-x=121-sin22x2sin⎝⎛⎭⎪⎫π4-x cos⎝⎛⎭⎪⎫π4-x=12cos22xsin⎝⎛⎭⎪⎫π2-2x=12cos 2x.[规律方法] 1.三角函数式的化简要遵循“三看”原则一看“角”,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式.二看“函数名称”,看函数名称之间的差异,从而确定使用的公式,最常见的是“切化弦”.三看“结构特征”,分析结构特征,找到变形的方向. 2.三角函数式化简的方法弦切互化,异名化同名,异角化同角,降幂或升幂.[变式训练1] 化简sin 2⎝⎛⎭⎪⎫α-π6+sin 2⎝⎛⎭⎪⎫α+π6-sin 2α=________.【导学号:00090104】12[法一:原式=1-cos ⎝⎛⎭⎪⎫2α-π32+1-cos ⎝⎛⎭⎪⎫2α+π32-sin 2α=1-12⎣⎢⎡⎦⎥⎤cos ⎝ ⎛⎭⎪⎫2α-π3+cos ⎝⎛⎭⎪⎫2α+π3-sin 2α=1-cos 2α·cos π3-sin 2α=1-cos 2α2-1-cos 2α2=12.法二:令α=0,则原式=14+14=12.]三角函数式的求值角度1 给角求值(1)2cos 10°-sin 20°sin 70°=( )A.12B.32C. 3 D. 2(2)sin 50°(1+3tan 10°)=________.(1)C(2)1[(1)原式=2cos30°-20°-sin 20°sin 70°=错误!=3cos 20°cos 20°= 3.(2)sin 50°(1+3tan 10°)=sin 50°⎝⎛⎭⎪⎫1+3·sin 10°cos 10°=sin 50°×cos 10°+3sin 10°cos 10°=sin 50°×2⎝ ⎛⎭⎪⎫12cos 10°+32sin 10°cos 10°=2sin 50°·cos 50°cos 10°=sin 100°cos 10°=cos 10°cos 10°=1.]角度2 给值求值(1)(2016·全国卷Ⅱ)若cos ⎝ ⎛⎭⎪⎫π4-α=35,则sin 2α=( ) A .725 B .15C .-15D .-725(2)(2018·安徽十校联考)已知α为锐角,且7sin α=2cos 2α,则sin ⎝⎛⎭⎪⎫α+π3=( )A .1+358B .1+538C .1-358D .1-538(1)D (2)A [(1)∵cos ⎝ ⎛⎭⎪⎫π4-α=35,∴sin 2α=cos ⎝ ⎛⎭⎪⎫π2-2α=cos 2⎝ ⎛⎭⎪⎫π4-α=2cos 2⎝ ⎛⎭⎪⎫π4-α-1=2×925-1=-725.(2)由7sin α=2cos 2α得7sin α=2(1-2sin 2α),即4sin 2α+7sin α-2=0,∴sin α=-2(舍去)或sin α=14.∵α为锐角,∴cos α=154,∴sin ⎝⎛⎭⎪⎫α+π3=14×12+154×32=1+358,故选A .] 角度3 给值求角(2018·长春模拟)已知sin α=55,sin(α-β)=-1010,α,β均为锐角,则角β等于( )【导学号:00090105】A .5π12B .π3C .π4D .π6C [∵α,β均为锐角,∴-π2<α-β<π2.又sin(α-β)=-1010,∴cos(α-β)=310 10.又sin α=55,∴cos α=255,∴sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β)=55×31010-255×⎝⎛⎭⎪⎫-1010=22.∴β=π4.][规律方法] 1.“给角求值”中一般所给出的角都是非特殊角,应仔细观察非特殊角与特殊角之间的关系,结合公式将非特殊角的三角函数转化为特殊角的三角函数求解.2.“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.3.“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,最后确定角.三角变换的简单应用(1)(2017·全国卷Ⅲ)函数f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝⎛⎭⎪⎫x -π6的最大值为( )A .65B .1C .35D .15(2)已知函数f (x )=sin 2x -sin 2⎝⎛⎭⎪⎫x -π6,x∈R.①求f (x )的最小正周期;②求f (x )在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最大值和最小值.(1)A [法一:∵f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝⎛⎭⎪⎫x -π6=15⎝ ⎛⎭⎪⎫12sin x +32cos x +32cos x +12sin x =110sin x +310cos x +32cos x +12sin x =35sin x +335cos x =65sin ⎝⎛⎭⎪⎫x +π3,∴当x =π6+2k π(k ∈Z)时,f (x )取得最大值65. 故选A .法二:∵⎝ ⎛⎭⎪⎫x +π3+⎝ ⎛⎭⎪⎫π6-x =π2,∴f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝ ⎛⎭⎪⎫x -π6=15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝ ⎛⎭⎪⎫π6-x=15sin ⎝ ⎛⎭⎪⎫x +π3+sin ⎝ ⎛⎭⎪⎫x +π3=65sin ⎝⎛⎭⎪⎫x +π3≤65.∴f (x )max =65.故选A .](2)①由已知,有f (x )=1-cos 2x 2-1-cos ⎝⎛⎭⎪⎫2x -π32=12⎝ ⎛⎭⎪⎫12cos 2x +32sin 2x -12cos 2x =34sin 2x -14cos 2x =12sin ⎝⎛⎭⎪⎫2x -π6.所以f (x )的最小正周期T =2π2=π.②因为f (x )在区间⎣⎢⎡⎦⎥⎤-π3,-π6上是减函数, 在区间⎣⎢⎡⎦⎥⎤-π6,π4上是增函数,且f ⎝ ⎛⎭⎪⎫-π3=-14,f ⎝ ⎛⎭⎪⎫-π6=-12,f ⎝ ⎛⎭⎪⎫π4=34,所以f (x )在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最大值为34,最小值为-12.[规律方法] 1.进行三角恒等变换要抓住:变角、变函数名称、变结构,尤其是角之间的关系;注意公式的逆用和变形使用.2.把形如y =a sin x +b cos x 的函数化为y=a 2+b 2sin(x +φ)⎝⎛⎭⎪⎫其中tan φ=b a 的形式,可进一步研究函数的周期、单调性、最值与对称性.[变式训练2] (2017·北京高考)已知函数f (x )=3cos ⎝⎛⎭⎪⎫2x -π3-2sin x cos x .(1)求f (x )的最小正周期;(2)求证:当x ∈⎣⎢⎡⎦⎥⎤-π4,π4时,f (x )≥-12.[解] (1)f (x )=32cos 2x +32sin 2x -sin2x=12sin 2x +32cos 2x =sin ⎝⎛⎭⎪⎫2x +π3,所以f (x )的最小正周期T =2π2=π.(2)证明:因为-π4≤x ≤π4,所以-π6≤2x+π3≤5π6,所以sin ⎝ ⎛⎭⎪⎫2x +π3≥sin ⎝ ⎛⎭⎪⎫-π6=-12,所以当x ∈⎣⎢⎡⎦⎥⎤-π4,π4时,f (x )≥-12.。
第四章 三角函数 解三角形§4.1 任意角、弧度制及任意角的三角函数1.角的概念(1)角的分类(按旋转的方向)角⎩⎪⎨⎪⎧正角:按照逆时针方向旋转而成的角.负角:按照顺时针方向旋转而成的角.零角:射线没有旋转. (2)象限角(3)终边相同的角所有与α终边相同的角,包括α本身构成一个集合,这个集合可记为S ={β|β=α+k ·360°,k ∈Z }. 2.弧度制(1)定义:长度等于半径长的圆弧所对的圆心角叫做1弧度的角,正角的弧度数是正数,负角的弧度数是负数,零角的弧度数是零.(2)角度制和弧度制的互化:180°=π rad,1°=π180 rad ,1 rad =⎝⎛⎭⎫180π°. (3)扇形的弧长公式:l =|α|r ,扇形的面积公式:S =12lr =12|α|r 2.3.任意角的三角函数的定义α为任意角,α的终边上任意一点P (异于原点)的坐标(x ,y ),它与原点的距离OP =r =x 2+y 2 (r >0),则sin α=y r ;cos α=x r ;tan α=yx ;cot α=x y ;sec α=r x ;csc α=ry.4.三角函数在各象限的符号规律及三角函数线 (1)三角函数在各象限的符号:(2)三角函数线:正弦线 如图,角α的正弦线为MP →. 余弦线 如图,角α的余弦线为OM →. 正切线 如图,角α的正切线为AT →.知识拓展三角函数值的符号规律三角函数值在各象限内的符号:一全正、二正弦、三正切、四余弦.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)锐角是第一象限的角,第一象限的角也都是锐角.( × ) (2)角α的三角函数值与其终边上点P 的位置无关.