2013中考数学50个知识点专练3答案 因式分解
- 格式:docx
- 大小:97.68 KB
- 文档页数:2
第2课时因式分解A级基础题1.(2012年四川凉山州)下列多项式能分解因式的是()A.x2+y2B.-x2-y2C.-x2+2xy-y2D.x2-xy+y22.(2012年山东济宁)下列式子变形是因式分解的是()A.x2-5x+6=x(x-5)+6 B.x2-5x+6=(x-2)(x-3)C.(x-2)(x-3)=x2-5x+6 D.x2-5x+6=(x+2)(x+3)3.(2012年内蒙古呼和浩特)下列各因式分解正确的是()A.-x2+(-2)2=(x-2)(x+2) B.x2+2x-1=(x-1)C.4x2-4x+1=(2x-1)2D.x2-4x=x(x+2)(x-2)4.(2011年湖南邵阳)因式分解:a2-b2=______.5.(2012年辽宁沈阳)分解因式:m2-6m+9=______.6.(2012年广西桂林)分解因式:4x2-2x=________.7.(2012年浙江丽水)分解因式:2x2-8=________.8.(2012年贵州六盘水)分解因式:2x2+4x+2=________.9.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)[如图(1)],把余下的部分拼成一个矩形[如图(2)],根据两个图形中阴影部分的面积相等,可以验证()A.(a+b)2=a2+2ab+b2B.(a-b)2=a2-2ab+b2C.a2-b2=(a+b)(a-b) D.(a+2b)(a-b)=a2+ab-2b210.若m2-n2=6且m-n=3,则m+n=________.B级中等题11.对于任意自然数n,(n+11)2-n2是否能被11整除,为什么?12.(2012年山东临沂)分解因式:a -6ab +9ab 2=____________.13.(2012年四川内江)分解因式:ab 3-4ab =______________.14.(2012年山东潍坊)分解因式:x 3-4x 2-12x =______________.15.(2012年江苏无锡)分解因式(x -1)2-2(x -1)+1的结果是( )A .(x -1)(x -2)B .x 2C .(x +1)2D .(x -2)216.(2012年山东德州)已知:x =3+1,y =3-1,求x 2-2xy +y 2x 2-y 2的值.C 级 拔尖题17.(2012年江苏苏州)若a =2,a +b =3,则a 2+ab =________.18.(2012年湖北随州)设a 2+2a -1=0,b 4-2b 2-1=0,且1-ab 2≠0,则52231ab b a a ⎛⎫+-+ ⎪⎝⎭=________.选做题19.分解因式:x 2-y 2-3x -3y =______________.20.已知a ,b ,c 为△ABC 的三边长,且满足a 2c 2-b 2c 2=a 4-b 4,试判断△ABC 的形状.21.(2012年贵州黔东南州)分解因式x 3-4x =______________________.参考答案1.C 2.B 3.C 4.(a +b )(a -b )5.(m -3)2 6.2x (2x -1) 7.2(x +2)(x -2)8.2(x +1)29.C 10.211.解:能,因为(n +11)2-n 2=(n +11+n )(n +11-n )=11(2n +11)为11的倍数,所以可以被11整除.12.a (1-3b )2 13.ab (b +2)(b -2) 14.x (x +2)(x -6)15.D 解析:首先把x -1看做一个整体,观察发现符合完全平方公式,直接利用完全平方公式进行分解即可.(x -1)2-2(x -1)+1=(x -1-1)2=(x -2)2. 16.解:原式=()x -y 2()x +y ()x -y =x -y x +y. 当x =3+1,y =3-1时, 原式=()3+1-()3-1()3+1+()3-1=22 3=33. 17.6 解析:∵a =2,a +b =3,∴a 2+ab =a (a +b )=2×3=6.18.-3219.(x +y )(x -y -3)20.解:等腰或直角三角形∵a 2c 2-b 2c 2=a 4-b 4,∴c 2(a +b )(a -b )=(a 2+b 2)(a 2-b 2),∴c 2(a +b )(a -b )=(a 2+b 2)(a +b )(a -b ).∵a ,b 为三角形边长,∴a +b ≠0.∴c 2(a -b )=(a 2+b 2)(a -b ),∴a -b =0或c 2=a 2+b 2,即a =b 或c 2=a 2+b 2,∴△ABC 是等腰或直角三角形.21.x (x +2)(x -2)。
中考数学复习《整式的乘法与因式分解》专项练习题-附带有答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.计算:a2-(a+1)(a-1)的结果是()A.1 B.-1 C.2a2+1 D.2a2-12.下列计算中,正确的是()A.a2⋅a3=a5B.(a2)3=a8C.a3+a2=a5D.a8÷a4=a23.下列式子中,是完全平方式的是()A.a2+ab+b2B.a2+2ab+2b2C.a2+4a+4b2D.a2-ab+1b244.已知9m=3,27n=4,则32m+3n=()A.1 B.6 C.7 D.125.下列多项式中,在实数范围内能进行因式分解的是()A.a﹣1 B.a2﹣1 C.x2﹣4y D.a2+16.已知三角形-边长为(3a+b)cm,这条边上的高为2acm,这个三角形的面积为()A.(5a+b)cm2B.(6a2+2ab)cm2C.(3a2+ab)cm2D.(3a2+2ab)cm27.将下列多项式分解因式,得到的结果中不含因式x−1的是()A.x2−1B.x(x−2)+(2−x)C.x2+2x+1D.x2−2x+18.若代数式(2x2+ax+6)−(2bx2−3x−1)(a,b为常数)的值与字母x的取值无关,则代数式a+2b的值为()A.0B.−1C.2或−2D.6二、填空题9.分解因式:2ax2﹣8a= .10.化简(−3b+a+2b)2=11.若x2+mx+n分解因式的结果是(x+2)(x﹣1),则m+n的值为.12.若关于x的整式x2+(m﹣1)x+9能用完全平方公式进行因式分解,则m的值是.13.如图,长方形的长、宽分别为a,b,且a比b大3,面积为7,则a2b-ab2的值为三、解答题14.因式分解:(1)x2(a-b)+(b-a)(2)2x2-4x+215.计算:(1)(x-5)(x+6).(2)(x+2)(3x-1).(3)2(x-8)(x-5)-(2x-1)(x+2).(4)(x+2)(y+3)-(x+1)(y-2).(5)(3+a)(3-2a)+a2.16.一个长方形的长、宽分别为a(cm),b(cm),将长方形的长和宽各增加2cm.(1)新长方形的面积比原长方形的面积增加多少?(2)如果新长方形的面积是原长方形面积的2倍,求(a-2)(b-2)的值.17.常用的分解因式的方法有提取公因式法、公式法及十字相乘法,但有更多的多项式只用上述方法就无法分解,如x2−4y2−2x+4y,我们细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了。
初⼀下册数学多项式的因式分解试题及答案 对于初⼀数学的学习,我们要在理解的基础上多做试题才能更好的掌握数学知识点,尤其是对于初⼀数学多项式的因式分解的学习!以下便是店铺为⼤家所带来的初⼀下册数学多项式的因式分解试题! 初⼀下册数学多项式的因式分解试题 ⼀、选择题(每⼩题4分,共12分) 1.(2013•茂名中考)下列各式由左边到右边的变形中,属于因式分解的是( ) A.a(x+y)=ax+ay B. x2-4x+4=x(x-4)+4 C.10x2-5x=5x(2x-1) D.x2-16+6x=(x+4)(x-4)+6x 2.(2013•柳州中考)下列式⼦是因式分解的是( )A.x(x-1)=x2-1B.x2-x=x(x+1)C.x2+x=x(x+1)D.x2-x=(x+1)(x-1) 3.若多项式x2-px-6因式分解的结果是(x-1)(x+6),则p的值是( )A.-1B.1C.5D.-5 ⼆、填空题(每⼩题4分,共12分) 4 .由(x-2)(x-1)=x2-3x+2,则x2-3x+2因式分解为 . 5.若x+5,x-3都是多项式x2-kx-15的因式,则k= . 6.如果多项式M可因式分解为3(1+2x)(-2x+1),则M= . 三、解答题(共26分) 7.(8分)两位同学将⼀个⼆次三项式因式分解,⼀位同学因看错了⼀次项系数⽽分解成2(x-1)(x-9),另⼀位同学因看错了常数项⽽分解成2(x-2)(x-4),求原多项式. 8.(8分)已知关于x 的⼆次三项式x2+mx+n有⼀个因式(x+5),且m+n=17,试求m,n的值. 【拓展延伸】 9.(10分)已知多项式x4+2x3-x+m能因式分解,且有⼀个因式为x-1. (1)当x=1时,求多项式x4+2x3-x+m的值. (2)根据(1)的结果 ,求m的值. (3)仿照(1)的⽅法,试判断x+2是不是多项式x4+2x3-x+ m的⼀个因式. 初⼀下册数学多项式的因式分解试题答案 1.【解析】选C.a(x+y)=ax+ay是将乘积的形式化成和差的形式,是多项式乘法⽽不是因式分解,x2-4x+4=x(x-4)+4与x2-16+6x=(x+4)(x-4)+6x两式的右边最终还是和的形式,所以不是因式分解,10x2-5x=5x(2 x-1)满⾜由多项式的和差形式化为乘积形式,且等号的左边和右边相等,所以C正确. 2.【解析】选C.选项A是将乘积的形式化成差的形式,并且等式左右两边不相等,所以选项A错误;选项B“看起来”满⾜由多项式的和差形式化为乘积形式,但是x(x+1)=x2+x,与等式的左边x2-x不等,所以选项B错误;选项C满⾜把⼀个多项式化成⼏个整式的积的形式,且等号的左边和右边相等,所以选项C正确;选项D类同选项B,所以选项D是错误的. 3.【解析】选D.因为(x-1)(x+6)=x2+5x-6,所以p的值为-5. 4.【解析】因为(x-2)(x-1)=x2-3x+2, 所以x2-3x+2=(x-2)(x-1). 答案:(x-2)(x-1) 5.【解析】根据题意得(x+5)(x-3) =x2+2x-15=x2-kx-15,所以-k=2,解得k=-2. 答案:-2 6.【解析】M=3(1+2x)(-2x+1)=3(1-4x2)=3-12x2. 答案:3-12x2 7.【解析】设原多项式为ax2+bx+c(其中a,b,c均为常数,且abc≠0). 因为2(x-1)(x-9)=2(x2-10x+9)=2x2-20x+18, 所以a=2,c=18. ⼜因为2(x-2)(x-4)=2(x2-6x+8)=2x2-12x+16, 所以b=-12. 所以原多项式为2x2-12x+18. 8.【解析】设另⼀个因式是x+a,则有 (x+5 )•(x+a)=x2+(5+a)x+5a=x2+mx+n, 所以5+a=m,5a=n, 这样就得到⼀个⽅程组 解得 所以m,n的值分别是7, 10. 9.【解析】 (1)根据题意得x4+2x3-x+m =(x3+ax2+bx+c)(x-1), 当x=1时,x4+2x3-x+m=0. (2)由(1)知m=-2. (3)由x+2=0得x=-2,当x=-2时, x4+2x3-x-2=16-16+2-2=0, 所以x+2是多项式的⼀个因式. 多项式因式分解的⼀般步骤 ①如果多项式的各项有公因式,那么先提公因式; ②如果各项没有公因式,那么可尝试运⽤公式、⼗字相乘法来分解; ③如果⽤上述⽅法不能分解,那么可以尝试⽤分组、拆项、补项法来分解; ④分解因式,必须进⾏到每⼀个多项式因式都不能再分解为⽌。