( √ )(3)不相等的角终边一定不相同.( × ) (4)若α为第一象限角,则sin α+cos α>1.( √ ) 题组二 教材改编2.角-225°= 弧度,这个角在第 象限. 答案 -5π4二3.角α的终边经过点Q ⎝⎛⎭⎫-22,22,则sin α= ,cos α= . 答案22 -224.一条弦的长等于半径,这条弦所对的圆心角大小为 弧度. 答案π3题组三 易错自纠5.(2018·秦皇岛模拟)下列与9π4的终边相同的角的表达式中正确的是 ( ) A .2k π+45°(k ∈Z ) B .k ·360°+9π4(k ∈Z )C .k ·360°-315°(k ∈Z )D .k π+5π4(k ∈Z ) 答案 C解析 与9π4的终边相同的角可以写成2k π+9π4(k ∈Z ),但是角度制与弧度制不能混用,所以只有答案C 正确.6.集合⎩⎨⎧⎭⎬⎫α⎪⎪k π+π4≤α≤k π+π2,k ∈Z 中的角所表示的范围(阴影部分)是( )答案 C解析 当k =2n (n ∈Z )时,2n π+π4≤α≤2n π+π2,此时α表示的范围与π4≤α≤π2表示的范围一样;当k =2n +1 (n ∈Z )时,2n π+π+π4≤α≤2n π+π+π2,此时α表示的范围与π+π4≤α≤π+π2表示的范围一样,故选C.7.(2018·攀枝花质检)已知角α的终边经过点(-4,3),则cos α= .答案 -45解析 cos α=-4(-4)2+32=-45.8.(2018·济宁模拟)函数y =2cos x -1的定义域为 . 答案 ⎣⎡⎦⎤2k π-π3,2k π+π3(k ∈Z ) 解析 ∵2cos x -1≥0, ∴cos x ≥12.由三角函数线画出x 满足条件的终边范围(如图阴影部分所示),∴x ∈⎣⎡⎦⎤2k π-π3,2k π+π3(k ∈Z ).题型一 角及其表示1.设集合M =⎩⎨⎧⎭⎬⎫x ⎪⎪x =k2·180°+45°,k ∈Z ,N = ⎩⎨⎧⎭⎬⎫x ⎪⎪x =k4·180°+45°,k ∈Z ,那么( )A .M =NB .M ⊆NC .N ⊆MD .M ∩N =∅ 答案 B解析 由于M 中,x =k 2·180°+45°=k ·90°+45°=(2k +1)·45°,2k +1是奇数;而N 中,x =k 4·180°+45°=k ·45°+45°=(k +1)·45°,k +1是整数,因此必有M ⊆N ,故选B. 2.若角α是第二象限角,则α2是( )A .第一象限角B .第二象限角C .第一或第三象限角D .第二或第四象限角答案 C解析 ∵α是第二象限角,∴π2+2kπ<α<π+2kπ,k∈Z,∴π4+kπ<α2<π2+kπ,k∈Z.当k为偶数时,α2是第一象限角;当k为奇数时,α2是第三象限角.∴α2是第一或第三象限角.3.(2017·福州模拟)与-2 015°终边相同的最小正角是.答案145°解析与-2 015°角终边相同的角的集合为{α|α=-2 015°+k·360°,k∈Z},当k=6时,α=-2 015°+2 160°=145°.思维升华(1)利用终边相同的角的集合可以求适合某些条件的角,方法是先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数k赋值来求得所需的角.(2)确定kα,αk(k∈N+)的终边位置的方法先写出kα或αk 的范围,然后根据k的可能取值确定kα或αk的终边所在位置.题型二弧度制典例(1)(2017·珠海模拟)已知扇形的周长是4 cm,则扇形面积最大时,扇形的圆心角的弧度数是()A.2 B.1 C.12D.3答案 A解析设扇形的半径为R,则弧长l=4-2R,∴扇形面积S=12lR=R(2-R)=-R2+2R=-(R-1)2+1,当R=1时,S最大,此时l=2,扇形圆心角为2弧度.(2)若圆弧长度等于该圆内接正方形的边长,则其圆心角的弧度数是.答案 2解析设圆半径为r,则圆内接正方形的对角线长为2r,∴正方形边长为2r,∴圆心角的弧度数是2rr= 2.思维升华 应用弧度制解决问题的方法(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度. (2)求扇形面积最大值的问题时,常转化为二次函数的最值问题.(3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形.跟踪训练 (1)(2017·太原模拟)已知2弧度的圆心角所对的弦长为2,则这个圆心角所对的弧长是 . 答案2sin 1解析 设圆的半径为R ,则R ·sin 1=1,∴R =1sin 1, ∴这个圆心角所对弧长为R ×2=2sin 1. (2)已知圆O 与直线l 相切于点A ,点P ,Q 同时从A 点出发,P 沿着直线l 向右,Q 沿着圆周按逆时针以相同的速度运动,当Q 运动到点A 时,点P 也停止运动,连接OQ ,OP (如图),则阴影部分面积S 1,S 2的大小关系是 .答案 S 1=S 2解析 设运动速度为m ,运动时间为t ,圆O 的半径为r , 则AQ =AP =tm ,根据切线的性质知OA ⊥AP , ∴S 1=12tm ·r -S 扇形AOB ,S 2=12tm ·r -S 扇形AOB ,∴S 1=S 2恒成立.题型三 三角函数的概念及应用命题点1 三角函数定义的应用 典例 (1)已知点P 在角4π3的终边上,且|OP |=4,则点P 的坐标为( ) A .(-2,-23) B.⎝⎛⎭⎫-12,-32C .(-23,-2) D.⎝⎛⎭⎫-32,-12 答案 A解析 点P 的坐标为⎝⎛⎭⎫|OP |·cos 4π3,|OP |·sin 4π3,即(-2,-23),故选A. (2)设θ是第三象限角,且⎪⎪⎪⎪cos θ2=-cos θ2,则θ2是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角答案 B解析 由θ是第三象限角知,θ2为第二或第四象限角,∵⎪⎪⎪⎪cos θ2=-cos θ2,∴cos θ2<0, 综上知,θ2为第二象限角.命题点2 三角函数线的应用典例 函数y =lg(2sin x -1)+1-2cos x 的定义域为 . 答案 ⎣⎡⎭⎫2k π+π3,2k π+5π6(k ∈Z ) 解析 要使原函数有意义,必须有⎩⎨⎧2sin x -1>0,1-2cos x ≥0,即⎩⎨⎧sin x >12,cos x ≤12,如图,在单位圆中作出相应的三角函数线,由图可知,原函数的定义域为⎣⎡⎭⎫2k π+π3,2k π+5π6 (k ∈Z ).思维升华 (1)利用三角函数的定义,已知角α终边上一点P 的坐标可求α的三角函数值;已知角α的三角函数值,也可以求出点P 的坐标.(2)利用三角函数线解不等式要注意边界角的取舍,结合三角函数的周期性写出角的范围. 跟踪训练 (1)已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0.则实数a 的取值范围是( ) A .(-2,3] B .(-2,3) C .[-2,3) D .[-2,3]答案 A解析 ∵cos α≤0,sin α>0,∴角α的终边落在第二象限或y 轴的正半轴上.∴⎩⎨⎧3a -9≤0,a +2>0,∴-2<a ≤3. (2)(2017·石家庄模拟)若-3π4<α<-π2,从单位圆中的三角函数线观察sin α,cos α,tan α的大小是( )A .sin α<tan α<cos αB .cos α<sin α<tan αC .sin α<cos α<tan αD .tan α<sin α<cos α 答案 C解析 如图,作出角α的正弦线MP ,余弦线OM ,正切线AT , 观察可知sin α<cos α<tan α.数形结合思想在三角函数中的应用典例 (1)如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动.当圆滚动到圆心位于C (2,1)时,OP →的坐标为 .(2)(2017·合肥调研)函数y =lg(3-4sin 2x )的定义域为 .思想方法指导 在坐标系中研究角就是一种数形结合思想,利用三角函数线可直观得到有关三角函数的不等式的解集. 解析 (1)如图所示,过圆心C 作x 轴的垂线,垂足为A ,过P 作x 轴的垂线与过C 作y 轴的垂线交于点B .因为圆心移动的距离为2,所以劣弧PA =2,即圆心角∠PCA =2, 则∠PCB =2-π2,所以PB =sin ⎝⎛⎭⎫2-π2=-cos 2, CB =cos ⎝⎛⎭⎫2-π2=sin 2,设点P (x P ,y P ), 所以x P =2-CB =2-sin 2,yP =1+PB =1-cos 2, 所以OP →=(2-sin 2,1-cos 2).(2)因为3-4sin 2x >0, 所以sin 2x <34,所以-32<sin x <32. 利用三角函数线画出x 满足条件的终边范围(如图阴影部分所示), 所以x ∈⎝⎛⎭⎫k π-π3,k π+π3(k ∈Z ). 答案 (1)(2-sin 2,1-cos 2) (2)⎝⎛⎭⎫k π-π3,k π+π3(k ∈Z )1.角-870°的终边所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限答案 C解析 由-870°=-1 080°+210°,知-870°角和210°角的终边相同,在第三象限. 2.(2017·石家庄模拟)已知点P ⎝⎛⎭⎫32,-12在角θ的终边上,且θ∈[0,2π),则θ的值为( ) A.5π6B.2π3 C.11π6D.5π3答案 C解析 由已知得tan θ=-33,θ在第四象限且θ∈[0,2π),∴θ=11π6. 3.(2017·福州模拟)已知角θ的终边经过点P (4,m ),且sin θ=35,则m 等于( )A .-3B .3 C.163 D .±3答案 B 解析 sin θ=m 16+m2=35,且m >0, 解得m =3.4.(2018·成都模拟)点P 从(1,0)出发,沿单位圆逆时针方向运动2π3弧长到达Q 点,则Q 点的坐标为 ( ) A.⎝⎛⎭⎫-12,32 B.⎝⎛⎭⎫-32,-12 C.⎝⎛⎭⎫-12,-32D.⎝⎛⎭⎫-32,12 答案 A解析 由三角函数定义可知Q 点的坐标(x ,y )满足 x =cos2π3=-12,y =sin 2π3=32. 5.已知扇形的面积为2,扇形圆心角的弧度数是4,则扇形的周长为( ) A .2 B .4 C .6 D .8 答案 C解析 设扇形的半径为R ,则12×4×R 2=2,∴R =1,弧长l =4,∴扇形的周长为l +2R =6.6.已知α是第二象限的角,其终边上一点为P (x ,5),且cos α=24x ,则tan α等于( ) A.155B.153C.-155D.-153答案 D解析∵xx2+5=24x且α在第二象限,∴x=-3,∴tan α=5-3=-153.7.(2017·怀化模拟)sin 2·cos 3·tan 4的值()A.小于0 B.大于0C.等于0 D.不存在答案 A解析∵sin 2>0,cos 3<0,tan 4>0,∴sin 2·cos 3·tan 4<0.8.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;④若sin α=sin β,则α与β的终边相同;⑤若cos θ<0,则θ是第二或第三象限的角.其中正确命题的个数是()A.1 B.2 C.3 D.4答案 A解析举反例:第一象限角370°不小于第二象限角100°,故①错;当三角形的内角为90°时,其既不是第一象限角,也不是第二象限角,故②错;③正确;由于sin π6=sin 5π6,但π6与5π6的终边不相同,故④错;当cos θ=-1,θ=π时,其既不是第二象限角,也不是第三象限角,故⑤错.综上可知只有③正确.9.(2017·鄂州模拟)已知tan θ<0,且角θ终边上一点为(-1,y),且cos θ=-12,则y=.答案 3解析由已知得θ在第二象限,∴y>0,∴cos θ=-1y2+1=-12,∴y= 3.10.已知扇形的圆心角为π6,面积为π3,则扇形的弧长等于.答案 π3解析 设扇形半径为r ,弧长为l ,则⎩⎨⎧l r =π6,12lr =π3,解得⎩⎪⎨⎪⎧l =π3,r =2.11.函数y = sin x -32的定义域为 . 答案 ⎣⎡⎦⎤2k π+π3,2k π+23π,k ∈Z 解析 利用三角函数线(如图),由sin x ≥32,可知 2k π+π3≤x ≤2k π+23π,k ∈Z .12.满足cos α≤-12的角α的集合为 .答案 ⎩⎨⎧⎭⎬⎫α⎪⎪2k π+23π≤α≤2k π+43π,k ∈Z解析 作直线x =-12交单位圆于C ,D 两点,连接OC ,OD ,则OC 与OD围成的区域(图中阴影部分)即为角α终边的范围,故满足条件的角α的集合为⎩⎨⎧⎭⎬⎫α⎪⎪2k π+23π≤α≤2k π+43π,k ∈Z .13.已知sin α>sin β,那么下列命题成立的是( ) A .若α,β是第一象限的角,则cos α>cos β B .若α,β是第二象限的角,则tan α>tan β C .若α,β是第三象限的角,则cos α>cos β D .若α,β是第四象限的角,则tan α>tan β 答案 D解析 如图,当α在第四象限时,作出α,β的正弦线M 1P 1,M 2P 2和正切线AT 1,AT 2,观察知当sin α>sin β时,tan α>tan β.14.已知点P (sin α+cos α,tan α)在第四象限,则在[0,2π]内α的取值范围是 . 答案 ⎝⎛⎭⎫π2,34π∪⎝⎛⎭⎫74π,2π解析 由⎩⎨⎧sin α+cos α>0,tan α<0,得-1<tan α<0或tan α<-1. 又0≤α≤2π,∴π2<α<34π或74π<α<2π.15.(2017·烟台模拟)若角α的终边与直线y =3x 重合,且sin α<0,又P (m ,n )是角α终边上一点,且|OP |=10,则m -n = . 答案 2解析 由已知tan α=3,∴n =3m , 又m 2+n 2=10,∴m 2=1.又sin α<0,∴m =-1,∴n =-3.故m -n =2.16.如图,在平面直角坐标系xOy 中,角α的始边与x 轴的非负半轴重合且与单位圆相交于A 点,它的终边与单位圆相交于B 点,始边不动,终边在运动.(1)若点B 的横坐标为-45,求tan α的值;(2)若△AOB 为等边三角形,写出与角α终边相同的角β的集合. (3)若α∈⎝⎛⎦⎤0,2π3,请写出弓形AB 的面积S 与α的函数关系式. 解 (1)根据题意可得B ⎝⎛⎭⎫-45,±35,∴tan α=±34.(2)若△AOB 为等边三角形, 则B ⎝⎛⎭⎫12,32或B ⎝⎛⎭⎫12,-32,当B ⎝⎛⎭⎫12,32时,tan ∠AOB =3,∠AOB =π3;当B ⎝⎛⎭⎫12,-32时,tan ∠AOB =-3,∠AOB =-π3.∴与角α终边相同的角β的集合是⎩⎨⎧⎭⎬⎫β⎪⎪β=π3+2k π或β=-π3+2k π,k ∈Z .(3)若α∈⎝⎛⎦⎤0,2π3,则S 扇形=12αr 2=12α, 而S △AOB =12×1×1×sin α=12sin α,故弓形AB 的面积S =12α-12sin α,α∈⎝⎛⎦⎤0,2π3. §4.2 同角三角函数基本关系式及诱导公式1.同角三角函数的基本关系 (1)平方关系:sin 2α+cos 2α=1. (2)商数关系:sin αcosα=tan α(α≠π2+k π,k ∈Z ). 2.诱导公式知识拓展1.同角三角函数关系式的常用变形 (sin α±cos α)2=1±2sin αcos α; sin α=tan α·cos α. 2.诱导公式的记忆口诀“奇变偶不变,符号看象限”,其中的奇、偶是指π2的奇数倍和偶数倍,变与不变指函数名称的变化.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)若α,β为锐角,则sin 2α+cos 2β=1.( × ) (2)若α∈R ,则tan α=sin αcos α恒成立.( × ) (3)sin(π+α)=-sin α成立的条件是α为锐角.( × ) (4)若sin(k π-α)=13(k ∈Z ),则sin α=13.( × )题组二 教材改编 2.若sin α=55,π2<α<π,则tan α= . 答案 -12解析 ∵π2<α<π,∴cos α=-1-sin 2α=-255, ∴tan α=sin αcos α=-12. 3.已知tan α=2,则sin α+cos αsin α-cos α的值为 .答案 3解析 原式=tan α+1tan α-1=2+12-1=3. 4.化简cos ⎝⎛⎭⎫α-π2sin ⎝⎛⎭⎫52π+α·sin(α-π)·cos(2π-α)的结果为 . 答案 -sin 2α 解析 原式=sin αcos α·(-sin α)·cos α=-sin 2α. 题组三 易错自纠 5.设tan α=33,π<α<3π2,则sin α-cos α的值为( ) A .-12+32B .-12-32C.12+32D.12-32答案 A 解析 ∵tan α=33,π<α<3π2, ∴sin α=-12,cos α=-32,∴sin α-cos α=-12-⎝⎛⎭⎫-32=32-12.6.已知sin(π-α)=log 814,且α∈⎝⎛⎭⎫-π2,0,则tan(2π-α)的值为( ) A .-255B.255C .±255D.52答案 B解析 sin(π-α)=sin α=log 814=-23,又α∈⎝⎛⎭⎫-π2,0,得cos α=1-sin 2α=53, tan(2π-α)=tan(-α)=-tan α=-sin αcos α=255. 7.(2018·聊城模拟)已知函数f (x )=⎩⎪⎨⎪⎧2cos π3x ,x ≤2 000,x -18,x >2 000, 则f (f (2 018))= .答案 -1解析 ∵f (f (2 018))=f (2 018-18)=f (2 000), ∴f (2 000)=2cos 2 000π3=2cos 2π3=-1.题型一 同角三角函数关系式的应用1.(2017·长沙模拟)已知α是第四象限角,sin α=-1213,则tan α等于( ) A .-513 B.513 C .-125 D.125答案 C解析 因为α是第四象限角,sin α=-1213, 所以cos α=1-sin 2α=513, 故tan α=sin αcos α=-125. 2.