中考数学数与式专题知识训练50题含答案 (有理数、实数、代数、因式分解、二次根式)一、单选题1.下列运算正确的是( ) A .()328-=B .33--=C .()326-=-D .()239--=-2.下列说法正确的是( ) A .1的立方根是它本身 B .4的平方根是2 C .9的立方根是3D .0没有算术平方根3.比﹣2小的数是( ) A .﹣1B .﹣3C .0D .﹣124.下列计算正确的是( ) A .236a a a ⋅=B .22325a b 3ab 3a b -⋅=C .0(π 3.14) 3.14π-=-D .3262(a b)a b =5.长城总长约为670000米,用科学记数法表示为( ) A .56.710⨯米 B .50.6710⨯米 C .46.710⨯米D .60.6710⨯米6.下列计算正确的是( ) A .x 2+x 3=x 5B .x 2•x 3=x 6C .(x 2)3=x 5D .x 5÷x 3=x 27.一定相等的是( ) A .a 2+a 2与a 4B .(a 3)3与a 9C .a 2﹣a 2与2a 2D .a 6÷a 2与a 38.对于有理数a ,b 定义2a b a b =-,则()3x y x +化简后得( )A .2x y +B .2x y -+C .52x y +D .52x y -+9.下列运算正确的是( )A B .2=C .22=D 4=±10.N 是一个单项式,且22223N x y ax y ⋅=(-)-,则N 等于( ) A .32ayB .3ay -C .32xy -D .12axy11.下列计算正确的是( ) A .()235a a =B .()23624m m -=C .623a a a ÷=D .()222a b a b +=+ 12.( )A .2B .C .D .13.下列计算中,结果正确的是( ) A .a 3 +a =2a 4B .a 3•a 2=a 6C .2a 6÷a 2 =2a 3D .(a 2)4 =a 814.下列各组代数式中没有公因式的是 ( ) A .4a 2bc 与8abc 2 B .a 3b 2+1与a 2b 3–1 C .b (a –2b )2与a (2b –a )2 D .x +1与x 2–115.下列计算正确的是( )A 3=±B 3=-C .(23= D .23=-161m -,则m 的取值范围是( ) A .1m >B .1m <C .m 1≥D .1m17.下列运算中,计算结果正确的是( ) A .a2•a3=a6B .a2+a3=a5C .(a2)3=a6D .a12÷a6=a218.下列运算正确的是( )A .824x x x ÷=B =C .()32628aa -=-D .11(1)32-⎛⎫--=- ⎪⎝⎭19的正确结果是( )A .(m ﹣5)5m -B .(5﹣m)5m -C .m ﹣5()5m --D .5﹣m 5m -二、填空题20.已知某种感冒病毒的直径是-0.000000012米,那么这个数可用科学记数法表示为____________. 21.45--=______. 22.2018年我省夏粮总产量达到2299000吨,将数据“2299000吨”用科学记数法表示为__________.23叫做二次根式. 24.2015的相反数为____.25.把202100000用科学记数法表示为______.260,则xzy=_______.27______=______.28.写出一个..绝对值大于2且小于3的无理数____________.29.当2a =+2943a a -+的值等于___.30.将数67500用科学记数法表示为____________.31有意义,则x 的取值范围是___________________. 32.有一个数值转换器,原理如下:当输入的x 为64时,输出的y 是___________.33.213-的倒数是_____,213-的相反数是_____.34.“皮克定理”是用来计算顶点在格点(即图中虚线的交点,如图中的小黑点)上的多边形的面积公式,公式为S = a +2b-1.小明只记得公式中的表示多边形的面积,a和 b 中有一个表示多边形边上(含多边形顶点)的格点个数,另一个表示多边形内部的格点个数,但记不清楚究竟是哪一个表示多边形内部的格点个数,请你利用图 1 探究并运用探究的结果求图 2 中多边形的面积是____.35.若a +b =8,ab =15,则a 2+ab +b 2=________.36.已知甲数是719的平方根,乙数是338的立方根,则甲、乙两个数的积是__.37.分解因式:2244x y y -+-=__________.38.我国古代数学的许多创新与发展都曾居世界前列,其中“杨辉三角”(如图)就是一例,它的发现比欧洲早五百年左右.杨辉三角两腰上的数都是1,其余每个数为它的上方(左右)两数之和.事实上,这个三角形给出了()na b +(n =1,2,3,4,5,6)的展开式(按a 的次数由大到小的顺序排列)的系数规律. 例如,在三角形中第三行的三个数1,2,1,恰好对应着222()2a b a ab b +=++展开式中各项的系数;第四行的四个数1,3,3,1,恰好对应着+=+++33223()33a b a a b ab b 展开式中各项的系数,等等. (1)当n =4时,4()a b +的展开式中第3项的系数是_________;(2)人们发现,当n 是大于6的自然数时,这个规律依然成立,那么7()a b +的展开式中各项的系数的和为_________.三、解答题39.计算:20220(1)1)-+︒. 40.计算:(1)()232()nn m mn m -⋅÷(2)解不等式组: 10223x x x +>⎧⎪-⎨≤+⎪⎩41.在平面直角坐标系中,已知点P (3,-1)关于原点对称的点Q 的坐标是(),1a b b +-,求b a 的值.42.(1)计算:﹣32+(π﹣2021)0﹣|1|.(2)解不等式组:3(1)25322x xxx-≥-⎧⎪⎨+<⎪⎩①②.43.计算:(1)(﹣1)3+(π+2022)0+(12)﹣2;(2)(-a)3•a2﹣(2a4)2÷a3.44.计算下列各式:(1)(2)45.已知2a-l的算术平方根为3,3a+b-1的算术平方根为4,求a+2b的平方根.46.(1)计算:0112sin3022π-⎛⎫⎛⎫-︒⎪ ⎪⎝⎭⎝⎭;(2)化简:2(21)(1)(1)x x x--+-.47.已知a,b,c在数轴上对应点的位置如图所示,化简||||||a ab b c-+-.48.观察以下等式:第1个等式:211111=+第2个等式:211326=+第3个等式:2115315=+第4个等式:2117428=+第5个等式:2119545=+按照以上规律,解决下列问题:(1)写出第7个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.参考答案:1.D【分析】根据乘方运算、绝对值及相反数的意义,逐个运算得结论.【详解】解:(-2)3=-8,故选项A、C错误;-|-3|=-3,故选项B错误;-(-3)2=-9,故选项D正确.故选:D.【点睛】本题考查了乘方运算,绝对值、相反数的意义.题目相对简单.负数的偶次方是正,负数的奇数次方为负.2.A【分析】根据立方根与平方根的定义即可求出答案.【详解】解:A、1的立方根是它本身,故此选项符合题意;B、4的平方根是2 ,故此选项不符合题意;C、9D、0的算术平方根是0,故此选项不符合题意.故选:A.【点睛】本题考查平方根与立方根,解题的关键是正确理解立方根与平方根的定义.3.B【分析】对于正数绝对值大的数就大;对于负数绝对值大的反而小;负数小于0,0小于正数;【详解】解:A,是个负数绝对值比2小,﹣1>﹣2;B,是个负数绝对值比2大,﹣3<﹣2;C,0比负数大;D,是个负数绝对值比2小,﹣1>﹣2;2故答案选:B【点睛】本题考查有理数大小的判断,先比正负,再比绝对值.4.D【分析】直接利用同底数幂的乘除运算法则以及积的乘方运算法则、零指数幂的性质分别判断得出答案.【详解】解:A 、a 2•a 3=a 5,故此选项错误; B 、-a 2b 2•3ab 3=-3a 3b 5,故此选项错误; C 、(π-3.14)0=1,故此选项错误; D 、(a 3b 2)2=a 6b 4,正确. 故选D .【点睛】考查了同底数幂的乘除运算以及积的乘方运算等知识,正确掌握相关运算法则是解题关键. 5.A【分析】根据科学记数法的定义即可得. 【详解】解:670000米56.710=⨯米, 故选:A .【点睛】本题考查了科学记数法,熟记科学记数法的定义(将一个数表示成10n a ⨯的形式,其中110a ≤<,n 为整数,这种记数的方法叫做科学记数法)是解题关键.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 6.D【详解】试题分析:A .2x+3x 已经为最简式.B .x 2•x 3=x 5同底数幂相乘,指数相加. C .(x 2)3=x 6求幂的乘方,指数相乘.故只有D 正确 考点:整式运算点评:本题难度较低,主要考查学生对整式运算知识点的掌握.注意同底数幂相乘,指数相加.幂的乘方,指数相乘. 7.B【分析】A .根据整式的加法运算合并同类项即可; B .运用幂的乘法公式,底数不变,指数相乘,化简即可; C .根据整式的减法运算合并同类项即可;D .根据同底数幂的除法,底数不变,指数相减即可得出结论. 【详解】解:A .22242a a a a +=≠,故选项不合题意; B .()339a a =,故选项符合题意;C .22202a a a -=≠,故选项不合题意;D .624a a a ÷=,故选项不合题意; 故选:B .【点睛】本题考查整式的混合运算,熟练掌握每个计算的运算法则是解题的关键. 8.B【分析】根据新定义运算可直接进行求解. 【详解】解:∵2a b a b =-,∵()3x y x +()23x y x =+-223x y x =+-2x y =-+.故选:B .【点睛】本题主要考查整式的加减运算,熟练掌握整式的加减运算是解题的关键. 