(2017·安徽江南十校联考)已知tan α=-34,则sin α·(sin α-cos α)等于( )A.2125 B.2521 C.45 D.54答案 A解析 sin α·(sin α-cos α)=sin 2α-sin α·cos α =sin 2α-sin α·cos αsin 2α+cos 2α=tan 2α-tan αtan 2α+1,将tan α=-34代入,得原式=⎝⎛⎭⎫-342-⎝⎛⎭⎫-34⎝⎛⎭⎫-342+1=2125.3.已知sin α-cos α=2,α∈(0,π),则tan α等于( ) A .-1 B .-22C.22D .1答案 A解析 由⎩⎨⎧sin α-cos α=2,sin 2α+cos 2α=1,消去sin α得2cos 2α+22cos α+1=0, 即(2cos α+1)2=0,∴cos α=-22. 又α∈(0,π),∴α=3π4,∴tan α=tan 3π4=-1. 思维升华 (1)利用sin 2α+cos 2α=1可实现正弦、余弦的互化,开方时要根据角α所在象限确定符号;利用sin αcos α=tan α可以实现角α的弦切互化. (2)应用公式时注意方程思想的应用:对于sin α+cos α,sin αcos α,sin α-cos α这三个式子,利用(sin α±cos α)2=1±2sin αcos α,可以知一求二.(3)注意公式逆用及变形应用:1=sin 2α+cos 2α,sin 2α=1-cos 2α,cos 2α=1-sin 2α.题型二 诱导公式的应用典例 (1)已知角α的终边上一点的坐标为⎝⎛⎭⎫sin 5π6,cos 5π6,则角α的最小正值为( ) A.5π6B.5π3C.11π6D.2π3答案 B 解析 ∵sin5π6=12,cos 5π6=-32, 该点坐标为⎝⎛⎭⎫12,-32,∴α=5π3+2k π(k ∈Z ).∴当k =0时,α有最小正值5π3. (2)已知cos ⎝⎛⎭⎫π6-θ=a ,则cos ⎝⎛⎭⎫5π6+θ+sin ⎝⎛⎭⎫2π3-θ的值是 . 答案 0解析 ∵cos ⎝⎛⎭⎫5π6+θ=-cos ⎣⎡⎦⎤π-⎝⎛⎭⎫5π6+θ=-a , sin ⎝⎛⎭⎫2π3-θ=sin ⎣⎡⎦⎤π2+⎝⎛⎭⎫π6-θ=a , ∴cos ⎝⎛⎭⎫5π6+θ+sin ⎝⎛⎭⎫2π3-θ=-a +a =0. 思维升华 (1)诱导公式的两个应用①求值:负化正,大化小,化到锐角为终了. ②化简:统一角,统一名,同角名少为终了. (2)含2π整数倍的诱导公式的应用由终边相同的角的关系可知,要利用诱导公式一,然后再进行运算. 跟踪训练 (1)(2017·南昌模拟)化简: sin (α+π)cos (π-α)sin ⎝⎛⎭⎫5π2-αtan (-α)cos 3(-α-2π)= .答案 -1 解析 原式=(-sin α)·(-cos α)·cos α-tan α·cos 3α=-1.(2)已知角α终边上一点P (-4,3),则 cos ⎝⎛⎭⎫π2+α·sin (-π-α)cos ⎝⎛⎭⎫11π2-α·sin ⎝⎛⎭⎫9π2+α的值为 .答案 -34解析 原式=(-sin α)sin α(-sin α)cos α=tan α,根据三角函数的定义得tan α=-34.题型三 同角三角函数基本关系式和诱导公式的综合应用典例 (1)(2017·福建四地六校联考)已知α为锐角,且2tan(π-α)-3cos ⎝⎛⎭⎫π2+β+5=0,tan(π+α)+6sin(π+β)-1=0,则sin α的值是( ) A.355 B.377 C.31010 D.13答案 C解析 由已知可得-2tan α+3sin β+5=0,tan α-6sin β-1=0,解得tan α=3,又α为锐角,故sin α=31010. (2)已知-π<x <0,sin(π+x )-cos x =-15.①求sin x -cos x 的值; ②求sin 2x +2sin 2x 1-tan x的值.解 ①由已知,得sin x +cos x =15,两边平方得sin 2x +2sin x cos x +cos 2x =125, 整理得2sin x cos x =-2425. ∵(sin x -cos x )2=1-2sin x cos x =4925, 由-π<x <0知,sin x <0, 又sin x cos x =-1225<0, ∴cos x >0,∴sin x -cos x <0, 故sin x -cos x =-75.②sin 2x +2sin 2x 1-tan x=2sin x (cos x +sin x )1-sin x cos x=2sin x cos x (cos x +sin x )cos x -sin x=-2425×1575=-24175.引申探究本例(2)中若将条件“-π<x <0”改为“0<x <π”,求sin x -cos x 的值. 解 若0<x <π,又2sin x cos x =-2425, ∴sin x >0,cos x <0,∴sin x -cos x >0,故sin x -cos x =75.思维升华 (1)利用同角三角函数关系式和诱导公式求值或化简时,关键是寻求条件、结论间的联系,灵活使用公式进行变形.(2)注意角的范围对三角函数符号的影响.跟踪训练 (1)(2017·三明模拟)若sin (π-θ)+cos (θ-2π)sin θ+cos (π+θ)=12,则tan θ等于( )A .1B .-1C .3D .-3 答案 D解析 由已知sin θ+cos θsin θ-cos θ=12,∴tan θ+1tan θ-1=12,故tan θ=-3.(2)(2017·西安模拟)已知函数f (x )=a sin(πx +α)+b cos(πx +β),且f (4)=3,则f (2 017)的值为( ) A .-1 B .1 C .3 D .-3 答案 D解析 ∵f (4)=a sin(4π+α)+b cos(4π+β) =a sin α+b cos β=3,∴f (2 017)=a sin(2 017π+α)+b cos(2 017π+β) =a sin(π+α)+b cos(π+β) =-a sin α-b cos β =-3.分类讨论思想在三角函数中的应用典例 (1)已知A =sin (k π+α)sin α+cos (k π+α)cos α(k ∈Z ),则A 的值构成的集合是( )A .{1,-1,2,-2}B .{-1,1}C .{2,-2}D .{1,-1,0,2,-2} (2)已知sin α=255,则tan(α+π)+sin ⎝⎛⎭⎫5π2+αcos ⎝⎛⎭⎫5π2-α= . 思想方法指导 (1)在利用同角三角函数基本关系式中的平方关系时,要根据角的范围对开方结果进行讨论.(2)利用诱导公式化简时要对题中整数k 是奇数或偶数进行讨论. 解析 (1)当k 为偶数时,A =sin αsin α+cos αcos α=2; 当k 为奇数时,A =-sin αsin α-cos αcos α=-2.所以A 的值构成的集合是{2,-2}. (2)∵sin α=255>0, ∴α为第一或第二象限角.tan(α+π)+sin ⎝⎛⎭⎫5π2+αcos ⎝⎛⎭⎫5π2-α=tan α+cos αsin α=sin αcos α+cos αsin α=1sin αcos α. ①当α是第一象限角时,cos α=1-sin 2 α=55, 原式=1sin αcos α=52;②当α是第二象限角时,cos α=-1-sin 2α=-55, 原式=1sin αcos α=-52.综合①②知,原式=52或-52.答案 (1)C (2)52或-521.已知sin(π+α)=12,则cos α的值为( )A .±12 B.12 C.32 D .±32答案 D解析 ∵sin(π+α)=-sin α=12,∴sin α=-12,cos α=±1-sin 2α=±32.2.已知sin α=55,则sin 4α-cos 4α的值为( ) A .-15B .-35C.15D.35答案 B解析 sin 4α-cos 4α=sin 2α-cos 2α=2sin 2α-1 =25-1=-35.3.已知tan α=12,且α∈⎝⎛⎭⎫π,3π2,则sin α等于( ) A .-55B.55C.255D .-255答案 A解析 ∵tan α=12>0,且α∈⎝⎛⎭⎫π,3π2, ∴sin α<0,∴sin 2α=sin 2αsin 2α+cos 2α=tan 2αtan 2α+1=1414+1=15,∴sin α=-55. 4.若θ∈⎝⎛⎭⎫π2,π,则 1-2sin (π+θ)sin ⎝⎛⎭⎫3π2-θ等于( )A .sin θ-cos θB .cos θ-sin θC .±(sin θ-cos θ)D .sin θ+cos θ答案 A 解析 因为 1-2sin (π+θ)sin ⎝⎛⎭⎫3π2-θ=1-2sin θcos θ=(sin θ-cos θ)2=|sin θ-cos θ|,又θ∈⎝⎛⎭⎫π2,π,所以sin θ-cos θ>0, 所以原式=sin θ-cos θ.故选A.5.(2017·广州二测)cos ⎝⎛⎭⎫π12-θ=13,则sin ⎝⎛⎭⎫5π12+θ等于( ) A.13 B.223 C .-13 D .-223 答案 A解析 sin ⎝⎛⎭⎫5π12+θ=sin ⎣⎡⎦⎤π2-⎝⎛⎭⎫π12-θ =cos ⎝⎛⎭⎫π12-θ =13. 6.(2017·孝感模拟)已知tan α=3,则1+2sin αcos αsin 2α-cos 2α的值是( )A.12 B .2 C .-12 D .-2 答案 B 解析 原式=sin 2α+cos 2α+2sin αcos αsin 2α-cos 2α=tan 2α+2tan α+1tan 2α-1=9+6+19-1=2.7.若sin(π-α)=-2sin ⎝⎛⎭⎫π2+α,则sin α·cos α的值等于( ) A .-25B .-15C.25或-25D.25答案 A解析 由sin(π-α)=-2sin ⎝⎛⎭⎫π2+α, 可得sin α=-2cos α, 则tan α=-2, sin α·cos α=sin α·cos αsin 2α+cos 2α=tan α1+tan 2α=-25.8.若角α的终边落在第三象限,则cos α1-sin 2α+2sin α1-cos 2α的值为( )A .3B .-3C .1D .-1 答案 B解析 由角α的终边落在第三象限, 得sin α<0,cos α<0, 故原式=cos α|cos α|+2sin α|sin α|=cos α-cos α+2sin α-sin α=-1-2 =-3.9.在△ABC 中,若tan A =23,则sin A = . 答案2211解析 因为tan A =23>0,所以A 为锐角, 由tan A =sin A cos A =23以及sin 2A +cos 2A =1, 可求得sin A =2211. 10.已知α为钝角,sin ⎝⎛⎭⎫π4+α=34,则sin ⎝⎛⎭⎫π4-α= . 答案 -74解析 因为α为钝角, 所以cos ⎝⎛⎭⎫π4+α=-74, 所以sin ⎝⎛⎭⎫π4-α=cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫π4-α =cos ⎝⎛⎭⎫π4+α=-74. 11.若f (cos x )=cos 2x ,则f (sin 15°)= . 答案 -32解析 f (sin 15°)=f (cos 75°)=cos 150° =cos(180°-30°)=-cos 30°=-32. 12.若cos(2π-α)=53,且α∈⎣⎡⎦⎤-π2,0,则sin(π-α)= . 答案 -23解析 由诱导公式可知cos(2π-α)=cos α=53, sin(π-α)=sin α,由sin 2α+cos 2α=1, 可得sin α=±23,∵α∈⎣⎡⎦⎤-π2,0, ∴sin α=-23.13.若sin θ,cos θ是方程4x 2+2mx +m =0的两根,则m 的值为( ) A .1+ 5B .1- 5C .1±5D .-1- 5答案 B解析 由题意知sin θ+cos θ=-m 2,sin θcos θ=m4,又(sin θ+cos θ)2=1+2sin θcos θ, ∴m 24=1+m2, 解得m =1±5,又Δ=4m 2-16m ≥0, ∴m ≤0或m ≥4,∴m =1- 5.14.已知α为第二象限角,则cos α1+tan 2α+ sin α 1+1tan 2α= . 答案 0解析 原式=cos α sin 2α+cos 2αcos 2α+sin αsin 2α+cos 2αsin 2α=cos α1|cos α|+sin α1|sin α|, 因为α是第二象限角, 所以sin α>0,cos α<0, 所以cos α1|cos α|+sin α1|sin α|=-1+1=0, 即原式等于0.15.若sin ⎝⎛⎭⎫π6-α=13,则cos ⎝⎛⎭⎫2π3+2α等于( ) A .-79B .-13C.13D.79答案 A解析 ∵⎝⎛⎭⎫π3+α+⎝⎛⎭⎫π6-α=π2, ∴sin ⎝⎛⎭⎫π6-α=sin ⎣⎡⎦⎤π2-⎝⎛⎭⎫π3+α =cos ⎝⎛⎭⎫π3+α=13.则cos ⎝⎛⎭⎫2π3+2α=2cos 2⎝⎛⎭⎫π3+α-1=-79. 16.(2018·武汉模拟)已知关于x 的方程2x 2-(3+1)x +m =0的两根为sin θ和cos θ,θ∈(0,2π). 求:(1)sin 2θsin θ-cos θ+cos θ1-tan θ的值;(2)m 的值;(3)方程的两根及此时θ的值. 解 (1)原式=sin 2θsin θ-cos θ+cos θ1-sin θcos θ=sin 2θsin θ-cos θ+cos 2θcos θ-sin θ =sin 2θ-cos 2θsin θ-cos θ=sin θ+cos θ.由条件知sin θ+cos θ=3+12,故sin 2θsin θ-cos θ+cos θ1-tan θ=3+12.(2)由sin 2θ+2sin θcos θ+cos 2θ=1+2sin θcos θ 即(sin θ+cos θ)2=1+2×m2,解得m =32. (3)由⎩⎪⎨⎪⎧sin θ+cos θ=3+12,sin θ·cos θ=34,知⎩⎨⎧sin θ=32,cos θ=12或⎩⎨⎧sin θ=12,cos θ=32.又θ∈(0,2π),故θ=π3或θ=π6.§4.3 三角函数的图象与性质1.用五点法作正弦函数和余弦函数的简图(1)在正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),⎝⎛⎭⎫π2,1,(π,0),⎝⎛⎭⎫3π2,-1,(2π,0).(2)在余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),⎝⎛⎭⎫π2,0,(π,-1),⎝⎛⎭⎫3π2,0,(2π,1).2.正弦、余弦、正切函数的图象与性质(下表中k ∈Z )知识拓展 1.对称与周期(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是14个周期.(2)正切曲线相邻两对称中心之间的距离是半个周期. 2.奇偶性若f (x )=A sin(ωx +φ)(A ,ω≠0),则:(1)f (x )为偶函数的充要条件是φ=π2+k π(k ∈Z );(2)f (x )为奇函数的充要条件是φ=k π(k ∈Z ).题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)y =sin x 在第一、第四象限上是增函数.( × )(2)由sin ⎝⎛⎭⎫π6+2π3=sin π6知,2π3是正弦函数y =sin x (x ∈R )的一个周期.( × ) (3)正切函数y =tan x 在定义域内是增函数.( × ) (4)已知y =k sin x +1,x ∈R ,则y 的最大值为k +1.( × ) (5)y =sin|x |是偶函数.( √ ) 题组二 教材改编2.函数f (x )=cos ⎝⎛⎭⎫2x +π4的最小正周期是 . 答案 π3.y =3sin ⎝⎛⎭⎫2x -π6在区间⎣⎡⎦⎤0,π2上的值域是 . 答案 ⎣⎡⎦⎤-32,3 解析 当x ∈⎣⎡⎦⎤0,π2时,2x -π6∈⎣⎡⎦⎤-π6,5π6, sin ⎝⎛⎭⎫2x -π6∈⎣⎡⎦⎤-12,1, 故3sin ⎝⎛⎭⎫2x -π6∈⎣⎡⎦⎤-32,3,即y =3sin ⎝⎛⎭⎫2x -π6的值域为⎣⎡⎦⎤-32,3. 4.y =tan 2x 的定义域是 .答案 ⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠k π2+π4,k ∈Z 解析 由2x ≠k π+π2,k ∈Z ,得x ≠k π2+π4,k ∈Z ,∴y =tan 2x 的定义域是⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠k π2+π4,k ∈Z . 题组三 易错自纠5.函数f (x )=sin ⎝⎛⎭⎫x -π4的图象的一条对称轴是( ) A .x =π4B .x =π2C .x =-π4D .x =-π2答案 C解析 ∵正弦函数图象的对称轴过图象的最高点或最低点,故令x -π4=k π+π2,k ∈Z ,∴x =k π+3π4,k ∈Z . 取k =-1,则x =-π4.6.函数y =-tan ⎝⎛⎭⎫2x -3π4的单调递减区间为 . 答案 ⎝⎛⎭⎫π8+k π2,5π8+k π2(k ∈Z ) 解析 因为y =tan x 的单调递增区间为⎝⎛⎭⎫-π2+k π,π2+k π(k ∈Z ),所以由-π2+k π<2x -3π4<π2+k π,k ∈Z ,得π8+k π2<x <5π8+k π2(k ∈Z ), 所以y =-tan ⎝⎛⎭⎫2x -3π4的单调递减区间为 ⎝⎛⎭⎫π8+k π2,5π8+k π2(k ∈Z ).7.cos 23°,sin 68°,cos 97°的大小关系是 .(用“>”连接) 答案 sin 68°>cos 23°>cos 97° 解析 sin 68°=cos 22°,又y =cos x 在[0°,180°]上是减函数, ∴sin 68°>cos 23°>cos 97°.题型一 三角函数的定义域和值域1.函数f (x )=-2tan ⎝⎛⎭⎫2x +π6的定义域是( ) A.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠π6 B.