9.A【分析】根据二次根式的性质以及二次根式的混合运算逐项计算分析判断即可求解.【详解】解:A 、=B 、2C 、253=+-D 4=,故该选项不正确,不符合题意. 故选:A .【点睛】此题主要考查了二次根式的性质以及二次根式的混合运算,掌握二次根式的性质以及运算法则是解题关键. 10.A【分析】利用单项式与单项式除法,把他们的系数,相同字母分别相除,对于只在一个单项式里含有的字母,则连同它的指数作为商的一个因式,进而得出即可. 【详解】解:∵N •(-2x 2y )=-3ax 2y 2, ∵N =-3ax 2y 2÷(-2x 2y )=32ay .故选:A .【点睛】此题主要考查了单项式除以单项式,熟练掌握运算法则是解题关键. 11.B【分析】分别根据幂的乘方运算法则,积的乘方运算法则,同底数幂的除法法则以及完全平方公式逐一进行判断即可得出正确选项. 【详解】A. ()236a a =,故本选项不符合题意;B. ()23624m m -=,正确;C. 624a a a ÷=,故本选项不符合题意;D. ()2222a b a ab b +=++,故本选项不符合题意. 故选:B.【点睛】本题主要考查了同底数幂的除法,完全平方公式以及幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键. 12.B【详解】试题分析:10099100991009912()22222--⨯-=-⨯=-=-.故选B.考点: 1.负整数指数幂;2.积的乘方. 13.D【分析】分别计算后判断即可.【详解】解:A.不是同类项不能合并,故该选项计算错误; B. a 3•a 2=a 5,故该选项计算错误; C. 2a 6÷a 2 =2a 4,故该选项计算错误; D.(a 2)4 =a 8,故该选项计算正确. 故选:D .【点睛】本题考查合并同类项、同底数幂乘法、单项式除单项式、幂的乘方.掌握相关运算法则是解题关键. 14.B【分析】分别分析各选项中的代数式,能因式分解的先进行因式分解,再确定没有公因式的选项即可.【详解】A 、4a 2bc 与8abc 2有公因式4abc ,故该选项不满足题意;B、a3b2+1与a2b3–1,没有共公因式,故该选项满足题意;C、b(a–2b)2与a(2b–a)2有公因式()2a b-,故该选项不满足题意;2D、x+1与x2–1有公因式x+1,故该选项不满足题意;故选:B.【点睛】本题主要考查公因式的确定,熟练掌握因式分解是解决本题的关键.15.C【分析】根据二次根式的性质即可求出答案.【详解】A. 3=,故原选项错误;B. 3,故原选项错误;C. (23=,正确;D. D错误故选:C.【点睛】本题考查二次根式,解题的关键是熟练运用二次根式的性质,本题属于基础题型.16.D=进行化简,再根据绝对值的意义列出不等式,求解即可.a=-=-,m m11∵1-m≥0,∵m≤1故选:Da二者是等价的,故二者可以互化.17.C【分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相减;同底数幂相除,底数不变指数相减对各选项分析判断即可得解.【详解】A、a2•a3=a2+3=a5,故本选项错误;B、a2+a3不能进行运算,故本选项错误;C、(a2)3=a2×3=a6,故本选项正确;D、a12÷a6=a12﹣6=a6,故本选项错误.故选C.【点睛】本题考查了同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算法则是解题的关键.18.C【分析】分别根据同底数幂的除法法则,二次根式的加法法则,积的乘方运算法则以及零指数幂、负整数指数幂的运算法则逐一判断即可.【详解】A、826x x x÷=原计算错误,不符合题意;B、235=+=≠C、()32628a a-=-正确,符合题意;D、11(1)1212-⎛⎫--=-=-⎪⎝⎭原计算错误,不符合题意;故选:C.【点睛】本题主要考查了同底数幂的除法,幂的乘方与积的乘方,二次根式的运算,零指数幂、负整数指数幂的运算,熟记二次根式的运算、幂的运算法则是解答本题的关键.19.B【详解】试题解析:50m∴-≥,即5m≤,∵原式(5m=-故选B.20.-1.2×10-8【详解】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.0.000000012用科学记数法表示为21.4 -5【分析】先求出有理数的绝对值,再求相反数,即可得到答案.【详解】∵45--=45-, 故答案是: 45-. 【点睛】本题主要考查有理数的绝对值法则和相反数的概念,掌握有理数的绝对值法则和相反数的概念是解题的关键.22.2.299×106吨【分析】根据科学记数法的形式为10n a ⨯,其中110a ≤<,n 是原数的整数位数减1,可得出答案.【详解】2299000吨=2.299×106吨,故答案为2.299×106吨.【点睛】本题考查科学记数法,其形式为10n a ⨯,其中110a ≤<,n 是整数,关键是确定a 和n 的值.23.0a ≥【分析】根据二次根式的非负性解题即可.【详解】解:∵0a ≥,故答案为:0a ≥.【点睛】本题主要考查二次根式的定义,能够熟记定义是解题关键.24.-2015.【详解】试题解析:2015的相反数是-2015.考点:相反数.25.82.02110⨯【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数.【详解】解:202100000=2.021×108.故答案为:82.02110⨯.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要确定a 的值以及n 的值.26.52【分析】根据根式有意义的条件可知2x+3_≥0,4y-6x_≥0,x+y+z_≥0,再根据已知条件可得到2x+3=0,4y-6x=0,x+y+z=0;通过解方程组即可求出x 、y 、z 的值,即可xz y的值.0=可得2304600x y x x y z +=⎧⎪-=⎨⎪++=⎩, 解得3294154x y z ⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩, 将x 、x 、z 的值代入xzy 可得3152494-⨯-=52, 所以xz y 的值为52. 故答案为52. 【点睛】此题考查二次根式有意义的条件,解题关键在于利用其性质进行解答. 27.【分析】(1)根据二次根式的性质即可求解.(2)根据最简二次根式的化简即可求解.=;=;【点睛】此题主要考查二次根式的性质,解题的关键是熟知二次根式的运算法则与性质. 28【分析】根据算术平方根的性质可以把2和3写成带根号的形式,再进一步写出一个被开方数介于两者之间的数即可.∵写出一个大于2小于3.【点睛】本题考查了无理数的估算,估算无理数大小要用逼近法.用有理数逼近无理数,求无理数的近似值.29.92【分析】由2a =2a -=241a a -=-,整体代入即可求解.【详解】解:∵2a =∵2a -=()223a -=,∵2443a a -+=,即241a a -=-, ∵299943132a a ==-+-+. 故答案为:92. 【点睛】本题考查了分式的化简求值,二次根式的性质,掌握整体代入法是解题的关键. 30.46.7510⨯【分析】科学记数法的表示形式为ax10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:67500=46.7510⨯,即答案为:46.7510⨯.【点睛】本题考查用科学记数法表示较大的数,一般形式为ax10n ,其中1≤al<10,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.31.x≤且x≠0【详解】试题分析:当x 满足条件120{0x x -≥≠时,式子有意义,解得x≤且x≠0.考点:代数式有意义的条件.32【分析】直接根据题意列式计算即可.2是有理数,即输出的y【点睛】本题考查了求算术平方根和立方根即根据图片列式计算,能够根据图片正确列出算式是解题的关键.33. ﹣3553 【详解】试题解析:根据乘积为1的两个数互为倒数,可得一个数的倒数;根据只有符号不同的两个数互为相反数,可得一个数的相反数,故:213-的倒数是-35,213-的相反数是213 34.10.【分析】分别找到图1中图形内的格点数和图形上的格点数后,再与公式比较,即可发现表示图上的格点数对应的字母和图形内的格点数对应的字母,再利用图2中的有关数据代入公式即可求得图形的面积.【详解】解:根据图1可得,∵矩形内由2个格点,边上有10个格点,面积为6, 即106=2+12-; 正方形内由1个格点,边上有8个格点,面积为4, 即84=1+12-; ∵公式中表示多边形内部整点个数的字母是a ;表示多边形边上(含多边形顶点)的格点个数为b ,由图2得:8,6,a b ==6=18110.22b S a ∴+-=+-= 故答案为:10.【点睛】本题考查了新定义型的图形的变化类问题,解题的关键是能够仔细弄懂题意,弄懂公式中代数式的含义,根据题意进行探究,找到规律,再利用规律解决问题. 35.49【分析】首先配方得出a 2+ab+b 2=(a+b )2-ab 进而得出答案.【详解】解:∵a+b=8,ab=15,则a 2+ab+b 2=(a+b )2-ab=82-15=49.故答案为49.【点睛】此题主要考查了配方法的应用,正确配方是解题关键.36.2±.【分析】分别根据平方根、立方根的定义可以求出甲数、乙数,进而即可求得题目结果. 【详解】甲数是719的平方根 ∴甲数等于43±; 乙数是338的立方根, ∴乙数等于32. ∵43=232⨯ ∴甲、乙两个数的积是2±.故答案:2±.【点睛】此题主要考查了立方根、平方根的定义,解题的关键是根据平方根和立方根的定义求出甲数和乙数.37.(2)(2)x y x y +--+##(x -y +2)(x +y -2)【分析】先分组成22(44)x y y -+-,再利用完全平方公式化为22(2)x y --,最后利用平方差公式解答.【详解】解:2244x y y -+-22(44)x y y =--+22(2)x y =--(2)(2)x y x y =+--+故答案为:(2)(2)x y x y +--+.【点睛】本题考查因式分解,涉及分组分解法、完全平方公式、平方差公式等知识,是重要考点,掌握相关知识是解题的关键.38. 6 128【分析】(1)当n=4时,4()a b +的展开式的系数恰好对应的是第五行的数,根据第五行的数即刻得出答案;(2)7()a b +的展开式的系数恰好对应第八行的数,据图写出第八行的数求和即可.【详解】解:(1)4()a b +的展开式的系数恰好对应的是第五行的数,为:1,4,6,4,1,故4()a b +的展开式中第3项的系数是6;(2)据题可知第八行的数为:1,7,21,35,35,21,7,1.