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠-π12 C.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠k π+π6(k ∈Z ) D.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠k π2+π6(k ∈Z ) 答案 D解析 由正切函数的定义域,得2x +π6≠k π+π2,k ∈Z ,即x ≠k π2+π6(k ∈Z ),故选D.2.函数y =sin x -cos x 的定义域为 . 答案 ⎣⎡⎦⎤2k π+π4,2k π+5π4(k ∈Z ) 解析 方法一 要使函数有意义,必须使sin x -cos x ≥0.利用图象,在同一坐标系中画出[0,2π]上y =sin x 和y =cos x 的图象,如图所示.在[0,2π]内,满足sin x =cos x 的x 为π4,5π4,再结合正弦、余弦函数的周期是2π,所以原函数的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪2k π+π4≤x ≤2k π+5π4,k ∈Z .方法二 利用三角函数线,画出满足条件的终边范围(如图阴影部分所示).所以定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪2k π+π4≤x ≤2k π+5π4,k ∈Z .3.函数y =-2sin x -1,x ∈⎣⎡⎭⎫7π6,13π6的值域是 . 答案 (-2,1]解析 当x ∈⎣⎡⎭⎫7π6,13π6时,-1≤sin x <12, 所以函数y =-2sin x -1,x ∈⎣⎡⎭⎫7π6,13π6的值域是(-2,1].4.(2018届山东邹平双语学校月考)函数f (x )=sin 2x +3cos x -34⎝⎛⎭⎫x ∈⎣⎡⎦⎤0,π2的最大值是 . 答案 1解析 f (x )=sin 2x +3cos x -34=1-cos 2x +3cos x -34,令cos x =t 且t ∈[0,1],则y =-t 2+3t +14=-⎝⎛⎭⎫t -322+1,当t =32时,y max =1, 即f (x )的最大值是1.思维升华 (1)三角函数定义域的求法求三角函数的定义域实际上是构造简单的三角不等式(组),常借助三角函数线或三角函数图象来求解.(2)三角函数值域的不同求法 ①利用sin x 和cos x 的值域直接求;②把所给的三角函数式变换成y =A sin(ωx +φ)(A ,ω≠0)的形式求值域; ③通过换元,转换成二次函数求值域.题型二 三角函数的单调性命题点1 求三角函数的单调性典例 (1)函数f (x )=tan ⎝⎛⎭⎫2x -π3的单调递增区间是( ) A.⎣⎡⎦⎤k π2-π12,k π2+5π12(k ∈Z )B.⎝⎛⎭⎫k π2-π12,k π2+5π12(k ∈Z )C.⎝⎛⎭⎫k π+π6,k π+2π3(k ∈Z ) D.⎣⎡⎦⎤k π-π12,k π+5π12(k ∈Z ) 答案 B解析 由k π-π2<2x -π3<k π+π2(k ∈Z ),得k π2-π12<x <k π2+5π12(k ∈Z ), 所以函数f (x )=tan ⎝⎛⎭⎫2x -π3的单调递增区间为⎝⎛⎭⎫k π2-π12,k π2+5π12(k ∈Z ),故选B. (2)(2017·哈尔滨、长春、沈阳、大连四市联考)函数y =12sin x +32cos x ⎝⎛⎭⎫x ∈⎣⎡⎦⎤0,π2的单调递增区间是 . 答案 ⎣⎡⎦⎤0,π6 解析 ∵y =12sin x +32cos x =sin ⎝⎛⎭⎫x +π3, 由2k π-π2≤x +π3≤2k π+π2(k ∈Z ),解得2k π-5π6≤x ≤2k π+π6(k ∈Z ). ∴函数的单调递增区间为⎣⎡⎦⎤2k π-5π6,2k π+π6(k ∈Z ), 又x ∈⎣⎡⎦⎤0,π2,∴单调递增区间为⎣⎡⎦⎤0,π6. 命题点2 根据单调性求参数典例 已知ω>0,函数f (x )=sin ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上单调递减,则ω的取值范围是 . 答案 ⎣⎡⎦⎤12,54解析 由π2<x <π,ω>0,得ωπ2+π4<ωx +π4<ωπ+π4, 又y =sin x 的单调递减区间为⎣⎡⎦⎤2k π+π2,2k π+3π2,k ∈Z , 所以⎩⎨⎧ωπ2+π4≥π2+2k π,ωπ+π4≤3π2+2k πk ∈Z ,解得4k +12≤ω≤2k +54,k ∈Z .又由4k +12-⎝⎛⎭⎫2k +54≤0,k ∈Z 且2k +54>0,k ∈Z ,得k =0,所以ω∈⎣⎡⎦⎤12,54. 引申探究本例中,若已知ω>0,函数f (x )=cos ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上单调递增,则ω的取值范围是 . 答案 ⎣⎡⎦⎤32,74解析 函数y =cos x 的单调递增区间为[-π+2k π,2k π],k ∈Z ,则⎩⎨⎧ωπ2+π4≥-π+2k π,ωπ+π4≤2k πk ∈Z ,解得4k -52≤ω≤2k -14,k ∈Z ,又由4k -52-⎝⎛⎭⎫2k -14≤0,k ∈Z 且2k -14>0,k ∈Z , 得k =1,所以ω∈⎣⎡⎦⎤32,74.思维升华 (1)已知三角函数解析式求单调区间求形如y =A sin(ωx +φ)或y =A cos(ωx +φ)(其中ω>0)的单调区间时,要视“ωx +φ”为一个整体,通过解不等式求解.但如果ω<0,可借助诱导公式将ω化为正数,防止把单调性弄错. (2)已知三角函数的单调区间求参数.先求出函数的单调区间,然后利用集合间的关系求解. 跟踪训练 (2017·济南模拟)若函数f (x )=sin ωx (ω>0)在区间⎣⎡⎦⎤0,π3上单调递增,在区间⎣⎡⎦⎤π3,π2上单调递减,则ω等于( ) A.23 B.32 C .2 D .3答案 B解析 由已知得T 4=π3,∴T =4π3,∴ω=2πT =32.题型三 三角函数的周期性、奇偶性、对称性命题点1 三角函数的周期性典例 (1)(2017·湘西自治州模拟)已知函数f (x )=sin(ωx -ωπ)(ω>0)的最小正周期为π,则f ⎝⎛⎭⎫π12等于( ) A.12 B .-12C.32D .-32答案 A解析 ∵T =π,∴ω=2πT =2ππ=2, ∴f (x )=sin ()2x -2π=sin 2x , ∴f ⎝⎛⎭⎫π12=sin π6=12. (2)若函数f (x )=2tan ⎝⎛⎭⎫kx +π3的最小正周期T 满足1<T <2,则自然数k 的值为 . 答案 2或3解析 由题意得,1<πk <2,∴k <π<2k ,即π2<k <π,又k ∈Z ,∴k =2或3. 命题点2 三角函数的奇偶性典例 (2017·银川模拟)函数f (x )=3sin ⎝⎛⎭⎫2x -π3+φ,φ∈(0,π)满足f (|x |)=f (x ),则φ的值为 . 答案5π6解析 由题意知f (x )为偶函数,关于y 轴对称, ∴f (0)=3sin ⎝⎛⎭⎫φ-π3=±3,∴φ-π3=k π+π2,k ∈Z ,又0<φ<π,∴φ=5π6.命题点3 三角函数图象的对称性典例 (1)下列函数的最小正周期为π且图象关于直线x =π3对称的是( )A .y =2sin ⎝⎛⎭⎫2x +π3B .y =2sin ⎝⎛⎭⎫2x -π6 C .y =2sin ⎝⎛⎭⎫x 2+π3 D .y =2sin ⎝⎛⎭⎫2x -π3 答案 B解析 由y =f (x )的最小正周期为π,可排除C ;其图象关于直线x =π3对称,根据选项,则f ⎝⎛⎭⎫π3=2或-2,可排除A ,D.故选B.(2)(2016·全国Ⅰ改编)已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|≤π2,x =-π4为f (x )的零点,x =π4为y =f (x )图象的对称轴,且f (x )在⎝⎛⎭⎫π18,5π36上单调,则ω的最大值为 . 答案 9解析 因为x =-π4为f (x )的零点,x =π4为f (x )的图象的对称轴,所以π4-⎝⎛⎭⎫-π4=T 4+kT 2,即π2=2k +14T =2k +14·2πω,所以ω=2k +1(k ∈N ),又因为f (x )在⎝⎛⎭⎫π18,5π36上单调,所以5π36-π18=π12≤T 2=2π2ω,即ω≤12,若ω=11,又|φ|≤π2,则φ=-π4,此时,f (x )=sin ⎝⎛⎭⎫11x -π4,f (x )在⎝⎛⎭⎫π18,3π44上单调递增,在⎝⎛⎭⎫3π44,5π36上单调递减,不满足条件. 若ω=9,又|φ|≤π2,则φ=π4,此时,f (x )=sin ⎝⎛⎭⎫9x +π4,满足f (x )在⎝⎛⎭⎫π18,5π36上单调的条件. 由此得ω的最大值为9.思维升华 (1)对于函数y =A sin(ωx +φ),其对称轴一定经过图象的最高点或最低点,对称中心的横坐标一定是函数的零点. (2)求三角函数周期的方法 ①利用周期函数的定义.②利用公式:y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|,y =tan(ωx +φ)的最小正周期为π|ω|. 跟踪训练 (1)(2017·大连模拟)函数f (x )=2cos(ωx +φ)(ω≠0)对任意x 都有f ⎝⎛⎭⎫π4+x =f ⎝⎛⎭⎫π4-x ,则f ⎝⎛⎭⎫π4等于( ) A .2或0 B .-2或2 C .0 D .-2或0答案 B解析 由题意,知x =π4为函数f (x )的一条对称轴,∴f ⎝⎛⎭⎫π4=±2.(2)若将函数f (x )=sin ⎝⎛⎭⎫ωx +π3的图象向右平移π3个单位长度后与原函数的图象关于x 轴对称,则ω的最小正值是 . 答案 3解析 若将函数f (x )的图象向右平移π3个单位长度后与原函数的图象关于x 轴对称,则平移的大小最小为T 2,所以T 2≤π3,即T max =2π3,所以当T =2π3时,ωmin =2πT max =2π2π3=3.三角函数的图象与性质考点分析 纵观近年高考中三角函数的试题,其有关性质几乎每年必考,题目较为简单,综合性的知识多数为三角函数本章内的知识,通过有效地复习完全可以对此类题型及解法有效攻破,并在高考中拿全分.典例 (1)(2017·全国Ⅲ)设函数f (x )=cos ⎝⎛⎭⎫x +π3,则下列结论错误的是( ) A .f (x )的一个周期为-2π B .y =f (x )的图象关于直线x =8π3对称 C .f (x +π)的一个零点为x =π6D .f (x )在⎝⎛⎭⎫π2,π上单调递减(2)函数f (x )=cos(ωx +φ)的部分图象如图所示,则f (x )的单调递减区间为 .(3)设函数f (x )=A sin(ωx +φ)(A ,ω,φ是常数,A >0,ω>0).若f (x )在区间⎣⎡⎦⎤π6,π2上具有单调性,且f ⎝⎛⎭⎫π2=f ⎝⎛⎭⎫2π3=-f ⎝⎛⎭⎫π6,则f (x )的最小正周期为 . 解析 (1)A 项,因为f (x )=cos ⎝⎛⎭⎫x +π3的周期为2k π(k ∈Z ),所以f (x )的一个周期为-2π,A 项正确;B 项,因为f (x )=cos ⎝⎛⎭⎫x +π3图象的对称轴为直线x =k π-π3(k ∈Z ),所以y =f (x )的图象关于直线x =8π3对称,B 项正确;C 项,f (x +π)=cos ⎝⎛⎭⎫x +4π3.令x +4π3=k π+π2(k ∈Z ),得x =k π-5π6,当k =1时,x =π6,所以f (x +π)的一个零点为x =π6,C 项正确;D 项,因为f (x )=cos ⎝⎛⎭⎫x +π3的单调递减区间为⎣⎡⎦⎤2k π-π3,2k π+2π3(k ∈Z ), 单调递增区间为⎣⎡⎦⎤2k π+2π3,2k π+5π3(k ∈Z ), 所以⎝⎛⎭⎫π2,2π3是f (x )的单调递减区间,⎣⎡⎭⎫2π3,π是f (x )的单调递增区间,D 项错误.故选D. (2)由图象知,周期T =2×⎝⎛⎭⎫54-14=2, ∴2πω=2,∴ω=π. 由π×14+φ=π2+2k π,k ∈Z ,不妨取φ=π4,∴f (x )=cos ⎝⎛⎭⎫πx +π4. 由2k π<πx +π4<2k π+π,k ∈Z ,得2k -14<x <2k +34,k ∈Z ,∴f (x )的单调递减区间为⎝⎛⎭⎫2k -14,2k +34,k ∈Z . (3)记f (x )的最小正周期为T . 由题意知T 2≥π2-π6=π3,又f ⎝⎛⎭⎫π2=f ⎝⎛⎭⎫2π3=-f ⎝⎛⎭⎫π6,且2π3-π2=π6, 可作出示意图如图所示(一种情况):∴x 1=⎝⎛⎭⎫π2+π6×12=π3, x 2=⎝⎛⎭⎫π2+2π3×12=7π12,∴T 4=x 2-x 1=7π12-π3=π4,∴T =π. 答案 (1)D (2)⎝⎛⎭⎫2k -14,2k +34,k ∈Z (3)π1.(2017·广州五校联考)下列函数中,周期为π的奇函数为( ) A .y =sin x cos x B .y =sin 2xC .y =tan 2xD .y =sin 2x +cos 2x答案 A解析 y =sin x cos x =12sin 2x ,周期为π,且是奇函数.2.函数f (x )=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π2上的最小值为( ) A .-1 B .-22 C.22D .0 答案 B解析 由已知x ∈⎣⎡⎦⎤0,π2,得2x -π4∈⎣⎡⎦⎤-π4,3π4, 所以sin ⎝⎛⎭⎫2x -π4∈⎣⎡⎦⎤-22,1, 故函数f (x )=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π2上的最小值为-22.故选B. 3.函数y =sin x 2的图象是( )答案 D解析 函数y =sin x 2为偶函数,排除A ,C ;又当x =π2时函数取得最大值,排除B ,故选D. 4.(2017·成都诊断)函数y =cos 2x -2sin x 的最大值与最小值分别为( ) A .3,-1 B .3,-2 C .2,-1 D .2,-2 答案 D解析 y =cos 2x -2sin x =1-sin 2x -2sin x。
第三节 三角函数的图像与性质[考纲传真] 1.能画出y =sin x ,y =cos x ,y =tan x 的图像,了解三角函数的周期性.2.理解正弦函数、余弦函数在[0,2π]上的性质(如单调性、最大值和最小值、图像与x 轴的交点等),理解正切函数在区间⎝ ⎛⎭⎪⎫-π2,π2内的单调性.(对应学生用书第42页)[基础知识填充]1.用五点法作正弦函数和余弦函数的简图正弦函数y =sin x ,x ∈[0,2π]图像的五个关键点是:(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫3π2,-1,(2π,0).余弦函数y =cos x ,x ∈[0,2π]图像的五个关键点是:(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎫3π2,0,(2π,1).2.正弦函数、余弦函数、正切函数的图像与性质1.对称与周期(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是14个周期.(2)正切曲线相邻两对称中心之间的距离是半个周期. 2.奇偶性若f (x )=A sin(ωx +φ)(A ,ω≠0),则(1)f (x )为偶函数的充要条件是φ=π2+k π(k ∈Z );(2)f (x )为奇函数的充要条件是φ=k π(k ∈Z ).[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)正切函数y =tan x 在定义域内是增函数.( ) (2)y =sin |x |是偶函数.( )(3)函数y =sin x 的图像关于点(k π,0)(k ∈Z )中心对称.( ) (4)已知y =k sin x +1,x ∈R ,则y 的最大值为k +1( ) [答案] (1)× (2)√ (3)√ (4)×2.(2018·昆明模拟)函数f (x )=cos ⎝ ⎛⎭⎪⎫2x +5π2的图像关于( ) A .原点对称 B .y 轴对称C .直线x =5π2对称D .直线x =-5π2对称A [函数f (x )=cos ⎝ ⎛⎭⎪⎫2x +5π2=-sin 2x 是奇函数,则图像关于原点对称,故选A .] 3.函数y =tan 2x 的定义域是( )A .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x ≠k π+π4,k ∈ZB .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π2+π8,k ∈ZC .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π+π8,k ∈ZD .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π2+π4,k ∈ZD [由2x ≠k π+π2,k ∈Z ,得x ≠k π2+π4,k ∈Z ,∴y =tan 2x 的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π2+π4,k ∈Z.] 4.(2018·长沙模拟)函数y =sin ⎝ ⎛⎭⎪⎫12x +π3,x ∈[-2π,2π]的单调递增区间是( )A .⎣⎢⎡⎦⎥⎤-2π,-5π3B .⎣⎢⎡⎦⎥⎤-2π,-5π3和⎣⎢⎡⎦⎥⎤π3,2πC .⎣⎢⎡⎦⎥⎤-5π3,π3D .⎣⎢⎡⎦⎥⎤π3,2πC [令z =12x +π3,函数y =sin z 的单调递增区间为⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2(k ∈Z ),由2k π-π2≤12x +π3≤2k π+π2得4k π-5π3≤x ≤4k π+π3,而x ∈[-2π,2π],故其单调递增区间是⎣⎢⎡⎦⎥⎤-5π3,π3,故选C .]5.