故7()a b +的展开式中各项的系数的和为:1+7+21+35+35+21+7+1=128.故答案为:(1)6;(2)128.【点睛】本题考查完全平方公式,探索与表达规律.(1)能找出()n a b +的展开式的系数与杨辉三角中行数之间的关系是解题关键;(2)中能依据“杨辉三角两腰上的数都是1,其余每个数为它的上方(左右)两数之和”写出“杨辉三角”的第八行数是解题关键.39.1【分析】根据数的乘方、零指数幂、开方法则进行计算,在加上特殊角的三角函数值,即可求解.【详解】解:原式=1+1-2=1121+-+=1.【点睛】本题考查实数的混合运算,熟练掌握实数的运算法则和熟记特殊角的三角函数值是解题的关键.40.(1)53n m n +;(2)- 12x <≤【分析】(1)运用整式的乘法法则计算即可;(2)根据不等式的运算求得解后再联立求解集即可.【详解】解:(1)原式 233253n n n m n m m n +-+=÷= (2)10223x x x +>⎧⎪⎨-≤+⎪⎩①② 解∵的1x >-,解∵得x 2≤,不等式组的解集为- 12x <≤【点睛】本题主要考查整式的乘法法则以及解一元一次不等式组,解题的关键是熟练地掌握整式的乘法的乘法法则以及解一元一次不等式组的解题步骤和方法即可.41.25 【详解】解:点(3,1)P -与点(,1)Q a b b +-关于原点对称,3a b ∴+=-,11b -=,解得:2,5b a ==-,2(5)25b a ∴=-=.42.(1)﹣7;(2)﹣2≤x <1【分析】(1)根据有理数的乘方、零指数幂、绝对值的意义进行化简即可;(2)先分别解不等式,再根据不等式组解集的规律写出解集即可.【详解】(1)原式=﹣9+11)=﹣9+1=﹣7(2)3(1)25322x x x x -≥-⎧⎪⎨+<⎪⎩①②, 解不等式∵,得x ≥﹣2,解不等式∵,得x <1,∵不等式组的解集为﹣2≤x <1.【点睛】本题考查了实数的混合运算和解不等式组,掌握实数的运算法则和解不等式组的步骤是解题的关键.43.(1)4(2)-5a 5【分析】(1)根据有理数的乘方,零指数幂,负整数指数幂分别进行计算即可; (2)根据同底数幂的乘法,积的乘方,单项式除以单项式分别进行计算即可.(1)解:原式=-1+1+4=4;(2)原式=-a3•a2﹣4a8÷a3=-a5-4a5=-5a5.【点睛】本题考查有理数的乘方、零指数幂、负整数指数幂、同底数幂的乘法、积的乘方、单项式除以单项式,解题关键是掌握相关的运算法则.44.2【分析】(1)运用分配律计算即可;(2)先将二次根式化简,然后去括号计算即可.【详解】(1)解:=2(2)==【点睛】题目主要考查二次根式的运算,掌握二次根式的运算法则是解题关键.45.3±【分析】利用平方根及算术平方根的定义列出方程,得到a与b的值,确定出a+2b的值,即可求出平方根.【详解】解:由题意得2a-1=9,3a+b-1=16,解得:a=5,b=2,则a+2b=9,∵a+2b的平方根是3±.【点睛】此题考查了平方根,以及算术平方根,熟练掌握各自的定义是解本题的关键.46.(1)4;(2)2-+.x x342【分析】(1)根据零指数幂,特殊角的三角函数值,算术平方根,负整数指数幂计算即可;(2)利用完全平方公式和平方差公式展开,化简即可.【详解】(1)原式112222=-⨯++ 1122=-++4=;(2)原式()224411x x x =-+--224411x x x =-+-+2342x x =-+.【点睛】本题考查了零指数幂,特殊角的三角函数值,算术平方根,负整数指数幂,完全平方公式和平方差公式,注意第(2)个小题平方差公式展开要加括号.47.-a +2c .【分析】根据已知判断出a +b ,c -a 及b -c 的符号,进而确定出二次根式、绝对值里边式子的符号,利用绝对值的代数意义化简,去括号合并即可得到结果.【详解】解:∵a <b <0<c ,a +b <0,c -a >0,b -c <0.∵||||||a a b b c -+-||||||||a a b c a b c =-++-+-=-a +(a +b )+(c -a )+(c -b )=-a +a +b +c -a +c -b=-a +2c .【点睛】此题考查了二次根式的性质与化简,整式的加减,以及绝对值的性质,去括号法则,以及合并同类项法则.正确得出各项符号是解题关键.48.(1)21113791=+ (2)21121(21)n n n n =+--;证明见解析 【分析】(1)观察前几个等式即可写出第7个等式;(2)结合(1)观察数字的变化规律即可写出第n 个等式,并进行证明.【详解】解:观察以下等式:第1个等式:211111=+, 第2个等式:211326=+,答案第16页,共16页 第3个等式:2115315=+, 第4个等式:2117428=+, 第5个等式:2119545=+, ……按照以上规律, (1)第7个等式:21113791=+; 故答案为:21113791=+; (2)第n 个等式:21121(21)n n n n =+-- 证明:∵等式右边11(21)n n n =+- 21122(21)(21)(21)21n n n n n n n n n -=+==---- ∵左边=右边∵猜想得证. 故答案为:21121(21)n n n n =+-- 【点睛】本题考查了规律型:数字的变化类、列代数式,解决本题的关键是观察数字的变化寻找规律.。
中考数学《方程与不等式》专题知识训练50题含答案(有理数、实数、代数、因式分解、二次根式)一、单选题1.为迎接“六一”儿童节,某儿童品牌玩具专卖店购进了甲、乙两类玩具,其中甲类玩具的进价比乙类玩具的进价每个多5元,经调查:用1000元购进甲类玩具的数量与用750元购进乙类玩具的数量相同.设甲类玩具的进价为x元/个,根据题意可列方程为()A.10007505=-x xB.10007505=-x xC.10007505=+x xD.1000750+5=x x2.不等式组215840xx-≤⎧⎨-<⎩的解集在数轴上表示为()A.B.C.D.3.下列各式,是一元一次不等式的有()①4>1①232x-<4①12x<①4327x y-<-①16x+=A.4个B.3个C.2个D.1个4.小亮解方程组2212x yx y+=⎧⎨-=⎩▲,的解为5xy=⎧⎨=⎩☆,由于不小心滴上了两滴墨水,刚好遮住了两个数▲和①,则这两个数分别为()A.4和- 6B.- 6和4C.- 2和8D.8和– 2 5.方程2x2+6x+5=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法判断6.若关于x的一元二次方程220x x a+-=有两个相等的实数根,则a的取值为()A.1a=B.1a=-C.4a=D.4a=-7.3020xx+>⎧⎨-≥⎩不等式组的解集在数轴上表示为()A .B .C .D .8.甲、乙两人生产某种机器零件,甲每小时比乙多生产5个,甲生产120个所用的时间与乙生产90个所用的时间相等.设甲每小时生产x 个零件,根据题意,列出的方程是( ) A .120905x x =+ B .120905x x=- C .120905x x=+ D .120905x x =- 9.电影《长津湖》讲述了一段波澜壮阔的历史,自上映以来,全国票房连创佳绩.据不完全统计,某市第一天票房收入约2亿元,第三天票房收入约达到4亿元,设票房收入每天平均增长率为x ,下面所列方程正确的是( ) A .22(1)4x += B .()2124x +=C .22(1)4x -=D .()22212(1)4x x ++++=10.方程2320x x +-=的根的情况是 ( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根D .不能确定有没有实数根11.根据等式的性质,若等式m n =可以变形得到m a n b +=-,则a 、b 应满足的条件是( ) A .互为相反数B .互为倒数C .相等D .0a =,0b ≠12.若223894614M x xy y x y =+++-﹣(x ,y 是实数),则M 的值一定是( )A .0B .负数C .正数D .整数13.一元二次方程x 2﹣ax ﹣2=0,根的情况是( ) A .有两个不相等的实根 B .有两个相等的实数根 C .无法判断D .无实数根14.下列等式变形正确的是( ) A .如果0.58x -=,那么4x =- B .如果x y =,那么22x y -=- C .如果mx my =,那么x y =D .如果x y =,那么x y =15.若关于x 的一元二次方程2(3)410k x x -++=有两个不相等的实数根,则k 的取值范围是( ) A .7k <B .7k <,且3k ≠C .7k ≤,且3k ≠D .7k >16.已知过点(2,﹣3)的直线y=ax+b (a≠0)不经过第一象限,设s=a+2b ,则s 的取值范围是( )A .﹣5≤s≤﹣B .﹣6<s≤﹣C .﹣6≤s≤﹣D .﹣7<s≤﹣17.如图,在平面直角坐标系中,点A 的坐标为(4,3)M 1B ①x 轴于点B .点C 是线段OB 上的点,连接AC ,点P 在线段AC 上且AP =PC ,函数y =kx(x >0)的图象经过点P .当点C 在线段OB 上运动时上k 的取值范围是( )A .0<k ≤3B .3≤k ≤6C .0≤k ≤6D .6≤k ≤1218.已知两个多项式222A x x =++,222B x x =-+,以下结论中正确的个数有( )①若12A B +=,则2x =±;①若2A B ax bx ++-的值与x 的值无关,则2a b +=-; ①若|8||4|12A B A B --+-+=,则12x -≤≤;①若关于y 的方程2(1)2m y A B x -=+-的解为整数,则符合条件的非负整数m 有3个. A .1个B .2个C .3个D .4个19.下列解方程的过程中正确的是( ) A .将2﹣371745x x -+=去分母,得2﹣5(5x ﹣7)=﹣4(x+17)B .由0.150.710.30.02x x--=,得10157032x x --=100 C .40﹣5(3x ﹣7)=2(8x+2)去括号,得40﹣15x ﹣7=16x+4D .﹣25 x=5,得x=﹣252二、填空题20.“x 的4倍与2的和是非负数”用不等式表示为__________________. 21.二元一次方程310x y +=的正整数解共有_________个. 22.已知2x|m|﹣2+3=9是关于x 的一元二次方程,则m=_____.23.已知关于x 的一元二次方程3x 2+4x +m =0有实数根,则m 的取值范围是_______. 24.观察下列一组方程:①20x x -=;①2320x x -+=;①2560x x -+=;①27120x x -+=;…它们的根有一定的规律,都是两个连续的自然数,我们称这类一元二次方程为“连根一元二次方程”,若2560x kx ++=也是“连根一元二次方程”,则k 的值为____________.25.对于实数a 、b ,定义运算“①”如下:a ①b =a 2﹣ab ,例如:5①3=52﹣5×3=10.若(x +2)①(x ﹣3)=25,则x 的值为 ___.26.已知不等式组232(1)1x x x x -<-⎧⎨->-⎩,x 是非负整数,则x 的值是________.27.已知关于x 的一元二次方程250x x m ++=的一个根是2,则m =___________. 28.已知方程2x ﹣a =8的解是x =2,则a =_____.29.高斯符号[]x 首次出现是在数学家高斯(C .F. Gauss )的数学著作《算术研究》一书中,对于任意有理数x ,通常用[]x 表示不超过x 的最大整数,如[]2.92=.给出如下结论:①[]33-=-;①[]2.92-=-;①[]0.90=;①[][]3.1 3.97+=.以上结论中,你认为正确的是_________(填序号). 30.分式方程1233xx x-=---解得______. 31.已知关于x 的方程2x a +=23x a++1的解与方程4x ﹣5=3(x ﹣1)的解相同,则a 的值_____.32.如图,我国古代数学家得出的“赵爽弦图”是由四个全等的直角三角形和一个小正方形密铺构成的大正方形,若小正方形与大正方形的面积之比为1:13,则直角三角形较短的直角边a 与较长的直角边b 的比值为__.33.一套运动装标价200元,按标价的八折销售,则这套运动装的实际售价为________元.34.某商品标价28元,按九折出售,仍可获利20%,则该商品的进价为________元. 35.汛期来临之前,某地要对辖区内的4600米河堤进行加固.施工单位在加固800米后,采用新的加固模式,这样每天加固长度是原来的2倍,结果共用10天便完成了全部任务.请求出施工单位原来每天加固河堤多少米?设原来每天加固河堤x 米,根据题意可得方程_________________.36.某种品牌的笔记本电脑原价为5000元,如果连续两次降价的百分率都为10%,那么两次降价后的价格为_____元.37.有一个两位数,其个位数字比十位数字大 2,且这个两位数大于 20 且小于 30,那么这个两位数是_____.38.已知方程组24x y ax y +⎧⎨+⎩==和278x y x by --⎧⎨+⎩==有相同的解,则ab =_____.39.已知关于x 的方程242x mx +=-的解是正数,则m 的取值范围为______.三、解答题 40.解方程:14211x x x++=-- 41.解下列一元二次方程: (1)22(1)18x -=; (2)22330x x ; (3)2230x x --=; (4)22340x x +-=. 42.解不等式:2123x x -≤-,把解集在数轴上表示出来. 43.(1)解方程组2=57320x y x y -⎧⎨-=⎩;(2)解不等式组21241x xx x >-⎧⎨+<-⎩.44.解方程组:45.某学校准备为“中国传统文化知识竞赛”购买奖品,已知在某商场购买3个甲种奖品和2个乙种奖品需要65元,购买4个甲种奖品和3个乙种奖品需要90元. (1)求甲、乙两种奖品的单价各是多少元;(2)该校计划购买甲、乙两种奖品共60个,且购买奖品的总费用不超过600元.恰逢该商场搞促销,所有商品一律八折销售,求该校在该商场最多能购买多少个甲种奖品. 46.某学习网站针对疫情停课不停学推出了套餐优惠服务:已知购买2个学习账号和1个错题伴印设备需要2700元,购买3个学习账号和2个错题伴印设备需要4800元.(1)求1个学习账号和1个错题伴印设备的单价各是多少元?(2)若某学习小组准备购买账号和错题伴印设备共45个,且要求伴印设备不低于账号数量的23,请问如何购买才能使得总费用最低,最低费用为多少? 47.计算题(1)解不等式组31122(3)5x x x x -⎧+⎪⎨⎪--≥⎩(2)分式化简:2321(2)22a a a a a -++-÷++ 48.已知,关于的方程组3{25x y a x y a-=++= 的解满足.(1)求的取值范围.(2)化简.49.山地自行车越来越受中学生的喜爱,各种品牌相继投放市场,某车行经营的A型车今年每辆销售价比去年降低400元,则今年销售5辆车与去年销售4辆车的销售金额相同.(1)求该车行今年和去年A型车每辆销售价各多少元?(2)该车行今年计划进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍.若今年A型车进货价每辆1100元,B型车进货价每辆1600元、销售价每辆2200元.设进A型车a辆,这批车卖完后获得利润W元?应如何进货才能使这批车获得利润最多?参考答案:1.A【分析】设甲类玩具的进价为x元/个,根据用1000元购进甲类玩具的数量与用750元购进乙类玩具的数量相同这个等量关系列出方程即可.【详解】解:设甲类玩具的进价为x元/个,则乙类玩具的进价为(x−5)元/个,由题意得,10007505=-x x,故选A.【点睛】本题考查的是列分式方程解应用题,找到等量关系是解决问题的关键.2.B【分析】分别求出每一个不等式的解集,根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则即可得答案.【详解】解:215840xx-≤⎧⎨-<⎩①②,解不等式2x−1≤5,得:x≤3,解不等式8−4x<0,得:x>2,故不等式组的解集为:2<x≤3,故选:B.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟悉在数轴上表示不等式解集的原则“大于向右,小于向左,包括端点用实心,不包括端点用空心”是解题的关键.3.D【分析】根据一元一次不等式的定义,未知数的次数是1,对各选项分析判断后利用排除法求解.【详解】解:①没有未知数,不是一元一次不等式;①是一元一次不等式;①未知数在分母上,不是一元一次不等式;①含有两个未知数,不是一元一次不等式;①是一元一次方程,不是一元一次不等式.故选D.【点睛】本题主要是对一元一次不等式定义的考查.4.D【分析】根据方程的解的定义,把x=5代入2x−y=12,求得y的值,进而求出▲的值,即可得到答案.【详解】解:①方程组2212x yx y+=⎧⎨-=⎩▲的解为5xy=⎧⎨=⎩☆,①把x=5代入2x−y=12,得:2×5−y=12,解得:y=-2,把x=5,y=-2代入2x+y=▲,得:2×5+(−2)=▲,即:▲=8,①这两个数分别为:8和﹣2.故选D.【点睛】本题主要考查二元一次方程组的解的定义,掌握二元一次方程组的解满足各个方程,是解题的关键.5.C【详解】解:①在方程2x2+6x+5=0中,①=62﹣4×2×5=﹣4<0,①方程2x2+6x+5=0没有实数根,故选C.6.B【分析】根据方程有两个相等的实数根,可推出根的判别式240b ac-=,代入相应的系数即可解得a的取值.【详解】220x x a+-=有两个相等的实数根∴()22410a-⨯⨯-=解得:1a=-故选:B.【点睛】本题主要考查一元二次方程根的判别式,能根据方程有两个相等的实数根推出根的判别式等于零是解题的关键.7.C【分析】解出不等式组,根据解集即可选出正确的数轴.【详解】30 20 xx+>⎧⎨-≥⎩①②解:由①得:x >-3, 由①得:x ≤2故原不等式组得解集为:-3<x ≤2 故选:C【点睛】本题主要考查了一元一次不等式组以及用数轴表示解集,熟练地掌握不等式的性质,正确地解出不等式组,能够正确地在数轴上表示不等式组的解集是解题的关键.注意:“≥、≤”在数轴上表示为实心圆点,“>、<”在数轴上表示为空心圆圈. 8.D【分析】设甲每小时生产x 个零件,根据题意列出分式方程式即可. 【详解】解:设甲每小时生产x 个零件,根据甲生产120个所用的时间与乙生产90个所用的时间相等, 可列方程120905x x =-, 故选D .【点睛】本题考查了分式方程的实际应用,正确列出方程式是本题关键. 9.A【分析】第一天为2亿元,根据增长率为x 得出第二天为2(1+x )亿元,第三天为2(1+x )2亿元,根据“第三天票房收入约达到4亿元”,即可得出关于x 的一元二次方程. 【详解】设平均每天票房的增长率为x , 根据题意得:22(1)4x +=. 故选:A .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键. 10.A【分析】利用一元二次方程根的判别式进行判断. 【详解】解:方程2320x x +-=中,a=1,b=3,c=-2 ①22=4341(2)170b ac -=-⨯⨯-=> ①方程有两个不相等的实数根. 故选:A .【点睛】本题考查一元二次方程根的判别式,掌握2=40b ac ->方程有两个不相等的实数根,2=4=0b ac -方程有两个相等的实数根,2=4<0b ac -方程无实数根是解题关键. 11.A【分析】根据等式的基本性质得到a b =-,再根据相反数的定义解决此题.【详解】①m n =,①0-=m n ,且m a n b +=-,①a b =-,即0a b +=,①a 与b 互为相反数,故选:A【点睛】本题主要考查等式的基本性质、相反数,熟练掌握等式的基本性质、相反数的定义是解决本题的关键.12.C【分析】先将整式M 进行变形为(x ﹣2)2+(y +3)2+2(x ﹣2y )2+1,然后根据二次方的非负性,即可得出答案.【详解】解:M =3x 2﹣8xy +9y 2﹣4x +6y +14=(x 2﹣4x +4)+(y 2+6y +9)+2(x 2﹣4xy +4y 2)+1=(x ﹣2)2+(y +3)2+2(x ﹣2y )2+1①()220x -≥,()230y +≥,()220x y -≥,①(x ﹣2)2+(y +3)2+2(x ﹣2y )2+1>0,故C 正确.故选:C .【点睛】本题主要考查了配方法的应用和非负数的性质,将整式M 变为(x ﹣2)2+(y +3)2+2(x ﹣2y )2+1,是解题的关键.13.A【详解】:①=(-a )2-4×1×(-2)=a 2+8>0,①方程有两个不相等的实数根.故选A .14.B【分析】分别利用等式的基本性质判断得出即可.【详解】解:A、如果-0.5x=8,那么x=-16,错误;B、如果x=y,那么x-2=y-2,正确;C、如果mx=my,当m=0时,x不一定等于y,错误;D、如果|x|=|y|,那么x=y或x=-y,错误;故选:B.【点睛】此题主要考查了等式的基本性质,熟练掌握性质1、等式两边加减同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式是解题关键.15.B【分析】利用一元二次方程的定义和判别式的意义得到k-3≠0且Δ=42-4(k-3)×1>0,然后解不等式组即可.【详解】解:根据题意得k-3≠0且Δ=42-4(k-3)×1>0,解得k<7且k≠3.故选:B.