(教材改编)函数f (x )=4-2cos 13x 的最小值是________,取得最小值时,x 的取值集合为________.【导学号:00090091】2 {x |x =6k π,k ∈Z } [f (x )min =4-2=2,此时,13x =2k π(k ∈Z ),x =6k π(k ∈Z ),所以x 的取值集合为{x |x =6k π,k ∈Z }.](对应学生用书第43页)(1)(2016·全国卷Ⅱ)函数f (x )=cos 2x +6cos 2-x 的最大值为( )A .4B .5C .6D .7(2)函数y =lg(sin 2x )+9-x 2的定义域为________.(1)B (2)⎣⎢⎡⎭⎪⎫-3,-π2∪⎝ ⎛⎭⎪⎫0,π2 [(1)∵f (x )=cos 2x +6cos π2-x =cos 2x +6sin x =1-2sin 2x +6sin x =-2⎝⎛⎭⎪⎫sin x -322+112,又sin x ∈[-1,1],∴当sin x =1时,f (x )取得最大值5.故选B .(2)由⎩⎪⎨⎪⎧sin 2x >0,9-x 2≥0,得⎩⎪⎨⎪⎧k π<x <k π+π2,k ∈Z ,-3≤x ≤3,∴-3≤x <-π2或0<x <π2,∴函数y =lg(sin 2x )+9-x 2的定义域为⎣⎢⎡⎭⎪⎫-3,-π2∪⎝ ⎛⎭⎪⎫0,π2.][规律方法] 1.三角函数定义域的求法求三角函数定义域实际上是构造简单的三角不等式(组),常借助三角函数线或三角函数图像来求解.2.求三角函数最值或值域的常用方法(1)直接法:直接利用sin x 和cos x 的值域求解.(2)化一法:把所给三角函数化为y =A sin(ωx +φ)+k 的形式,由正弦函数单调性写出函数的值域.(3)换元法:把sin x ,cos x ,sin x cos x 或sin x ±cos x 换成t ,转化为二次函数求解.[变式训练1] (1)已知函数y =2cos x 的定义域为⎣⎢⎡⎦⎥⎤π3,π,值域为[a ,b ],则b -a 的值是( ) A .2 B .3 C .3+2D .2- 3(2)求函数y =cos 2x +sin x ⎝⎛⎭⎪⎫|x |≤π4的最大值与最小值.(1)B [∵x ∈⎣⎢⎡⎦⎥⎤π3,π,∴cos x ∈⎣⎢⎡⎦⎥⎤-1,12,∴y =2cos x 的值域为[-2,1],∴b -a =3.](2)令t =sin x ,∵|x |≤π4,∴t ∈⎣⎢⎡⎦⎥⎤-22,22,3分∴y =-t 2+t +1=-⎝ ⎛⎭⎪⎫t -122+54,∴当t =12时,y max =54,当t =-22时,y min =1-22,7分 ∴函数y =cos 2x +sin x ⎝⎛⎭⎪⎫|x |≤π4的最大值为54,最小值为1-22.12分(1)(2018·洛阳模拟)已知ω>0,函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +4在⎝ ⎛⎭⎪⎫2,π上单调递减,则ω的取值范围是( ) 【导学号:00090092】A .⎣⎢⎡⎦⎥⎤12,54 B .⎣⎢⎡⎦⎥⎤12,34C .⎝ ⎛⎦⎥⎤0,12 D .(0,2](2)函数f (x )=sin ⎝⎛⎭⎪⎫-2x +π3的单调减区间为________. (1)A (2)⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z ) [(1)由π2<x <π得π2ω+π4<ωx +π4<πω+π4,由题意知π2ω+π4,πω+π4⊆⎣⎢⎡⎦⎥⎤π2,3π2,所以⎩⎨⎧π2ω+π4≥π2,πω+π4≤3π2,解得12≤ω≤54.(2)由已知函数为y =-sin ⎝ ⎛⎭⎪⎫2x -π3,欲求函数的单调减区间,只需求y =sin ⎝ ⎛⎭⎪⎫2x -π3的单调增区间即可.由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .故所求函数的单调减区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z ).][规律方法] 1.求三角函数单调区间的两种方法(1)求函数的单调区间应遵循简化原则,将解析式先化简,并注意复合函数单调性规律“同增异减”.(2)求形如y =A sin(ωx +φ)(ω>0)的单调区间时,要视“ωx +φ”为一个整体,通过解不等式求解.若ω<0,应先用诱导公式化x 的系数为正数,以防止把单调性弄错. 2.已知三角函数的单调区间求参数.先求出函数的单调区间,然后利用集合间的关系求解.[变式训练2] (1)函数f (x )=tan ⎝⎛⎭⎪⎫2x -π3的单调递增区间是________.(2)若函数f (x )=sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤0,π3上是增加的,在区间⎣⎢⎡⎦⎥⎤π3,π2上是减少的,则ω=________. (1)⎝⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z ) (2)32 [(1)由-π2+k π<2x -π3<π2+k π(k ∈Z ),得k π2-π12<x <k π2+5π12(k ∈Z ). (2)∵f (x )=sin ωx (ω>0)过原点,∴当0≤ωx ≤π2,即0≤x ≤π2ω时,y =sin ωx 是增函数;当π2≤ωx ≤3π2,即π2ω≤x ≤3π2ω时,y =sin ωx 是减函数. 由f (x )=sin ωx (ω>0)在⎣⎢⎡⎦⎥⎤0,π3上是增加的,在⎣⎢⎡⎦⎥⎤π3,π2上是减少的知,π2ω=π3,∴ω=32.]角度(1)(2018·大连模拟)在函数:①y =cos|2x |,②y =|cos x |,③y =cos2x +π6,④y =tan ⎝⎛⎭⎪⎫2x -π4中,最小正周期为π的所有函数为( ) 【导学号:00090093】A .②④B .①③④C .①②③D .①③(2)函数y =1-2sin 2⎝ ⎛⎭⎪⎫x -3π4是( )A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为π2的奇函数D .最小正周期为π2的偶函数(1)C (2)A [(1)①y =cos|2x |=cos 2x ,T =π. ②由图像知,函数的周期T =π. ③T =π. ④T =π2.综上可知,最小正周期为π的所有函数为①②③.(2)y =1-2sin 2⎝ ⎛⎭⎪⎫x -3π4=cos 2⎝ ⎛⎭⎪⎫x -3π4=-sin 2x ,所以f (x )是最小正周期为π的奇函数.]角度2 求三角函数的对称轴、对称中心已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎪⎫ω>0,|φ|<π2的最小正周期为4π,且对任意x ∈R ,都有f (x )≤f ⎝ ⎛⎭⎪⎫π3成立,则f (x )图像的一个对称中心的坐标是( )A .⎝ ⎛⎭⎪⎫-2π3,0 B .⎝ ⎛⎭⎪⎫-π3,0C .⎝⎛⎭⎪⎫2π3,0D .⎝⎛⎭⎪⎫5π3,0A [由f (x )=sin (ωx +φ)的最小正周期为4π,得ω=12.因为f (x )≤f ⎝ ⎛⎭⎪⎫π3恒成立,所以f (x )max =f ⎝ ⎛⎭⎪⎫π3,即12×π3+φ=π2+2k π(k ∈Z ),所以φ=π3+2k π(k ∈Z ),由|φ|<π2,得φ=π3,故f (x )=sin ⎝ ⎛⎭⎪⎫12x +π3.令12x +π3=k π(k ∈Z ),得x =2k π-2π3(k ∈Z ),故f (x )图像的对称中心为⎝ ⎛⎭⎪⎫2k π-2π3,0(k ∈Z ),当k =0时,f (x )图像的一个对称中心的坐标为⎝ ⎛⎭⎪⎫-2π3,0,故选A .]角度3 三角函数对称性的应用(1)如果函数y =3cos(2x +φ)的图像关于点⎝ ⎛⎭⎪⎫4π3,0中心对称,那么|φ|的最小值为( ) A .π6B .π4C .π3D .π2(2)已知函数f (x )=sin x +a cos x 的图像关于直线x =5π3对称,则实数a 的值为( )A .- 3B .-33C . 2D .22(1)A (2)B [(1)由题意得3cos ⎝ ⎛⎭⎪⎫2×4π3+φ=3cos ⎝⎛⎭⎪⎫2π3+φ+2π=3cos ⎝ ⎛⎭⎪⎫2π3+φ=0,∴2π3+φ=k π+π2,k ∈Z , ∴φ=k π-π6,k ∈Z ,取k =0,得|φ|的最小值为π6.(2)由x =5π3是f (x )图像的对称轴,可得f (0)=f ⎝ ⎛⎭⎪⎫10π3,即sin 0+a cos 0=sin 10π3+a cos 10π3,解得a =-33.][规律方法] 1.对于函数y =A sin(ωx +φ),其对称轴一定经过图像的最高点或最低点,对称中心一定是函数的零点,因此在判断直线x =x 0或点(x 0,0)是不是函数的对称轴或对称中心时,可通过检验f (x 0)的值进行判断. 2.求三角函数周期的方法: (1)利用周期函数的定义.(2)利用公式:y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|,y =tan(ωx+φ)的最小正周期为π|ω|. (3)借助函数的图像.。