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2-4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.16.B【详解】试题分析:由直线y=ax+b(a≠0)不经过第一象限可得a<0,b≤0,又因直线y=ax+b(a≠0)经过点(2,﹣3),可得2a+b=—3,所以,b=—2a—3,因此 s=a+2b=a+2(—2a—3)=—3a—6,由a<0可得s>—6, s=a+2b=+2b=,由b≤0可得s≤—,所以s的取值范围是﹣6<s≤﹣.故答案选B.考点:一次函数图象与系数的关系.17.B【分析】设C(c,0)(0≤c≤4),过P作PD①x轴于点D,由①PCD①①ACB,用c表示P点坐标,再求得k关于c的解析式,最后由不等式的性质求得k的取值范围.【详解】解:①点A的坐标为(4,3),AB①x轴于点B,①OB=4,AB=3,设C(c,0)(0≤c≤4),过P作PD①x轴于点D,则BC=4-c,PD AB,OC=c,①①PCD①①ACB,①PD CD CPAB CB CA==①AP PC=,①1 342 PD CDc==-①PD=32,122CD c=-①OD=OC+CD=2+12c,①P(2+12c,32),把P(2+12c,32)代入函数kyx=(x>0)中,得k=3+34c,①0≤c≤4,①3≤k≤6,故选:B.【点睛】本题主要考查了反比例函数的图象与性质,相似三角形的性质与判定,不等式的性质,解题关键是求出k关于c的解析式.18.C【分析】代入多项式列方程求解即可判断①;先代入多项式化简,再利用结果与x的值无关得到a、b的值,即可判断①;代入多项式列绝对值方程求解即可判断①;代入多项式,得到41ym=-,根据题意得到符合条件的非负整数m值,即可判断①.【详解】解:222A x x=++,222B x x=-+,①12A B+=,()22222212x x x x∴+++-+=,240x ∴-=,2x ∴=±,①正确;①()()()22222222224A B ax bx x x x x ax bx a x bx ++-=+++-++-=+-+,2A B ax bx ++-的值与x 的值无关,()224a x bx ∴+-+的值与x 的值无关,20a ∴+=,0b -=,2a ∴=-,0b =,2a b ∴+=-,①正确; ① ()2282222848A B x x x x x --=++--+-=-,()2242222444A B x x x x x -+=++--++=+,当1x <-时,()8444128x x x -+-=-,当12x -≤≤时,844412x x -++=,当2x >时,484484x x x -++=-,若|8||4|12A B A B --+-+=,即484412x x -++=,∴当12x -≤≤时,满足条件,①正确;①2(1)2m y A B x -=+-,()14m y ∴-=,41y m ∴=-, ∴若关于y 的方程2(1)2m y A B x -=+-的解为整数,则符合条件的非负整数m 有0、2、3、5,共4个,①错误,故结论中正确的是①①①,故选C .【点睛】本题考查了整式的加减运算,解一元一次方程,解绝对值方程,非负整数的概念,熟练掌握解方程的步骤与方法是解题关键,注意0是非负整数.19.D【详解】试题解析:A. 方程两边同乘以20得,40-5(3x -7)=4(x +17),所以本选项错误;B. 从左边看,方程应用的是分式的性质;从右边看,方程应用的是等式的性质2;故所得方程与原方程不是同解方程, 所以本选项错误;C. 去括号时漏乘常数项,且去括号未变号;所以本选项错误;D.计算正确.故选D.20.4x+2≥0【详解】由题意得,4x+2≥0.故答案为4x+2≥0.21.3【分析】由于二元一次方程x+3y=10中x的系数是1,可先用含y的代数式表示x,然后根据此方程的解是正整数,那么把最小的正整数y=1代入,算出对应的x的值,再把y=2代入,再算出对应的x的值,依此可以求出结果.【详解】解:①x+3y=10,①x=10-3y,①x、y都是正整数,①y=1时,x=7;y=2时,x=4;y=3时,x=1.①二元一次方程x+3y=10的正整数解共有3对.故答案为:3.【点睛】此题考查了解二元一次方程,解题的关键是将一个未知数看做已知数求出另一个未知数.22.±4【分析】根据一元二次方程的定义解答即可.【详解】①2x|m|﹣2+3=9是关于x的一元二次方程,①|m|﹣2=2,解得m=±4.故答案为±4.【点睛】本题考查了一元二次方程的定义,熟知一元二次方程的定义是解决问题的关键.23.43m ≤ 【分析】一元二次方程有实数根,则2=40b ac ∆-≥,建立关于m 的不等式,求出m 的取值范围.【详解】解:①关于x 的一元二次方程3x 2+4x +m =0有实数根,22=44430b ac m ∆-=-⨯≥ ①43m ≤, 故答案为:43m ≤. 【点睛】本题主要考查了一元二次方程根的判别式,解题的关键是明确当一元二次方程有实数根时,2=40b ac ∆-≥.24.15-【分析】设方程的两根分别是1x 和11x +,根据一元二次方程根与系数关系可得()11156x x +=,可得方程的两根,继而根据一元二次方程根与系数关系即可得出k 的值;【详解】设方程的两根分别是1x 和11x +,根据一元二次方程根与系数关系可得:()11156x x +=,解得:17x =,118x +=,①11115x x k ++==-,①15k =-,故答案为:15-【点睛】本题考查解一元二次方程,解题的关键是熟练解一元二次方程的方法以及一元二次方程根与系数关系.25.3【分析】根据新定义运算列出方程,故可求解.【详解】①a ①b =a 2﹣ab ,(x +2)①(x ﹣3)=25,①(x +2)2-(x +2)(x ﹣3)=25,x 2+4x +4-(x 2-x -6)=25x 2+4x +4- x 2+x +6=255x =15x=3故答案为:3.【点睛】此题主要考查新定义运算与解方程,解题的关键是熟知整式的乘法运算与方程的求解.26.2【分析】求出不等式组的解集,确定出非负整数解即可.【详解】解:不等式组整理得:521xx⎧<⎪⎨⎪>⎩,解得:512x<<,由x为非负整数,得到2x=,则x的值为2.故答案为:2.【点睛】此题考查了一元一次不等式组的整数解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.27.14-【分析】先将x=2代入250x x m++=,然后求解关于m的方程即可.【详解】把2x=代入250x x m++=,得:22100m++=,①14m=-.故答案为:-14.【点睛】本题主要考查了方程的解以及解一元一次方程的解,理解方程的解成为解答本题的关键.28.-4【分析】把x=2代入方程计算即可求出a的值.【详解】解:把x=2代入方程得:4﹣a=8,解得:a=﹣4.故答案为:﹣4.【点睛】本题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.【分析】通过阅读知道[x]有两层意义,一是其值小于x ,二是其值为整数,根据这两点可以得到解答.【详解】解:由题意得:[-3]3≤-,且为整数,所以[-3]= -3,①正确;[-2.9] 2.9≤-,且为整数,所以[-2.9]= -3,①错误;[0.9]0.9≤ ,且为整数,所以[0.9]= 0,①正确;[3.1] 3.1≤ ,且为整数,所以[3.1]= 3;[3.9] 3.9≤ ,且为整数,所以[3.9]= 3,所以[3.1]+[3.9]=6,①错误.故答案为:①①.【点睛】本题考查阅读理解应用能力,在对材料内容进行归纳提取的基础上应用其方法解答是解题关键.30.5x =【分析】根据分式方程的求解步骤进行求解即可;【详解】解:方程两边同时乘以()3x -,得:()123x x =--,去括号、移项得:5x -=-,系数化为1得:5x =,经检验,当5x =时,30x -≠,故5x =是原方程的根,故答案为:5x =.【点睛】本题主要考查分式方程的解法,熟练掌握分式方程的解法是解题的关键. 31.8【分析】先求出第二个方程的解,把x =2代入第一个方程,求出方程的解即可.【详解】解方程4x ﹣5=3(x ﹣1)得:x =2,把x =2代入方程2x a +=23x a ++1中,可得:22a +=43a ++1, 解得:a =8.故答案为8【点睛】本题考查了一元一次方程的解和解一元一次方程,能得出关于a 的方程是解此题的关键.【详解】解:①小正方形与大正方形的面积之比为1:13,①设大正方形的面积是13,①c2=13,①a2+b2=c2=13,①直角三角形的面积是1314-=3,又①直角三角形的面积是12ab=3,①ab=6,①(a+b)2=a2+b2+2ab=c2+2ab=13+2×6=13+12=25,①a+b=5.则a、b是方程x2﹣5x+6=0的两个根,故b=3,a=2,①23ab=.故答案是:2:3.考点:勾股定理证明的应用33.160【详解】一套运动装标价200元,按标价的八折(即原价的80%)销售,则这套运动装的实际售价为200×80%=160元,故答案为:160.34.21【分析】根据题意得到方程28×0.9=(1+20%)x,求解即可.【详解】解:设该商品的进价为x元,依题意得,28×0.9=(1+20%)x解得:x=21故答案是21.【点睛】本题考查了一次方程的实际应用,属于简单题,找到等量关系,建立一元一次方程是解题关键.35.8004600800102x x-+=【详解】本题的等量关系是:加固800米用的时间+加固(4600-800)米用的时间=10. 所以可列方程为:8004600800102x x-+= 36.4050【分析】根据题意可知第一次降价为5000(1-10%)=4500,第二次降价为4500(1-10%)=4050.【详解】解:依题意得:5000(1-10%)2=4050.【点睛】本题考查了一元二次方程的实际应用,属于简单题,熟悉降价率的计算方法是解题关键.37.24【分析】设这个两位数的十位数字为x ,则个位数字为x +2,然后用含x 的代数式表示出这个两位数,根据这个两位数大于20且小于30即可列出关于x 的不等式组,解不等式组求出x 的范围后结合x 为正整数即可确定x 的值,进一步即可求得答案.【详解】解:设这个两位数的十位数字为x ,则个位数字为x +2,那么这个两位数为10x +x +2,根据题意得:20<10x +x +2<30,解得:18281111x <<. ①x 为正整数,①x =2,①10x +x +2=24,则这个两位数是24.故答案为:24.【点睛】本题考查了一元一次不等式组的应用,属于常考题型,正确理解题意、列出不等式组是解题关键.38.-1 【分析】根据方程组24x y ax y +⎧⎨+⎩==和278x y x by --⎧⎨+⎩==有相同的解,所以把2x y +=和27x y --=组成方程组求出 x 、y 的值,再把 x 、y 的值代入其他两个方程 4ax y +=和8x by +=即可求出a 、 b 的值,即可得答案.【详解】解:①方程组24x y ax y +⎧⎨+⎩==和278x y x by --⎧⎨+⎩==有相同的解,①方程组227x y x y +⎧⎨--⎩=①=②的解也是它们的解, ①× 2+①,得:2x +x = 4-7,解得:x =-1,把x = -1代入①,得:-1+y =2,解得:y =3,把x =-1, y =3代入4ax y +=得:-a +3= 4解得:a = -1,把x =-1, y =3代入8x by +=得:-1+3b =8,解得:b =3,①ab =(-1)3=-1,故答案为:-1.【点睛】本题主要考查了二元一次方程组的解及二元一次方程组的解法,做题的关键是熟练的解二元一次方程组.39.8m >-且4m ≠-【分析】先解分式方程用含有m 的代数式表示x ,再根据x >0,且x -2≠0,求出答案即可. 【详解】242x m x +=- 82m x +=因为方程的解是正数,且x -2≠0, 所以802m +>,且8202m +-≠,解得m >-8,且m ≠-4.故答案为:m >-8,且m ≠-4.【点睛】本题主要考查了分式方程的解,注意:解分式方程时要保证分母不能是0. 40.x =-1【分析】去分母解整式方程,再代入最简公分母检验即可.【详解】解:去分母,得x +1-4=2(x -1)去括号,得x -3=2x -2解得x =-1,检验:当x =-1时x -10≠,①原分式方程的解为x =-1.【点睛】此题考查了解分式方程,正确掌握解分式方程的解法是解题的关键.41.(1)14x =,22x =-;(2)方程没有实数解;(3)13x =,21x =-;(4)134x -+=,2x = 【分析】(1)先变形为2(1)9x -=,然后利用直接开平方法解方程;(2)利用判别式的意义判断方程没有实数解;(3)利用因式分解法解方程;(4)利用求根公式法解方程.【详解】解:(1)22(1)18x -=可化为:2(1)9x -=,①13x -=±,①14x =,22x =-;(2)①2(3)423150,所以方程没有实数解;(3)2230x x --=可化为:(3)(1)0x x -+=,①30x -=或10x +=,①13x =,21x =-;(4)①2342(4)41, ①24341222b b ac x a①1x =2x = 【点睛】本题考查了解一元二次方程,熟悉相关解法是解题的关键.42.x≤2【分析】先将不等式左右两边同时扩大6倍,去掉分母;然后在按照解一元一次不等式的步骤进行求解【详解】左右两边同时扩大6倍得:3x≤6-2(x -2)去括号得:3x≤6-2x+4移项得:5x≤10解得:x≤2数轴上表示如下:【点睛】本题考查了解不等式,需要注意,不等式两边同乘除负数时,不等号要变号43.(1)55xy=⎧⎨=⎩;(2)x>1.【分析】(1)利用加减消元法解二元一次方程组即可;(2)先求出每一个不等式的解集,再求出不等式组的解集即可.【详解】解:(1)25 7320x yx y-=⎧⎨-=⎩①②,由①得:y=2x﹣5①,把①代入①得:7x﹣3(2x﹣5)=20,解得:x=5,把x=5代入①得:y=5,方程组的解为55xy=⎧⎨=⎩;(2)21241x xx x>-⎧⎨+<-⎩①②,解不等式①,得:x13 >,解不等式①,得:x>1,不等式组的解集为:x>1.【点睛】本题主要考查了解二元一次方程组和解一元一次不等式组,解题的关键在于能够熟练掌握相关知识进行求解.44.【详解】试题分析:用加减法解方程组,①×2+①求出x=2,代入①可求出y=3,.试题解析:解方程组:解:①×2得:③①+③得:把代入①得: 原方程组的解为考点:解二元一次方程组.45.(1)甲种奖品的单价为15元,乙种奖品的单价为10元(2)学校在商场最多能购买30个甲种奖品【分析】(1)设甲种奖品的单价为x 元,乙种奖品的单价为y 元,根据“购买3个甲种奖品和2个乙种奖品共需65元;购买4个甲种奖品和3个乙种奖品共需90元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设学校在商场可购买m 个甲种奖品,则可购买(60−m )个乙种奖品,根据总价=单价×数量,结合此次购买奖品的费用不超过600元,即可得出关于m 的一元一次不等式,解之取其中的最大值即可得出结论.(1)解:(1)设甲种奖品的单价为x 元,乙种奖品的单价为y 元,依题意得:32654390x y x y ⎧⎨⎩+=+=,解得:1510x y =⎧⎨=⎩, 答:甲种奖品的单价为15元,乙种奖品的单价为10元;(2)解:设学校在商场可购买m 个甲种奖品,则可购买(60−m )个乙种奖品,依题意得:15×0.8m +10×0.8(60−m )≤600,解得:m ≤30,答:学校在商场最多能购买30个甲种奖品.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.46.(1)1个学习账号和1个错题半印设备的单价各是600元和1500元;(2)购买学习账号27个,伴印设备18个总费用最低,最低费用为43200元【分析】(1)本题有两个相等关系:购买2个学习账号的费用+1个错题伴印设备的费用=2700元,购买3个学习账号的费用+2个错题伴印设备的费用=4800元,据此设未知数列方程组解答即可;(2)设购买学习账号m 个,总费用为W 元,先根据题意列出W 与m 的一次函数关系式,然后由伴印设备不低于账号数量的23可得关于m 的不等式,解不等式即可求出m 的取值范围,再根据一次函数的性质解答即可.【详解】解:(1)设1个学习账号和1个错题伴印设备的单价各是x 元和y 元,依据题意得: 22700324800x y x y +=⎧⎨+=⎩,解得:6001500x y =⎧⎨=⎩, 答:1个学习账号和1个错题伴印设备的单价各是600元和1500元.(2)设购买学习账号m 个,则购买伴印设备()45m -个,总费用为W 元,依据题意得:()60015004590067500W m m m =+-=-+, 由2453m m -≥,解得:27m ≤, 9000-<,∴W 随m 的增大而减小,①当m 取最大值27时,函数值W 最小,最小值为675002430043200-=,答:购买学习账号27个,伴印设备18个总费用最低,最低费用为43200元.【点睛】本题考查了二元一次方程组、一元一次不等式和一次函数的应用,属于常考题型,正确理解题意、熟练掌握上述基本知识是解题的关键.47.(1)2≤x <3;(2)11a a +-. 【分析】(1)分别解得各不等式的解集,再求出两个不等式的公共解集即可.(2)根据分式的混合运算法则进行化简即可.【详解】(1)31122(3)5x x x x -⎧+>⎪⎨⎪--≥⎩由3112x x -+> 得:x <3 由2(3)5x x --≥ 得:x≥2①不等式组的解集为:2≤x <3(2)原式=23(2)(2)2·22(1)a a a a a a -++⎡⎤+⎢⎥++-⎣⎦ =22122(1)a a a a -++- =a+1a-1【点睛】本题考查解不等式,分式的混合运算,熟练掌握不等式的解法及分式的运算法则是解题关键.48.(1)a >2 (2)2【详解】试题分析:(1)解不等式得出用a 表示的x 与y ,然后根据x >y >0得到不等式组,求得不等式组的解集可求得a 的范围;(2)根据绝对值的意义直接由(1)的结论可求得结果.试题解析:解:(1)3{25x y a x y a -=++=①②由①+①得3x=6a+3解得x=2a+1,把x=2a+1代入①可得y=a-2由x >y >0可得2a+1>a-2>0解不等式可得a >-3且a >2所以a 的取值范围为a >2(2)由a >2可知=a-(a-2)=a-a+2=2.考点:二元一次方程组,不等式组,绝对值49.该车行今年A 型车每辆销售价1600元,去年每辆销售价2000元;(2)当进A 型车20辆,B 型车40辆时,这批车获利最大.【详解】试题分析:(1)设今年A 型车每辆售价x 元,则去年售价每辆为y 元,根据题意建立方程组求出其解即可;(2)设今年新进A 型车a 辆,则B 型车(60-a )辆,获利W 元,由条件表示出W 与a 之间的关系式,由a 的取值范围就可以求出W 的最大值.。
中考数学总复习《整式的乘法与因式分解》专项提升练习题-带答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列运算正确的是()A.(ab)5=ab5B.a8÷a2=a6C.(a2)3=a5D.a2⋅a3=a62.已知2m=a,2n=b,m,n为正整数,则2m+n为()A.a+b B.ab C.2ab D.a2+b23.若(x2−mx+1)(x−3)展开后不含x的一次项,则m的值是()A.3 B.1 C.−13D.04.多项式(x2−2x+1)与多项式(x−1)(x+1)的公因式是( )A.x−1B.x+1C.x2+1D.x25.下列代数式变形中,属于因式分解是()A.m(m−2)=m2−2m B.m2−2m+1=m(m−2)+1C.m2−1=(m+1)(m−1)D.m2−2+1m2=(m−1m)26.如图,阴影部分是在边长为a的大正方形中剪去一个边长为b的小正方形后所得到的图形,将阴影部分通过割、拼,形成新的图形.给出下列2种割拼方法,其中能够验证平方差公式的是()A.①B.②C.①②D.①②都不能7.已知x−1x =2,则x2+1x2的值为()A.2 B.4 C.6 D.88.如果二次三项式x2−ax−9(a为整数)在整数范围内可以分解因式,那么a可取值的个数是()A.2个B.3个C.4个D.无数个二、填空题9.如果a2⋅a m=a6,则m=.10.在实数范围内分解因式:x2−4x−2=.11.当4x2+2kx+25是一个完全平方式,则k的值是12.已知a−b=8,ab=−15则a2+b2=.13.因式分解x2+ax+b,甲看错了a的值,分解的结果是(x+6)(x−2),乙看错了b的值,分解的结果为(x−8)(x+4),那么x2+ax+b分解因式正确的结果为.三、解答题14.计算:(1)(2)15.分解因式:(1)4x2+20x+25;(2)(a2−9b2)+(a−3b).16.已知m+n=3,mn=2.(1)当a=2时,求a m⋅a n−(a m)n的值;(2)求(m−n)2+(m−4)(n−4)的值.17.为创建文明校园环境,高校长制作了“节约用水”“讲文明,讲卫生”等宣传标语,标语由如图①所示的板材裁剪而成,其为一个长为2m,宽为2n的长方形板材,将长方形板材沿图中虚线剪成四个形状和大小完全相同的小长方形标语,在粘贴过程中,同学们发现标语可以拼成图②所示的一个大正方形.(1)用两种不同方法表示图②中小正方形(阴影部分)面积:方法一:S小正方形=;方法二:S小正方形=;(2)(m+n)2,(m−n)2,4mn这三个代数式之间的等量关系为;(3)根据(2)题中的等量关系,解决如下问题:①已知:a−b=5,ab=−6求:(a+b)2的值;②已知:a−1a=1,求:(a+1a)2的值.18.阅读理解应用待定系数法:设某一多项式的全部或部分系数为未知数、利用当两个多项式为恒等式时,同类项系数相等的原理确定这些系数,从而得到待求的值.待定系数法可以应用到因式分解中,例如问题:因式分解x3−1.因为x3−1为三次多项式,若能因式分解,则可以分解成一个一次多项式和一个二次多项式的乘积.故我们可以猜想x3−1可以分解成x3−1=(x−1)(x2+ax+b),展开等式右边得:x3+(a−1)x2+(b−a)x−b,根据待定系数法原理,等式两边多项式的同类项的对应系数相等:a−1= 0,b−a=0,−b=−1可以求出a=1,b=1.所以x3−1=(x−1)(x2+x+1)(1)若x取任意值,等式x2+2x+3=x2+(3−a)x+3恒成立,则a=;(2)已知多项式x4+x2+1有因式x2+x+1,请用待定系数法求出该多项式的另一因式.(3)请判断多项式x4−x2+1是否能分解成两个整系数二次多项式的乘积,并说明理由.参考答案1.B2.B3.C4.A5.C6.C7.C8.A9.410.(x−2+√6)(x−2−√6)11.±1012.3413.(x-6)(x+2)14.(1)解:原式=(2)解:原式=15.(1)解:4x2+20x+25=(2x)2+2⋅2x⋅5+52=(2x+5)2(2)解:(a2−9b2)+(a−3b)=[a2−(3b)2]+(a−3b)=(a+3b)(a−3b)+(a−3b)=(a−3b)(a+3b+1)16.(1)解:∵m+n=3mn=2∴a m⋅a n−(a m)n=a m+n−a mn=a3−a2∵a=2∴原式=23−22=8−4=4;(2)解:∵m +n =3∴(m −n)2=(m +n)2−4mn =32−4×2=1 ∴(m −n)2+(m −4)(n −4)=1+mn −4(m +n)+16=1+2−4×3+16=7.17.(1)(m −n)2;(m +n)2−4mn(2)(m +n)2=(m −n)2+4mn(3)(3)①a −b =5 ab =−6∴(a +b)2=(a −b)2+4ab=52+4×(−6)=25+(−24)=1;②(a +1a )2=(a −1a )2+4⋅a ⋅1a=12+4=1+4=5.18.(1)1(2)解:设x 4+x 2+1=(x 2+ax +1)(x 2+x +1)=x 4+(a +1)x 3+(a +2)x 2+(a +1)x +1∴a +1=0解得a =−1;∴多项式的另一因式是x 2−x +1;(3)解:不能,理由:∵设x 4−x 2+1=(x 2+ax +1)(x 2+bx +1)=x 4+(a +b)x 3+(ab +2)x 2+(a +b)x +1∴a +b =0 ab +2=−1解得:a =√3、b =−√3或a =−√3、b =√3 ∴系数不是整数∴多项式x 4−x 2+1是不能分解成的两个整系数二次多项式的乘积。
中考数学总复习《因式分解》练习题附带答案一、单选题1.下列因式分解正确的是()A.x2−4x+4=(x−4)2B.4x2+2x+1=(2x+1)2C.9-6(m-n)+(n-m) 2 =(3-m+n) 2D.x4−y4=(x2+y2)(x2−y2)2.把(a−b)+m(b−a)提取公因式(a−b)后,则另一个因式是()A.1−m B.1+m C.m D.−m 3.已知a﹣b=3,b+c=﹣5,则代数式ac﹣bc+a2﹣ab的值为()A.-15B.-2C.-6D.6 4.下列等式从左到右的变形是因式分解的是()A.6a3b=3a2•2ab B.(x+2)(x﹣2)=x2﹣4C.2x2+4x﹣3=2x(x+2)﹣3D.ax﹣ay=a(x﹣y)5.下列分解因式正确的是()A.x2+y2=(x+y)(x﹣y)B.m2﹣2m+1=(m-1)2C.(a+4)(a﹣4)=a2﹣16D.x3﹣x=x(x2﹣1)6.分解因式x2y−y3结果正确的是().A.y(x+y)2B.y(x−y)2C.y(x2−y2)D.y(x+y)(x﹣y)7.下列由左到右的变形,属于因式分解的是()A.(x+2)(x−2)=x2−4B.x2+4x−2=x(x+4)−2 C.x2−4=(x+2)(x−2)D.x2−4+3x=(x+2)(x−2)+ 3x8.有下列各式:①x2−6x+9;②25a2+10a−1;③x2−4x+4;④a2+a+ 1.其中能用完全平方公式因式分解的个数为()4A.1B.2C.3D.4 9.多项式3x3﹣12x2的公因式是()A.x B.x2C.3x D.3x2 10.下列各式由左边到右边的变形中,是因式分解的为()A.a(x+y)=ax+ayB.10x2﹣5x=5x(2x﹣1)C.x2﹣4x+4=(x﹣4)2D.x2﹣16+3x=(x+4)(x﹣4)+3x11.﹣m(m+x)(x﹣n)+mn(m﹣x)(n﹣x)的公因式是()A.﹣m B.m(n﹣x)C.m(m﹣x)D.(m+x)(x﹣n)12.计算:1252﹣50×125+252=()A.100 B.150C.10000D.22500二、填空题13.因式分解:x2+2xy+y2−1=.14.分解因式:a3−81ab2=.15.在实数范围内分解因式:x2y﹣3y=16.多项式2a2b3+6ab2的公因式是.17.分解因式:12x2-x+ 12=。
2013中考数学50个知识点专练3 因式分解
一、选择题
1.(2011·泰安)下列等式不成立的是( )
A .m 2-16=(m -4)(m +4)
B .m 2+4m =m (m +4)
C .m 2-8m +16=(m -4)2
D .m 2+3m +9=(m +3)2
答案 D
解析 右边(m +3)2=m 2+6m +9≠m 2+3m +9.
2.(2011·无锡)分解因式2x 2-4x +2的最终结果是( )
A .2x (x -2)
B .2(x 2-2x +1)
C .2(x -1)2
D .(2x -2)2
答案 C
解析 2x 2-4x +2=2(x 2-2x +1)=2(x -1)2.
3.(2011·济宁)把代数式 3x 3-6x 2y +3xy 2分解因式,结果正确的是( )
A .x (3x +y )(x -3y )
B .3x (x 2-2xy +y 2)
C .x (3x -y )2
D .3x (x -y )2
答案 D
解析 3x 3-6x 2y +3xy 2=3x (x 2-2xy +y 2)=3x (x -y )2.
4.已知x 、y 满足等式2x +x 2+x 2y 2+2=-2xy ,那么x +y 的值为( )
A .-1
B .0
C .2
D .1
答案 B
解析 原式可转化为:(x 2y 2+2xy +1)+(x 2+2x +1)=0,即(xy +1)2+(x +1)2=0,∴xy +1=0且x +1=0,∴x =-1,y =1,x +y =0.
5.(2011·台湾)下列四个多项式,哪一个是2x 2+5x -3的因式?( )
A .2x -1
B .2x -3
C .x -1
D .x -3
答案 A
解析 2x 2+5x -3=(x +3)(2x -1).
二、填空题
6.(2011·绍兴)分解因式:x 2+x =______________.
答案 x (x +1)
解析 x 2+x =x (x +1).
7.(2011·杭州模拟)在实数范围内分解因式:2a 3-16a =________.
答案 2a (a +2 2)(a -2 2)
解析 2a 3-16a =2a (a 2-8)=2a []a 2-(2 2)2=2a (a +2 2)(a -2 2).
8.(2011·枣庄)若m 2-n 2=6,且m -n =2,则m +n =________.
答案 3
解析 m 2-n 2=6,(m +n )(m -n )=6,(m +n )×2=6,m +n =3.
9.(2011·威海)分解因式:16-8(x -y )+(x -y )2=______________.
答案 (x -y -4)2
解析 16-8(x -y )+(x -y )2=(x -y )2-2·(x -y )·4+42=(x -y -4)2.
10.(2011·潍坊)分解因式:a 3+a 2-a -1=______________.
答案 (a +1)2(a -1)
解析 a 3+a 2-a -1=(a 3+a 2)-(a +1)=a 2(a +1)-(a +1)=(a +1)(a 2-1)=(a +1)2(a -
1).
三、解答题
11.(2011·宿迁)已知实数a 、b 满足ab =1,a +b =2,求代数式a 2b +ab 2的值.
解 当ab =1,a +b =2时,原式=ab (a +b )=1×2=2.
12.(2011·湖州)因式分解:a 3-9a .
解 原式=a (a 2-9)=a (a +3)(a -3).
13.(2011·广州)分解因式:8(x 2-2y 2)-x (7x +y )+xy .
解 8(x 2-2y 2)-x (7x +y )+xy
=8x 2-16y 2-7x 2-xy +xy
=x 2-16y 2=(x +4y )(x -4y ).
14.(2011·衢州)有足够多的长方形和正方形的卡片,如下图.
如果选取1号、2号、3号卡片分别为1张、2张、3张,可拼成一个长方形(不重叠无
缝隙).请画出这个长方形的草图,并运用拼图前后面积之间的关系说明这个长方形的代数意义.
________________________________________________________________________ 这个长方形的代数意义是________________.
解 或
a 2+3a
b +2b 2=(a +b )(a +2b ).
15.设a =12m +1,b =12m +2,c =12
m +3.求代数式a 2+2ab +b 2-2ac -2bc +c 2的值. 解 原式=(a 2+2ab +b 2)-(2ac +2bc )+c 2
=(a +b )2-2(a +b )c +c 2
=(a +b -c )2
=⎣⎡⎦
⎤⎝⎛⎭⎫12m +1+⎝⎛⎭⎫12m +2-⎝⎛⎭⎫12m +32 =⎝⎛⎭⎫12m 2=14m 2.
四、选做题
16.分解因式:x 15+x 14+x 13+…+x 2+x +1.
分析 这个多项式的特点是:有16项,从最高次项x 15开始,x 的次数顺次递减至0,由此想到应用公式a n -b n 来分解.
解 因为x 16-1=(x -1)(x 15+x 14+x 13+…x 2+x +1),
所以原式=(x -1)(x 15+x 14+x 13+…+x 2+x +1)x -1
=x 16-1x -1
=(x 8+1)(x 4+1)(x 2+1)(x +1)(x -1)x -1
=(x 8+1)(x 4+1)(x 2+1)(x +1).
说明:在本题的分解过程中,用到先乘以(x -1),再除以(x -1)的技巧,这一技巧在等式变形中很常用.。